JPS60121787A - Silent discharge type gas laser device - Google Patents

Silent discharge type gas laser device

Info

Publication number
JPS60121787A
JPS60121787A JP22966483A JP22966483A JPS60121787A JP S60121787 A JPS60121787 A JP S60121787A JP 22966483 A JP22966483 A JP 22966483A JP 22966483 A JP22966483 A JP 22966483A JP S60121787 A JPS60121787 A JP S60121787A
Authority
JP
Japan
Prior art keywords
discharge tube
laser device
gas laser
electrodes
type gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22966483A
Other languages
Japanese (ja)
Inventor
Masaki Kuzumoto
昌樹 葛本
Shigenori Yagi
重典 八木
Shuji Ogawa
小川 周治
Kimiharu Yasui
公治 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22966483A priority Critical patent/JPS60121787A/en
Publication of JPS60121787A publication Critical patent/JPS60121787A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/041Arrangements for thermal management for gas lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To obtain a silent discharge type gas laser device capable of uniformly cooling a discharge tube by interposing and flowing a liquefied dielectric between the discharge tube and an electrode. CONSTITUTION:A pair of electrodes 2, 3 consisting of a metal are arranged at some interval among the electrodes 2, 3 and the outer wall of a tubular discharge tube 1, and mounted oppositely in the diametral direction of the discharge tube 1, a cooling tube 20 is fitted so as to surround the discharge tube 1 and the electrodes 2, 3, and a liquefied dielectric such as pure water 23 flows in the cooling tube 20. The outer wall of the discharge tube 1 and the electrodes 2, 3 are not fast stuck and some clearances are formed, and pure water 23 flows in the clearances. Accordingly, a silent discharge type gas laser device can cool the discharge tube 1 approximately uniformly because it is constituted so that pure water 23 directly flows on the outer circumference of the discharge tube 1.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、無声放電式ガスレーザ装置における放電管
の冷却手段及び電極構造の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to improvements in a discharge tube cooling means and electrode structure in a silent discharge gas laser device.

〔従来技術〕[Prior art]

従来この椙の無声放電式ガスレーザ装置としては、第1
図に示すものがあった。第1図(a)は従来の無声放電
式ガスレーザ装置の概略構成を示す断面図、第1図(b
)は、wJ1図(a)の無声放電式ガスレーザ装置のA
−A線に沿う断面図である。上記各図において、1は誘
゛電体より成る管状の放電管、2.3は放′成管1の外
壁に密着し、この放電管1の径方向に相対向する様に設
けられる金属から成る一対の電極、4は一対の電極2,
3にそれぞれ接続される高周波電源である。5は全反射
鏡、6は部分反射鏡であり、それぞれが放電管lの長手
方向の両対向端に取り付けられ、第1図(a)に矢印1
1で示される方向にレーザ光を発振させる。そして、放
心管lは、内部に送風機(B)9及び熱交換器10を備
えた各送気管7,8に依続されて循環的に連通されてい
る。第1図(b)には、一対の電極2,3に高周波電源
4よシ交f&成圧を印加した時に起こる放電の様子が示
されている。
Previously, this was the first silent discharge gas laser device manufactured by Sugi.
There was something shown in the figure. Fig. 1(a) is a sectional view showing the schematic configuration of a conventional silent discharge type gas laser device, and Fig. 1(b)
) is A of the silent discharge gas laser device in wJ1 figure (a).
- It is a sectional view along the A line. In each of the above figures, 1 is a tubular discharge tube made of a dielectric material, and 2 and 3 are metal tubes that are in close contact with the outer wall of the discharge tube 1 and are opposite to each other in the radial direction of the discharge tube 1. 4 is a pair of electrodes 2,
These are high frequency power supplies connected to 3, respectively. Reference numeral 5 indicates a total reflection mirror, and reference numeral 6 indicates a partial reflection mirror, each of which is attached to opposite ends of the discharge tube l in the longitudinal direction.
Laser light is oscillated in the direction indicated by 1. The vent pipe 1 is cyclically connected to each air pipe 7, 8 having a blower (B) 9 and a heat exchanger 10 therein. FIG. 1(b) shows the discharge that occurs when the high frequency power source 4 applies alternating voltage and pressure to the pair of electrodes 2 and 3.

次に、上記第1図(a)及び(b)に示した従来の無声
放電式ガスレーザ装置の動作について、co2レーザ装
置を例にと9説明する。放電管1内にはCO2゜He、
N2等の混合ガスが数10 Torr の圧力で充填さ
れている。この放電管1において、一対の電極2.3に
高周波電源4より交流′電圧が印加されるど放電WI内
に無声放電が起とシ、その結果、この無声放電にょb 
co2分子が励起され、全反射鏡5と部分反射鏡6で構
成されるレーザ光の共振器内でレーザ発振が発生する。
Next, the operation of the conventional silent discharge type gas laser device shown in FIGS. 1(a) and 1(b) will be explained using a CO2 laser device as an example. Inside the discharge tube 1, CO2゜He,
A mixed gas such as N2 is filled at a pressure of several tens of Torr. In this discharge tube 1, when an AC voltage is applied from a high frequency power source 4 to a pair of electrodes 2.3, a silent discharge occurs within the discharge WI, and as a result, this silent discharge
The co2 molecules are excited, and laser oscillation occurs within a laser beam resonator made up of a total reflection mirror 5 and a partial reflection mirror 6.

そして、発生したレーザ光の一部は、第1図(a)に矢
印11で示される様に部分反射鏡6よシ外部に取シ出さ
れる。放電管l内の無声放電によりガス温度が上昇する
とレーザ出力が低下するので、送風機(B)9によりガ
スを循環させて熱交換器1oで冷却し、これにょシ、放
電管1内のガス温度は所定値以下に保持される。
Then, a part of the generated laser light is taken out to the outside through the partial reflecting mirror 6 as shown by the arrow 11 in FIG. 1(a). When the gas temperature rises due to silent discharge inside the discharge tube 1, the laser output decreases, so the gas is circulated by the blower (B) 9 and cooled by the heat exchanger 1o. is maintained below a predetermined value.

従来の無声放電式ガスレーザ装置は以上の様に構成され
ており、放電管1の外壁に一対の電極2゜3が密着して
設けられる構造を有するため、放゛亀管1の冷却は一対
の電極2,3を介して間接的に行わなければならず、こ
のため、放電管1を均一に冷却することは非常に困難で
ある欠点があった。
The conventional silent discharge gas laser device is constructed as described above, and has a structure in which a pair of electrodes 2 and 3 are provided in close contact with the outer wall of the discharge tube 1, so cooling of the discharge tube 1 is performed by the pair of electrodes 2 and 3. This has to be done indirectly via the electrodes 2 and 3, which has the disadvantage that it is extremely difficult to uniformly cool the discharge tube 1.

また、ご対の電極2,3のそれぞれの電極端部に放電が
集中しやすく、熱入方が不均一となり、この結果、放電
管1が破損しゃすいなどの欠点があった。
In addition, discharge tends to concentrate at the ends of each of the paired electrodes 2 and 3, resulting in non-uniform heat input, and as a result, there is a drawback that the discharge tube 1 is easily damaged.

〔発明の概要〕[Summary of the invention]

この発明は、上記の様な従来のものの欠点を改善する目
的でなされたもので、放電管と電極との間に液状誘電体
を介在して流通させる構成を有し放電管の均一な冷却r
可能とし、また、電極端部での電界の集中を防止するこ
とができる信頼性の高い無声放電式ガスレーザ装置を提
供するものである。
This invention was made with the aim of improving the drawbacks of the conventional ones as described above, and has a structure in which a liquid dielectric material is interposed between the discharge tube and the electrodes to allow uniform cooling of the discharge tube.
It is an object of the present invention to provide a highly reliable silent discharge type gas laser device that can prevent the electric field from concentrating at the end of the electrode.

〔発明の実施列〕[Implementation sequence of the invention]

以下、この発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第2図はこの発明の一実施例である無声放電式ガスレー
ザ装置に使用される電極構造を示す断面図である。図に
おいて、1は誘電体より成る管状の放心管、2,3は放
電管1の外壁との間にある間隙形を置いて配設され、こ
の放電管1の径方向に相対向する様に設けられる金属か
ら成る一対の電極、20は放電管1及び一対の電極2,
3を包囲する様に設けられる冷却管、23は冷却管2o
内を流通する液状誘電体、例えば純水、21.22は純
水23の入口及び出口である。そして、放電管1の外壁
と一対の電極2,3とは密着することなくある間隙りを
置き、例えば約1 mmの間隙形を置いて配設され、こ
の間隙形には純水23が流通する様に構成さtしている
FIG. 2 is a cross-sectional view showing an electrode structure used in a silent discharge gas laser device according to an embodiment of the present invention. In the figure, 1 is a tubular concentric tube made of a dielectric material, 2 and 3 are arranged with a gap between them and the outer wall of the discharge tube 1, and are arranged so as to face each other in the radial direction of the discharge tube 1. A pair of electrodes made of metal are provided, 20 is a discharge tube 1 and a pair of electrodes 2,
A cooling pipe 23 is provided to surround the cooling pipe 2o.
A liquid dielectric, e.g. pure water, flows therein, 21. 22 is an inlet and an outlet for the pure water 23. The outer wall of the discharge tube 1 and the pair of electrodes 2 and 3 are arranged with a certain gap, for example, about 1 mm, without being in close contact with each other, and pure water 23 is allowed to flow through this gap. It is configured to do so.

上述した桶に、この発明の無声放心式ガスレーザ装置に
よれば、放電管lの外周に直接純水23が流通する様に
構成されているために、放心管1をほぼ一株に冷却させ
ることが可能となる。また、放電管lの外壁に一対の電
極2,3を密着して設ける必要がなくなるため−1一対
の電極2,3は任意の形状及び構造に形成することが可
能となる。
According to the silent concentric type gas laser device of the present invention, the above-mentioned tub is configured so that the pure water 23 flows directly around the outer periphery of the discharge tube 1, so that the convex tube 1 can be cooled to almost one tube. becomes possible. Further, since it is no longer necessary to provide the pair of electrodes 2, 3 in close contact with the outer wall of the discharge tube 1, the -1 pair of electrodes 2, 3 can be formed in any shape and structure.

第3図及び第4図は、それぞれこの発明の他の実施例で
ある無声放電式ガスレーザ装置に使用される電極構造を
示す断面図で、第2図と同一部分は同一符号を用いて表
示してあり、その詳細な説明は省略する。第3図に示す
ものは、一対の゛電極2.3は、その電極端部が緩かに
放電管1の外周より遠ざかる形状に形成した構造を有し
ておシ、この様な構造とした一対の電極2,3では、そ
の電極端部での電界の集中を防止することがiJ能とな
シ、このため、放電管1の破損を有効的に軽減できる。
3 and 4 are cross-sectional views showing the electrode structure used in a silent discharge gas laser device, which is another embodiment of the present invention, and the same parts as in FIG. 2 are indicated by the same reference numerals. The detailed explanation will be omitted. The one shown in FIG. 3 has a structure in which the pair of electrodes 2.3 are formed in such a shape that the ends of the electrodes are gently moved away from the outer periphery of the discharge tube 1. In the pair of electrodes 2 and 3, it is difficult to prevent the electric field from concentrating at the ends of the electrodes, so that damage to the discharge tube 1 can be effectively reduced.

また、第4図に示すものは、一対の電極2.3の構造と
して、金属メッシュで形成した一対の金属メツシュ電極
31.32を使用した場合である。この様な構造とした
一対の金属メソシュ電極31.32では、それぞれの金
属メツシュ間の間隙を純水23が流通して放電管1を均
一に冷却させるので、放電管1に対する冷却効果はより
一層増大する。
Moreover, what is shown in FIG. 4 is a case where a pair of metal mesh electrodes 31 and 32 formed of metal mesh are used as the structure of the pair of electrodes 2.3. In the pair of metal mesh electrodes 31 and 32 having such a structure, the pure water 23 flows through the gap between the respective metal meshes to uniformly cool the discharge tube 1, so that the cooling effect on the discharge tube 1 is further enhanced. increase

第5図(a)及び(b)は、それぞれ第1図及び第2図
の無声放電式ガスレーザ装置に使用される電極部分の等
価回路を示す説明図である。第5図(a)に示される従
来例における等価回路で、投入電力Wd。
FIGS. 5(a) and 5(b) are explanatory diagrams showing equivalent circuits of electrode portions used in the silent discharge type gas laser apparatus shown in FIGS. 1 and 2, respectively. In the equivalent circuit in the conventional example shown in FIG. 5(a), input power Wd.

は下記の(1)式で表わされる。is expressed by the following equation (1).

Wd、 = 4f Cd V* (VOI) −V* 
) ”’−”” <1まただし、Wd、は投入電力CW
I 、 fは4源周波数〔”/s ] 、 Cdは放電
管の静電容t [F) 、 V*は逆直列接続されたツ
ェナーダイオードの放電電圧〔V〕。
Wd, = 4f Cd V* (VOI) −V*
) "'-""<1 However, Wd is input power CW
I and f are the four-source frequency [''/s], Cd is the capacitance t [F] of the discharge tube, and V* is the discharge voltage [V] of Zener diodes connected in anti-series.

Vopは印加゛電圧のピーク値〔v〕である。Vop is the peak value [v] of the applied voltage.

一方、第5図(b)に示されるこの発明における等価回
路では、放心管lと一対の成極2,3との間の間隙!に
純水23が流通しているため、この純水23の静電容量
Cwが放心管の静電容量cdに直列に挿入されたものと
なシ、投入電力Wd2は下記の(2)式で表わされる。
On the other hand, in the equivalent circuit according to the present invention shown in FIG. Since pure water 23 is flowing through the pipe, the capacitance Cw of the pure water 23 is inserted in series with the capacitance cd of the discharge tube, and the input power Wd2 is expressed by the following equation (2). expressed.

eff C” Cd ただし・Cd=o;+。4である・ ところで、純水23の比誘電率は8oであり、通常の誘
電体よシも一桁程度高いため、<f fは放心管の静電
容量Cdに比べてそれほど小さくならず、このため、上
記の(1)式と(2)式よシ判断して、純水23を放電
管1と一対の電極2,3との間の間隙2に流通しても、
投入電力wd2が大幅に低下することは避けられ得る。
eff C" Cd However, Cd=o;+.4 By the way, the dielectric constant of pure water 23 is 8o, which is about an order of magnitude higher than that of a normal dielectric, so <f f is the value of the discharge tube. It is not much smaller than the capacitance Cd, and therefore, judging from equations (1) and (2) above, the pure water 23 is connected between the discharge tube 1 and the pair of electrodes 2 and 3. Even if it flows through gap 2,
A significant decrease in input power wd2 can be avoided.

ここで、第5図(a)及び(b)に示されるCoは、放
電管1内のガス静電容量〔F〕を表わしている。
Here, Co shown in FIGS. 5(a) and 5(b) represents the gas capacitance [F] within the discharge tube 1.

なお、上記実施例では、液状誘電体として純水23を用
いた場合について説明したが、液状誘電体であれば、例
えばフロン、油などを用いても良く、基本的に上記実施
例と同様の効果を奏する。
In the above embodiment, a case was explained in which pure water 23 was used as the liquid dielectric, but as long as it is a liquid dielectric, for example, chlorofluorocarbons, oil, etc. may be used, and basically the same method as in the above embodiment may be used. be effective.

この場合には、電力投入の観点から、放心管1と一対の
電極2.3との間の間隙1を最適値となる様に適宜に設
定すれば良い。
In this case, from the viewpoint of power input, the gap 1 between the vent tube 1 and the pair of electrodes 2.3 may be appropriately set to an optimum value.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明した様に、無声放電式ガスレーザ装
置に廿いて、放心管と電極との間に液状誘電体を介在し
て流通させる摺電としたので、放電管を極めて均一に冷
却することができる効果がある。tだ、成極の形状及び
構造を任意に構成することができるため、−極端部での
d界の集中を防止す2ことが可能となり、非常に信頼性
の高い無声放電式ガスレーザ装置が潜られるという優れ
た効果を奏するものである。
As explained above, this invention uses a sliding electric current that circulates through a liquid dielectric between the discharge tube and the electrode in conjunction with a silent discharge type gas laser device, so that the discharge tube can be cooled extremely uniformly. There is an effect that can be done. However, since the shape and structure of the polarization can be configured arbitrarily, it is possible to prevent the concentration of the d field at the extremes2, making it possible to create a highly reliable silent discharge gas laser device. This has the excellent effect of reducing

【図面の簡単な説明】 第1図(a)は従来の無声放電式ガスレーザ装置の概略
摺電を示す断面図、第1図(b)は、第1図(a)の無
声放4式ガスレーザ装置のA−A線に沿う断面図、第2
図はこの発明の一実施列である無声放電式ガスレーザ装
置に使用される「工極構造を示す断面図、第3図及び第
4図は、それぞれこの発明の他の実施例である無声放電
式ガスレーザ装置に使用される4極構造を示す断面図、
第5図(a)及び(b)は、それぞれ第1図及び第2図
の無声放電式ガスレーザ装置に使用される電極部分の等
価回路を示す説明図である。 図において、1・・・放心管、2,3・・・一対の電極
、4・・・高周波電源、5・・・全反射鏡、6・・・部
分反射鏡、7.8・・・送気管、9・・・送風機(B)
、10・・−熱交換器、11・・・矢印、20・・−冷
却管、21.22・・・入口及び出口、23・・・純水
、31.32・・・一対の金属メツシュ電極である。 なお、各図中、同一符号は同一、又は相当部分を示す。 代理人 大岩増雄 第1図 (b) 第2図 第3図 第4図
[Brief Description of the Drawings] Fig. 1(a) is a sectional view schematically showing the sliding operation of a conventional silent discharge type gas laser device, and Fig. 1(b) is a sectional view of the silent discharge type 4 gas laser device of Fig. 1(a). Sectional view of the device along line A-A, second
The figure is a sectional view showing the electrode structure used in a silent discharge type gas laser device, which is one embodiment of the present invention, and Figures 3 and 4 are silent discharge type gas laser devices, which are other embodiments of the present invention. A cross-sectional view showing a quadrupole structure used in a gas laser device,
FIGS. 5(a) and 5(b) are explanatory diagrams showing equivalent circuits of electrode portions used in the silent discharge type gas laser apparatus shown in FIGS. 1 and 2, respectively. In the figure, 1... A concentric tube, 2, 3... A pair of electrodes, 4... A high frequency power source, 5... A total reflection mirror, 6... A partial reflection mirror, 7.8... A transmitting mirror. Trachea, 9...Blower (B)
, 10...-heat exchanger, 11...-arrow, 20...-cooling pipe, 21.22...-inlet and outlet, 23...-pure water, 31.32...-pair of metal mesh electrodes It is. In each figure, the same reference numerals indicate the same or equivalent parts. Agent Masuo Oiwa Figure 1 (b) Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 +1) 誘4体より成る管状の放IAt管の外壁にある
一対の電極に交流電圧を印加し、前記放′心管内に放′
成を起こしてレーザ光を発温させる装置において、前記
放電管と前記電極との間に液状誘電体を介在させること
を特徴とする無声放電式カスレーザ装置。 (2) 前記液状誘電体として、純水、その他フロン、
油などを用いることt特徴とする特許請求の範囲第1項
記載の無声放電式カスレーザ装置。 (3)前記td <i +よ、その電極端部が緩やかに
前記放心管の外周よシ遠ざかる形状に形成したことを特
徴とする特許請求の範囲第1項記載の無声放電式ガスレ
ーザ装置。 (4)前記電極は、金属メツシュを用いることを特徴と
する特許請求の範囲第1項又は第3項記載の無声放電式
ガスレーザ装置。
[Claims] +1) An AC voltage is applied to a pair of electrodes on the outer wall of a tubular radiation IAt tube made of a dielectric material, and radiation is caused in the radiation tube.
What is claimed is: 1. A silent discharge type gas laser device, characterized in that a liquid dielectric material is interposed between the discharge tube and the electrode, in the device for generating temperature of laser light by causing the discharge tube to heat up. (2) As the liquid dielectric, pure water, other fluorocarbons,
The silent discharge type gas laser device according to claim 1, characterized in that oil or the like is used. (3) The silent discharge type gas laser device according to claim 1, wherein the electrode end portion is formed in a shape that gradually moves away from the outer periphery of the discharge tube when td < i +. (4) The silent discharge type gas laser device according to claim 1 or 3, wherein the electrode uses a metal mesh.
JP22966483A 1983-12-05 1983-12-05 Silent discharge type gas laser device Pending JPS60121787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22966483A JPS60121787A (en) 1983-12-05 1983-12-05 Silent discharge type gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22966483A JPS60121787A (en) 1983-12-05 1983-12-05 Silent discharge type gas laser device

Publications (1)

Publication Number Publication Date
JPS60121787A true JPS60121787A (en) 1985-06-29

Family

ID=16895738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22966483A Pending JPS60121787A (en) 1983-12-05 1983-12-05 Silent discharge type gas laser device

Country Status (1)

Country Link
JP (1) JPS60121787A (en)

Similar Documents

Publication Publication Date Title
US6466599B1 (en) Discharge unit for a high repetition rate excimer or molecular fluorine laser
JPH10223955A (en) Design of aerodynamic chamber for high pulse repetition rate excimer laser
Kuzumoto et al. Fast axial flow CO/sub 2/laser excited by silent discharge
JP2002502548A (en) Ultrasonic and subsonic lasers with RF discharge excitation
JPS603170A (en) Silent discharge type gas laser device
JPS6310597B2 (en)
JPS60121787A (en) Silent discharge type gas laser device
JPH07187609A (en) Ozonizer
JPS5968985A (en) Voiceless discharge system gas laser device
JPS60178681A (en) Gas laser device
JPS61269387A (en) Electrode structure for laser oscillator
JPH02281671A (en) Gas laser oscillation device
JP2003264328A (en) Waveguide gas laser oscillator
JP6915352B2 (en) Excimer lamp and light irradiation device
JPS62183580A (en) Silent discharge gas laser device
JPH06326379A (en) Gas laser oscillator
JPH0240978A (en) Gas laser oscillator
JPS5936984A (en) Gas laser device
JPH07122801A (en) Slab laser device
JPH0225268B2 (en)
JPS5932185A (en) Silent discharge type gas laser device
JPH0456371A (en) Gas laser exciter
JPS6239083A (en) Gas laser device
JPH0335837B2 (en)
JPS63229880A (en) Excimer laser device