JPH0456371A - Gas laser exciter - Google Patents

Gas laser exciter

Info

Publication number
JPH0456371A
JPH0456371A JP16708090A JP16708090A JPH0456371A JP H0456371 A JPH0456371 A JP H0456371A JP 16708090 A JP16708090 A JP 16708090A JP 16708090 A JP16708090 A JP 16708090A JP H0456371 A JPH0456371 A JP H0456371A
Authority
JP
Japan
Prior art keywords
frequency transformer
diameter
power supply
primary winding
secondary winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16708090A
Other languages
Japanese (ja)
Inventor
Masashi Onishi
正史 大西
Tsutomu Sugiyama
勤 杉山
Hitoshi Motomiya
均 本宮
Shuzo Yoshizumi
吉住 修三
Akio Tanaka
田中 昭男
Shigeki Yamane
茂樹 山根
Hidehiko Karasaki
秀彦 唐崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16708090A priority Critical patent/JPH0456371A/en
Publication of JPH0456371A publication Critical patent/JPH0456371A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coils Or Transformers For Communication (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To allow a temperature to rise little even if a smaller output transformer is used by using a high-frequency transformer as the output transformer of a high-voltage power supply and specifying the diameter of the wires of its primary and secondary windings. CONSTITUTION:The diameter of the wire of a primary winding 22 is selected from a range of 0.5-3.5mm and that of a secondary winding 23 is selected from a range of 0.1-0.5mm. The primary and secondary windings 22 and 23 are wound coaxially around a shaft of the same diameter as the feet of ferrite cores 24 and 25, the shaft is removed, and one pair of the feet of the ferrite cores 24 and 25 are fitted and joined therein and fastened with a core holder by pressing inside. If the diameter of the wire of the primary winding is smaller than 0.5mm, the temperature rises rapidly. If larger than 3.5mm, the size of the high-frequency transformer increases rapidly. If the diameter of the wire of the secondary winding is smaller than 0.1mm, the temperature rises rapidly. If larger than 0.5mm, the size of the high-frequency transformer increases rapidly.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、放電管の軸方向と光軸方向とが一致した軸流
型ガスレーザ発振装置に関するものであり、特に出力特
性のばらつきの少ない信頼性の高いガスレーザ発振装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an axial flow type gas laser oscillation device in which the axial direction of a discharge tube and the optical axis direction are coincident, and in particular to a reliable oscillator with less variation in output characteristics. This relates to high quality gas laser oscillation equipment.

従来の技術 従来の軸流型ガスレーザ発振装置の一例を第4図に示す
。第4図において、1はガラスなどの誘電体からなる放
電管であり、2,3は放電管1の内部に設けられた電極
である。4は電極2,3に接続された高電圧電源であり
、たとえば約30kVの電圧を画電極2,3間に印加し
ている。5は電極2.3間に形成された放電管1内の放
電空間である。6は全反射鏡、7は部分反射鏡であり、
これら全反射鏡6および部分反射鏡7は放電空間5の両
端に固定配置され、光共振器を構成している。8は部分
反射鏡7から放電管1の軸方向に出力されるレーザビー
ムである。9はレーザガスを放電管1へ供給するための
送気管であり、レーザガスはこのガスレーザ装置の中を
矢印10方向に循環している。11.12は放電管1内
部の放電空間5において放電等により温度上昇したレー
ザガスの温度を下げるための熱交換器である。13はレ
ーザガスを循環させるための送風機であり、放電空間5
に約100m/see程度のガス流を発生させる。
2. Description of the Related Art An example of a conventional axial flow type gas laser oscillation device is shown in FIG. In FIG. 4, 1 is a discharge tube made of a dielectric material such as glass, and 2 and 3 are electrodes provided inside the discharge tube 1. In FIG. A high voltage power supply 4 is connected to the electrodes 2 and 3, and applies a voltage of, for example, about 30 kV between the picture electrodes 2 and 3. 5 is a discharge space within the discharge tube 1 formed between the electrodes 2 and 3. 6 is a total reflection mirror, 7 is a partial reflection mirror,
The total reflection mirror 6 and the partial reflection mirror 7 are fixedly arranged at both ends of the discharge space 5 and constitute an optical resonator. Reference numeral 8 denotes a laser beam output from the partial reflecting mirror 7 in the axial direction of the discharge tube 1. Reference numeral 9 denotes an air supply pipe for supplying laser gas to the discharge tube 1, and the laser gas circulates in the direction of arrow 10 within this gas laser device. Reference numerals 11 and 12 designate heat exchangers for lowering the temperature of the laser gas that has increased in temperature due to discharge or the like in the discharge space 5 inside the discharge tube 1. 13 is a blower for circulating the laser gas, and the discharge space 5
A gas flow of approximately 100 m/see is generated.

次に前記従来の軸流型ガスレーザ発振装置の動作につい
て説明する。まず一対の電極2.3に高電圧電源4から
高電圧を印加し、放電空間5にグロー状の放電を発生さ
せる。放電空間5を通過するレーザガスは、この放電エ
ネルギを得て励起され、その励起されたレーザガスは全
反射鏡6および部分反射鏡7により形成された光共振器
で共振状態となり、部分反射鏡7からレーザビーム8が
出力される。このレーザビーム8がレーサ′加工等の用
途に用いられる。
Next, the operation of the conventional axial flow type gas laser oscillation device will be explained. First, a high voltage is applied from the high voltage power supply 4 to the pair of electrodes 2.3 to generate a glow-like discharge in the discharge space 5. The laser gas passing through the discharge space 5 is excited by obtaining this discharge energy, and the excited laser gas enters a resonant state in the optical resonator formed by the total reflection mirror 6 and the partial reflection mirror 7, and is emitted from the partial reflection mirror 7. A laser beam 8 is output. This laser beam 8 is used for purposes such as laser processing.

第5図は、前記ガスレーザ発生装置における高電圧電源
4の構成を示す概略ブロック図である。
FIG. 5 is a schematic block diagram showing the configuration of the high voltage power supply 4 in the gas laser generator.

第5図において、14は商用電源、15は整流器、16
は平滑コンデンサ、17はスイッチング電源、18は高
周波トランス、19は高圧直流平滑回路である。
In Fig. 5, 14 is a commercial power supply, 15 is a rectifier, and 16 is a commercial power supply.
1 is a smoothing capacitor, 17 is a switching power supply, 18 is a high frequency transformer, and 19 is a high voltage DC smoothing circuit.

次に前記従来の高電圧電源の動作について説明する。商
用電源↓4から送られてきた3相200Vの交流電圧は
、整流器15で整流され、平滑コンデンサで平滑された
後、スイッチング電源17で高周波交流電圧に変換され
、高周波トランス18に入力される。高周波トランス1
8では、1次側に入力された低電圧交流を高電圧交流に
変換して2次側に出力し、高電圧交流は高圧直流平滑回
路19で整流平滑されて、放電管1の電極2,3に入力
される。
Next, the operation of the conventional high voltage power supply will be explained. The three-phase 200V AC voltage sent from the commercial power supply ↓ 4 is rectified by a rectifier 15 and smoothed by a smoothing capacitor, and then converted to a high-frequency AC voltage by a switching power supply 17 and input to a high-frequency transformer 18. High frequency transformer 1
8 converts the low voltage AC input into the primary side into high voltage AC and outputs it to the secondary side, and the high voltage AC is rectified and smoothed by the high voltage DC smoothing circuit 19, and then passed through the electrodes 2 and 8 of the discharge tube 1. 3 is input.

通常、ガスレーザ発振装置の放電管は複数個備えられて
おり、第5図の回路構成では、各放電管につきそれぞれ
高周波トランス18が必要になるが、スイッチング電源
17は高周波トランス18の1次側に接続されるので、
複数個の高周波トランス18を1個のスイッチング電源
17で共用することが可能となり、装置の小型化を図る
ことができる。
Normally, a gas laser oscillation device is equipped with a plurality of discharge tubes, and in the circuit configuration shown in FIG. Since it is connected,
It becomes possible to share a plurality of high frequency transformers 18 with one switching power supply 17, and it is possible to reduce the size of the device.

第6図は前記高周波トランス18の概略断面を示してお
り、1次側巻線18aの外周に2次側巻線18bが1次
側巻線18aと同軸に数千ターン以上巻かれており、2
次側巻線18bは乱巻構造となっている。コアにはコ字
形の1組のフェライトコア20を用いており、フェライ
トつア20(7)突き合わせ面20aは互いに密着して
いる。
FIG. 6 shows a schematic cross section of the high frequency transformer 18, in which a secondary winding 18b is wound around the outer periphery of the primary winding 18a, coaxially with the primary winding 18a, and has several thousand turns or more. 2
The next winding 18b has a random winding structure. A pair of U-shaped ferrite cores 20 are used as the cores, and the abutting surfaces 20a of the ferrite cores 20 (7) are in close contact with each other.

発明が解決しようとする課題 しかしながら、従来のこのようなガスレーザ発振装置で
は、出力トランスを小型化するとガスレーザを動作させ
たときに多量の熱が発生し、出力トランスの温度が高く
なって、ガスレーザ発振装置の出力が安定しないという
問題点があった。
Problems to be Solved by the Invention However, in such conventional gas laser oscillation devices, when the output transformer is made smaller, a large amount of heat is generated when the gas laser is operated, and the temperature of the output transformer becomes high, making it difficult to oscillate the gas laser. There was a problem that the output of the device was unstable.

本発明は、このような従来の問題点を解決するものであ
り、出力トランスを小型化しても温度上昇の少ない信頼
性の高いガスレーザ発振装置を提供することを目的とす
る。
The present invention is intended to solve these conventional problems, and aims to provide a highly reliable gas laser oscillation device in which the temperature rise is small even when the output transformer is downsized.

課題を解決するための手段 本発明は、前記目的を達成するために、高電圧を発生さ
せるための高電圧電源の出力トランスを高周波トランス
とし、その1次側巻線の線径を0.5から3゜5mmと
し、2次側巻線の線径を0.1から0.5mmとしたも
のである。
Means for Solving the Problems In order to achieve the above object, the present invention uses a high frequency transformer as the output transformer of the high voltage power supply for generating high voltage, and the wire diameter of the primary winding is 0.5. The wire diameter of the secondary winding is 0.1 to 0.5 mm.

作用 本発明は、前記構成により、高周波トランスの1次側巻
線および2次側巻線の線径が適切な範囲に設定されるの
で、出力トランスを小型化しても温度上昇を小さく抑え
ることができ、ガスレーザ発振装置の出力を安定させる
ことができる。
According to the present invention, the wire diameters of the primary winding and the secondary winding of the high-frequency transformer are set within an appropriate range due to the above configuration, so that even if the output transformer is downsized, the temperature rise can be suppressed to a small level. This makes it possible to stabilize the output of the gas laser oscillation device.

実施例 以下、本発明の一実施例を図面を参照して説明するが、
本発明が従来例と異なるのは、高電圧電源の高周波トラ
ンスの構造だけなので、以下に高周波トランスの構造に
ついてのみ説明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.
Since the present invention differs from the conventional example only in the structure of the high frequency transformer of the high voltage power supply, only the structure of the high frequency transformer will be described below.

第1図は、本発明の一実施例におけるガスレーザ発振装
置の高周波トランスの概略断面図である。第1図におい
て、21は高周波トランスであり、22は1次側巻線で
あり、23は1次側巻線22の上に絶縁距離を置いて同
軸巻にされた2次側巻線である。24.25はコ字形に
形成された1組のフェライトコアであり、互いに突き合
わされて一体化されている。1次側巻線22の線径は0
.5から3.5mmの範囲内から選ばれ、2次側巻線の
線径は0.1からO、,5m mの範囲内から選ばれて
いる。
FIG. 1 is a schematic sectional view of a high frequency transformer of a gas laser oscillation device in one embodiment of the present invention. In FIG. 1, 21 is a high frequency transformer, 22 is a primary winding, and 23 is a secondary winding coaxially wound above the primary winding 22 with an insulating distance. . Reference numerals 24 and 25 designate a pair of ferrite cores formed in a U-shape, which are butted against each other and integrated. The wire diameter of the primary winding 22 is 0.
.. The wire diameter of the secondary winding is selected from the range of 0.1 to 0.5 mm.

1次側巻線22および2次側巻線23は、フェライトコ
ア24,25の脚部と同径の軸に予め同軸巻にされ、そ
の後、その軸を取り除いた穴にフェライトコア24,2
5の一方の脚部を通して内部で突き合わせ、図示されな
いコア保持具により互いに内向きに押圧されて固定され
る。
The primary winding 22 and the secondary winding 23 are coaxially wound in advance around shafts having the same diameter as the legs of the ferrite cores 24, 25, and then the ferrite cores 24, 2 are inserted into the holes from which the shafts have been removed.
5 and are abutted against each other internally, and are pressed inwardly and fixed to each other by a core holder (not shown).

第2図(A)、(B)は、高周波トランスの1次側巻線
径と温度上昇率および高周波トランスの大きさとの関係
を示しており、1次側巻線径が0.5mmを下回ると温
度上昇が急激になり、1次側巻線径が3.5mmを上回
ると高周波トランスの大きさが急激に大きくなることを
示している。
Figures 2 (A) and (B) show the relationship between the primary winding diameter of the high-frequency transformer, the temperature rise rate, and the size of the high-frequency transformer. This shows that when the temperature rises rapidly and the diameter of the primary winding exceeds 3.5 mm, the size of the high-frequency transformer suddenly increases.

一方、第3図(A)、(B)は、高周波トランスの2次
側巻線径と温度上昇率および高周波トランスの大きさと
の関係を示しており、2次側巻線径が0.1mmを下回
ると温度上昇が急激になり、2次側巻線径が0.5mm
を上回ると高周波トランスの大きさが急激に大きくなる
ことを示している。
On the other hand, Figures 3 (A) and (B) show the relationship between the secondary winding diameter of the high-frequency transformer, the temperature rise rate, and the size of the high-frequency transformer. If the temperature drops below 0.5mm, the temperature rises rapidly and the secondary winding diameter is
This shows that the size of the high-frequency transformer increases rapidly when the value exceeds .

したがって、高周波トランスは、1次側巻線径が0.5
から3.5mmの範囲、2次側巻線径が0.1から0.
5mmの範囲に入るように設定すれば、温度上昇も小さ
く、大きさもあまり大きくならないことになる。
Therefore, the high frequency transformer has a primary winding diameter of 0.5
to 3.5 mm, and the secondary winding diameter is from 0.1 to 0.
If it is set within the range of 5 mm, the temperature rise will be small and the size will not increase too much.

前記実施例では、高周波トランス21のフェライトコア
24.25の1次側巻線22の線径を0.5から3.5
mmの範囲内から選び、2次側巻線23の線径を0.1
から0.5mmの範囲内から選んだので、高周波トラン
スを小型化しても、線径の不適切による高周波トランス
の温度上昇を最小限に抑えることができ、ガスレーザ発
振装置を安定的に動作させることができる。
In the above embodiment, the wire diameter of the primary winding 22 of the ferrite core 24.25 of the high frequency transformer 21 is 0.5 to 3.5.
Select from within the range of mm, and set the wire diameter of the secondary winding 23 to 0.1 mm.
Since the wire was selected within the range of 0.5 mm, even if the high-frequency transformer is made smaller, the temperature rise of the high-frequency transformer due to inappropriate wire diameter can be minimized, and the gas laser oscillator can operate stably. I can do it.

発明の効果 以上のように、本発明のガスレーザ発振装置は、高電圧
を発生させる高電圧電源の出力トランスを高周波トラン
スとし、その1次側巻線の線径を0.5から3.5mm
とし、2次側巻線の線径を0.1から0.5mmとした
ので、出力トランスを小型化してもその温度上昇を抑え
ることができ、出力特性のばらつきの少ない信頼性の高
いガスレーザ発振装置を実現することができる。
Effects of the Invention As described above, in the gas laser oscillation device of the present invention, the output transformer of the high voltage power supply that generates high voltage is a high frequency transformer, and the wire diameter of the primary winding is 0.5 to 3.5 mm.
Since the wire diameter of the secondary winding is set to 0.1 to 0.5 mm, the temperature rise can be suppressed even if the output transformer is made smaller, and highly reliable gas laser oscillation with less variation in output characteristics can be achieved. The device can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるガスレーザ発振装置
の高周波トランスの概略断面図、第2図(A)、(B)
は高周波トランスの1次側巻線径と温度上昇率および高
周波トランスの大きさとの関係を示すグラフ、第3図(
A)、(B)は高周波トランスの2次側巻線径と温度上
昇率および高周波トランスの大きさとの関係を示すグラ
フ、第4図は従来のガスレーザ発振装置の一例を示す概
略構成図、第5図は同がスレーザ発振装置における高電
圧電源の概略ブロック図、第6図は従来の高周波トラン
スの概略断面図である。 1・・・放電管、2,3・・・電極、4・・・高電圧電
源、5・・・放電空間、6・・・全反射鏡、7・・・部
分反射鏡、8・・・レーザビーム、9・・・送気管、1
0・・・レーザガスの流れ方向、11.12・・・熱交
換器、13・・・送風機、14・・・商用電源、15・
・・整流器、16・・・平滑コンデンサ、17・・・ス
イッチング電源、18・・・高周波トランス、18a・
・・1次側巻線、18b・・・2次側巻線、19・・・
高圧直流平滑回路、20・・・フェライトコア、20a
・・・突き合わせ面、21・・・高周波トランス、22
・・・1次側巻線、23・・・2次側巻線、24.25
・・・フェライトコア。 代理人の氏名  弁理士 蔵 合 正 博第1図 フェライトコア 第4図 第5図 17スイツチシグ電源 19高圧直流平滑回路 第2図 (Al +B) 1次側巻線径(mml 第3図 1次側巻線径(mm1 2次側巻線径(mm1 2次側巻線径(mm) 第6図
FIG. 1 is a schematic cross-sectional view of a high-frequency transformer of a gas laser oscillation device according to an embodiment of the present invention, and FIGS. 2 (A) and (B)
Figure 3 is a graph showing the relationship between the primary winding diameter of a high-frequency transformer, the temperature rise rate, and the size of the high-frequency transformer.
A) and (B) are graphs showing the relationship between the secondary winding diameter of the high-frequency transformer, the temperature rise rate, and the size of the high-frequency transformer. FIG. 5 is a schematic block diagram of a high voltage power supply in the laser oscillation device, and FIG. 6 is a schematic sectional view of a conventional high frequency transformer. DESCRIPTION OF SYMBOLS 1... Discharge tube, 2, 3... Electrode, 4... High voltage power supply, 5... Discharge space, 6... Total reflection mirror, 7... Partial reflection mirror, 8... Laser beam, 9...Air pipe, 1
0... Laser gas flow direction, 11.12... Heat exchanger, 13... Blower, 14... Commercial power supply, 15.
... Rectifier, 16... Smoothing capacitor, 17... Switching power supply, 18... High frequency transformer, 18a...
...Primary winding, 18b...Secondary winding, 19...
High voltage DC smoothing circuit, 20... Ferrite core, 20a
...Abutting surface, 21...High frequency transformer, 22
...Primary winding, 23...Secondary winding, 24.25
···Ferrite core. Name of agent Patent attorney Hiroshi Masaaki Kura Fig. 1 Ferrite core Fig. 4 Fig. 5 17 Switching power supply 19 High voltage DC smoothing circuit Fig. 2 (Al + B) Primary winding diameter (mml Fig. 3 Primary side Winding diameter (mm1 Secondary winding diameter (mm1) Secondary winding diameter (mm) Figure 6

Claims (1)

【特許請求の範囲】[Claims] 絶縁体からなる放電管内を光軸方向に送風機によりレー
ザガスを流し、前記放電管の両端に設けられた電極間に
高電圧電源を接続し、前記放電管内に放電を発生させ、
前記放電をレーザ励起源として前記放電管の軸方向にレ
ーザビームを発生するガスレーザ発振装置において、前
記高電圧電源の出力トランスを高周波トランスとし、そ
の1次側巻線の線径を0.5から3.5mmとし、2次
側巻線の線径を0.1から0.5mmとしたことを特徴
とするガスレーザ発振装置。
A blower causes laser gas to flow through a discharge tube made of an insulator in the optical axis direction, a high voltage power source is connected between electrodes provided at both ends of the discharge tube, and a discharge is generated within the discharge tube.
In a gas laser oscillator that generates a laser beam in the axial direction of the discharge tube using the discharge as a laser excitation source, the output transformer of the high voltage power supply is a high frequency transformer, and the wire diameter of the primary winding is from 0.5 to 0.5. 3.5 mm, and the wire diameter of the secondary winding is 0.1 to 0.5 mm.
JP16708090A 1990-06-26 1990-06-26 Gas laser exciter Pending JPH0456371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16708090A JPH0456371A (en) 1990-06-26 1990-06-26 Gas laser exciter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16708090A JPH0456371A (en) 1990-06-26 1990-06-26 Gas laser exciter

Publications (1)

Publication Number Publication Date
JPH0456371A true JPH0456371A (en) 1992-02-24

Family

ID=15843033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16708090A Pending JPH0456371A (en) 1990-06-26 1990-06-26 Gas laser exciter

Country Status (1)

Country Link
JP (1) JPH0456371A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018006579A (en) * 2016-07-01 2018-01-11 Tdk株式会社 Coil component and pulse transformer
KR20210064374A (en) * 2018-11-26 2021-06-02 가부시키가이샤 덴소 solenoid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198204A (en) * 1987-10-12 1989-04-17 Kijima Kk Transformer coil and formation thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198204A (en) * 1987-10-12 1989-04-17 Kijima Kk Transformer coil and formation thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018006579A (en) * 2016-07-01 2018-01-11 Tdk株式会社 Coil component and pulse transformer
KR20210064374A (en) * 2018-11-26 2021-06-02 가부시키가이샤 덴소 solenoid

Similar Documents

Publication Publication Date Title
US5747945A (en) Electrodeless discharge lamp utilizing induced electric field generated by a high frequency electromagnetic field
JPH0679517B2 (en) Starting circuit for electrodeless high intensity discharge lamp
JPH0456371A (en) Gas laser exciter
JP2003100259A (en) Closed-loop electrodeless fluorescent lamp having high light output
JPS6310597B2 (en)
JPH0456370A (en) Gas laser exciter
JPH0456369A (en) Gas laser exciter
JPH06310781A (en) Solid state laser device
JPH07297474A (en) Gas laser equipment
JPH0456368A (en) Gas laser exciter
JPH0456366A (en) Gas laser exciter
JPH0456367A (en) Gas laser exciter
JPH0437007A (en) Gas laser oscillator
JP2005347586A (en) Winding equipment, high-voltage pulse generator using the same, and discharge-excited pump laser device provided with pulse generator
JP2707360B2 (en) Gas laser device
JPH0410680A (en) Gas laser apparatus
JPS60169178A (en) Gas laser device
JP2677462B2 (en) High frequency transformer for gas laser oscillator
JPH0410482A (en) Gas-laser oscillation device
JP2707356B2 (en) Gas laser device
JPH04779A (en) Gas laser generator
US20170338033A1 (en) Pulse power module
JPH047110B2 (en)
JPH04778A (en) Gas laser generator
JPH05259550A (en) Gas laser equipment