JPS60121590A - Storage integrated circuit - Google Patents

Storage integrated circuit

Info

Publication number
JPS60121590A
JPS60121590A JP59101952A JP10195284A JPS60121590A JP S60121590 A JPS60121590 A JP S60121590A JP 59101952 A JP59101952 A JP 59101952A JP 10195284 A JP10195284 A JP 10195284A JP S60121590 A JPS60121590 A JP S60121590A
Authority
JP
Japan
Prior art keywords
sense
potential
precharge
signal
memory cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59101952A
Other languages
Japanese (ja)
Other versions
JPH0156475B2 (en
Inventor
Toshio Wada
和田 俊男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59101952A priority Critical patent/JPS60121590A/en
Publication of JPS60121590A publication Critical patent/JPS60121590A/en
Publication of JPH0156475B2 publication Critical patent/JPH0156475B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To improve the stability of a reading action and to shorten the cycle time by turning on a coupling transistor which short-circuits a pair of digit lines in a precharge mode to inactive a sense circuit and then turning off the coupling transistor after the precharge mode to actuate the sense circuit. CONSTITUTION:Digit lines D and -D are precharged at the same potential with arrival of a coupling signal phiC and immediately after the start of precharge. At the same time, sense nodes A and B are also precharged at the same potential. When the precharge is ended [t=phiL, phiC (OFF)], the potential of both nodes A and B drop at the same level with supply of electronic charges given from lines D and -D. Then the difference voltage is obtained by receiving the effect of a dummy cell as well as a memory cell at and after the drive mode [t=phiW, phid (ON)] of the address and dummy address signals. The node B of a high potential is set at the potential of the line -D with the drive [t=QS (ON)] of the sense signal. While the node A of a low potential drops down to a low potential of a power supply together with the line D. This low potential is written to the memory cell of the address which is read out in the form an information signal. Then a refresh action is carried out.

Description

【発明の詳細な説明】 この発明は、ICメモリもしくはMOSメモリと呼称す
る絶縁ゲート屋電界効果トランジスタを用いた記憶集積
回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a memory integrated circuit using an insulated gate field effect transistor called an IC memory or MOS memory.

絶縁ゲート派電界効果トランジスタを用いた集積回路は
高密度化が容易であるため大規模集積回路に発展されて
いる。
Integrated circuits using insulated gate field effect transistors have been developed into large-scale integrated circuits because they can be easily increased in density.

とくに大容量の記憶集積回路は、共通の半導体基体に大
容量のメモリセルを有し、高性能・高信頼の半導体デバ
イスを実現する。このための好ましいメモリセルは、1
トランジスタ展ランダム・アクセス・メそり(ITR−
RAM)と呼ばれるMOSメモリに含まれるようにワー
ド線とディジット戯が交叉するマトリクス交点にスイッ
チング用のトランジスタと情報蓄積用の容量素子を配置
したものである。このlTR−RAMは大容量化に伴々
う容量素子の容量値の増大を防ぐために、高感度のセン
ス回路をディジット線に付加する必要が生じる。従来の
好ましい回路技術はセンス回路とディジット線とを飽和
状態で動作するトランジスタを設けるものである。
In particular, large-capacity memory integrated circuits have large-capacity memory cells on a common semiconductor substrate, and realize high-performance, highly reliable semiconductor devices. A preferred memory cell for this is 1
Transistor Exhibition Random Access Mesori (ITR-
In this type of MOS memory (RAM), switching transistors and information storage capacitive elements are arranged at matrix intersections where word lines and digit lines intersect. In this ITR-RAM, in order to prevent the capacitance value of the capacitive element from increasing as the capacity increases, it becomes necessary to add a highly sensitive sense circuit to the digit line. A conventional preferred circuit technique is to provide the sense circuitry and digit lines with transistors operating in saturation.

又、この回路技術は1975年の「アイ・ニス・ニス・
シー・シー テクニカル ダイジェスト ペーパーズ(
’75 I8SCCTechnicml Digest
 Papers) J にへ2− (L、G、He1l
er)等が記憶するように1デイジツト線の信号振巾よ
シ大きなセンス節点への信号でセンス動作が開始される
In addition, this circuit technology was introduced in 1975 with the
C.C. Technical Digest Papers (
'75 I8SCCTechnicml Digest
Papers) J nihe2- (L, G, He1l
er) etc., the sensing operation is started by a signal to the sense node that is larger than the signal amplitude of one digit line.

しかし乍ら、この従来の回路技術はセンス動作開始前の
ディジット線へのプリチャージ状態がセンス回路の動作
開始時の条件を支配し、このプリチャージ動作が飽和状
態のトランジスタを通して行なわれるためセンス回路両
側のディジット線のプリチャージ終了時に得られる平衡
プリチャージに達する時間巾が長く、情報の読出動作を
次々に行う際のサイクル時間が長く、且つサイクル時間
を短縮すると確実な情報読出動作のためのセンス節点振
巾が得られなくなる欠点がある。
However, in this conventional circuit technology, the precharge state of the digit line before the start of the sense operation governs the conditions at the start of the sense circuit operation, and this precharge operation is performed through a transistor in a saturated state, so the sense circuit It takes a long time to reach the equilibrium precharge obtained at the end of the precharging of the digit lines on both sides, and the cycle time when performing information read operations one after another is long. There is a drawback that the sense node amplitude cannot be obtained.

この発明の目的線、読出動作の安定性と短いサイクル時
間を得る高感度の回路構成の記憶集積回路を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a memory integrated circuit with a highly sensitive circuit configuration that provides stability in read operations and short cycle times.

この発明によれば、複数のワード線と複数のデイツク)
Mとが交叉する行列マトリクスの交点にトランジスタと
容量素子とを有するメモリセルをそれぞれ設け、一対の
ディジット*に生ずる信号をセンスするセンス回路を前
記一対のゲイジ、ト線に接続し、前記ディジット線にプ
リチャージ電圧を供給するプリチャージ回路を接続した
メモリ回路において、プリチャージ時に前記一対のディ
ジット線を短絡する結合トランジスタをオンし、かつセ
ンス回路を非動作状態にし、プリチャージ後前記結合ト
ランジスタをオフして、前記センス回路を動作状態にす
るように制御することを特徴とする記憶集積回路が得ら
れる。ここで得られる記憶集積回路は、いわゆるlTR
−RAMもしくは、第1および第2のデジット線を一対
のディジット線とし、単語線と交叉する部分に第1およ
び第2のディジット線とにそれぞれスイッチング用トラ
ンジスタと容量素子とを設ける、2TR−20−RAM
に適用される。
According to the invention, a plurality of word lines and a plurality of disks)
Memory cells each having a transistor and a capacitive element are provided at the intersections of the matrix and matrix where M intersects, and a sense circuit for sensing a signal generated in a pair of digits is connected to the pair of gauge and T lines, and the digit line In a memory circuit connected to a precharge circuit that supplies a precharge voltage to a memory circuit, a coupling transistor that shorts the pair of digit lines is turned on during precharging, a sense circuit is made inactive, and the coupling transistor is turned on after precharging. There is obtained a memory integrated circuit characterized in that the sense circuit is controlled to be turned off and the sense circuit is put into an operating state. The memory integrated circuit obtained here is the so-called lTR
- RAM or the first and second digit lines are a pair of digit lines, and a switching transistor and a capacitive element are provided for each of the first and second digit lines at the portion where they intersect with the word line, 2TR-20 -RAM
Applies to.

この発明の記憶集積回路は、結合用トランジスタによシ
ブリチャージ時に第1および第2のディジット線を強制
的に平衡せしめるため、プリチャージ終了前に平衡状態
が得られ、読出動作を開始することができる。従って、
読出開始のアクセス時間の短縮とサイクル時間の短縮が
得られ、記憶装置としての高速化が実現し、加えて後述
するように従来回路にみられるような別アドレスの続出
しで起す感度の低下に伴う動作の不安定性を起すととが
ない。
In the memory integrated circuit of the present invention, the first and second digit lines are forcibly balanced during recharging by the coupling transistor, so that a balanced state can be obtained before the end of precharging and a read operation can be started. can. Therefore,
This reduces the access time to start reading and the cycle time, making it a faster storage device.In addition, as will be explained later, it reduces the sensitivity caused by successive access to different addresses as seen in conventional circuits. There is no point in causing instability in the accompanying motion.

次にこの発明の実施例に9き図を用いて説明する。Next, an embodiment of the present invention will be described using FIG. 9.

第1図はこの発明の一実施例の回路図である。FIG. 1 is a circuit diagram of an embodiment of the present invention.

この実施例は、複数のワード線(φW、・・・・・・)
と複数のディジット線(D、D、・・・・・・)とが形
成する行列マトリクスの各交点くトランジスタと容量素
子とから成るメモリセルを有する。
In this embodiment, multiple word lines (φW,...)
and a plurality of digit lines (D, D, . . . ) and a plurality of digit lines (D, D, . . . ) each have a memory cell formed of a transistor and a capacitor at each intersection of a matrix.

簡略化のため、この図には一本のアドレス信号線11と
一本のダミーアドレス信号J112とセンス回路の両側
に伸びるディジット線り、Dのみを示す。ダミーアドレ
ス線11は一方のディジットMDに結合するメモリセル
の情報読出時にダミーアドレス信号φdで駆動され、メ
モリセルと相似構成のダミーセルの情報を他方のディジ
ット線すに伝達する。即ちメモリセルのトランジスタQ
xaドレイン・ソースの一方が一方のディジット線りに
接続し、他方は容量素子Cの一端に結合し、ゲート電極
はアドレス信号φ7で駆動される。又、ダミーセルのト
ランジスタQ2はドレイン・ソースの一方が他方のディ
ジット線bK接続し、他方が容量素子C2の一端に結合
し、ゲート電極はダミーアドレス信号φdで駆動される
For simplicity, this figure only shows one address signal line 11, one dummy address signal J112, and digit lines D extending on both sides of the sense circuit. Dummy address line 11 is driven by dummy address signal φd when reading information from a memory cell coupled to one digit MD, and transmits information from a dummy cell having a similar configuration to the memory cell to the other digit line. That is, the transistor Q of the memory cell
One of the xa drain and source is connected to one digit line, the other is coupled to one end of the capacitive element C, and the gate electrode is driven by an address signal φ7. Furthermore, one of the drain and source of the dummy cell transistor Q2 is connected to the other digit line bK, the other is coupled to one end of the capacitive element C2, and the gate electrode is driven by the dummy address signal φd.

又、各ディジット線り、bとセンス回路との間にはトラ
ンジスタQs、Q4がそれぞれ設けられ、デイツク)a
D、Dとセンス回路のセンス節点A%BK各トランジス
タQB、Q4Oドレイン・ソースと呼ぶ出力領域がそれ
ぞれ結合する。トランジスタQ8.Q4は、ゲート電極
に印加される駆動電圧−がセンス節点人、Bの最高電位
と同等もしくはそれ以下であるため、飽和状II(三極
管領域)の動作を得る。センス回路はプリチャージ用ト
ランジスタQs、Qsとセンス用トランジスタQ7、Q
s と電流流出用トランジスタQ9とから成る。
Further, transistors Qs and Q4 are provided between each digit line b and the sense circuit, respectively.
D and D are coupled to sense node A%BK of the sense circuit and output regions called drain and source of each transistor QB and Q4O, respectively. Transistor Q8. Q4 obtains saturated II (triode region) operation because the drive voltage applied to the gate electrode is equal to or lower than the highest potential of the sense node B. The sense circuit includes precharge transistors Qs, Qs and sense transistors Q7, Q.
s and a current outflow transistor Q9.

プリチャージ用トランジスタQs、Qsは、ドレインが
電源の高電位l1IvDK接続し、ソースがセンス節点
A1Bにそれぞれ接続し、ゲート電極がプリチャージ信
号φ1で駆動される。センス用トランジスタQ7、Qs
はドレインがセンス節点A、Hにそれぞれ接続し、ソー
スが共通に節点Kに接続し、ゲートは互いに他のドレイ
ンに接続する。又、電流流出用トランジスタQ、はドレ
インとソースがそれぞれ節点にと電源の低電位線GND
K接続し、ゲート電極がセンス信号φ3で駆動される。
The precharge transistors Qs, Qs have drains connected to the high potential l1IvDK of the power supply, sources connected to the sense node A1B, and gate electrodes driven by the precharge signal φ1. Sense transistor Q7, Qs
The drains are connected to the sense nodes A and H, respectively, the sources are commonly connected to the node K, and the gates are connected to each other's drains. In addition, the drain and source of the current outflow transistor Q are connected to the node and the low potential line GND of the power supply, respectively.
K connection is made, and the gate electrode is driven by the sense signal φ3.

更にセンス回路の両側に伸びるディジット線D、Dec
a結合用ト2ンジスタQ1゜の出力領域が接続し、この
トランジスタのゲート電極への結合信号φCの駆動でプ
リチャージ時に両デ(ジット線が強制的に同電位となる
Furthermore, digit lines D and Dec extend on both sides of the sense circuit.
The output region of the a-coupling transistor Q1° is connected, and by driving the coupling signal φC to the gate electrode of this transistor, both digit lines are forcibly brought to the same potential during precharging.

第2図線従来のlTR−RAMの動作波形図を示す。こ
の回路は出力領域をそれぞれセンス節点人、BK接続し
たものである。予備読出動作で後続アドレスの逆情報を
読出したのち、1−0からt−φいφc(OFF)まで
のプリチャージ期間にセンス節点A%Bは約6Vtで上
昇し、ディジット線D%Dは約3viでプリチャージさ
れる。ここでの電圧条件は電源電圧が8v、駆動電圧が
5.5vであシ、トランジスタは全てゲート閾値がIV
のNチャンネル絶縁ゲート型トランジスタである。プリ
チャージの終了時(1−φL1φC(off) )で負
荷容量の大きなディジット線り、 Dのプリチャージレ
ベルは完全平衡に至らないため、結合用トランジスタの
遮断動作への移行で開放されたセンス節点A%Ba飽和
状態で動作するトランジスタを通してディジット線と電
荷を送受し、電位を変化する。別アドレスの逆情報の読
出しの履歴のために一方のセンス節点AK比してセンス
節点Bはディジット線りからの電子電荷の流入で急速に
電位を下降する。
FIG. 2 shows an operating waveform diagram of a conventional ITR-RAM. In this circuit, the output regions are connected to sense nodes and BK, respectively. After reading the reverse information of the subsequent address in the preliminary read operation, during the precharge period from 1-0 to t-φc (OFF), the sense node A%B rises to about 6Vt, and the digit line D%D rises. It is precharged at approximately 3vi. The voltage conditions here are that the power supply voltage is 8V, the drive voltage is 5.5V, and the gate threshold of all transistors is IV.
This is an N-channel insulated gate transistor. At the end of precharging (1-φL1φC(off)), the precharge level of D does not reach complete equilibrium for the digit line with large load capacity, so the sense node is opened when the coupling transistor transitions to cutoff operation. Charge is transferred to and from the digit line through a transistor that operates in the A%Ba saturated state, changing the potential. Due to the history of reading reverse information at different addresses, the potential of sense node B drops more rapidly than that of one sense node AK due to the inflow of electron charge from the digit line.

アドレス信号の駆動開始(1−φW、φd(ON))で
ディジット線り、 Dにメモf七ルとダミーセルの容量
素子の層情報の蓄積電荷がディジット線の電位を変化す
ると、センス節点人はセンス節点Bより低電位となり、
センス開始時〔を−φ8(ON) )に差電圧ΔVを生
じる。ディジット線D%Dの負荷容量をそれぞれ1.2
pp、メモリセルの容量素子およびダミーセルの容量素
子の容量値をそれぞれ0.12pFおよび0.06pF
とするとき、この差電圧は高々0.15Vとなる。この
差電圧はセンス信号の駆動で増巾され、センス終了時〔
を−φ。、φ。
When the drive of the address signal starts (1-φW, φd (ON)), the digit line is activated, and when the accumulated charge of the layer information of the capacitor of the memory cell and the dummy cell changes the potential of the digit line, the sense node becomes The potential is lower than that of sense node B,
A differential voltage ΔV is generated at the start of sensing (-φ8 (ON)). The load capacity of digit line D%D is 1.2 each.
pp, the capacitance values of the memory cell capacitor and dummy cell capacitor are 0.12 pF and 0.06 pF, respectively.
In this case, this voltage difference is at most 0.15V. This differential voltage is amplified by driving the sense signal, and when the sense ends [
−φ. ,φ.

(ON)、t−φ7、φ4、φ、(OFF))から再び
プリチャージが開始される。
(ON), t-φ7, φ4, φ, (OFF)), precharging is started again.

この従来回路はディジット線り、Dへのプリチャージの
完全平衡を得るためにはきわめて長時間を要するため、
記憶情報読出しのためのアクセス時間およびサイクル時
間が遅くなる。又、この時間の短縮のためプリチャージ
時間を短縮するとディジット線のプリチャージレベルが
不完全平衡となるため差電圧が71%となシ情報検出動
作が不安定・不確実になる。
This conventional circuit requires a very long time to completely balance the precharge to D due to the digit line.
Access and cycle times for reading stored information are slowed down. Furthermore, if the precharge time is shortened to shorten this time, the precharge levels of the digit lines will become incompletely balanced, resulting in a differential voltage of 71%, making the information detection operation unstable and uncertain.

第3図は第1図のむの発明の集積回路の信号波形図であ
る。
FIG. 3 is a signal waveform diagram of the integrated circuit of the invention shown in FIG.

プリチャージ信号φ、はプリチャージ期間に約7vの高
電位にあシ、アドレス信号φ、およびダミーアドレス信
号φdが高電位になる前に低電位となる。結合信号φ。
The precharge signal φ is at a high potential of about 7 V during the precharge period, and becomes a low potential before the address signal φ and the dummy address signal φd reach a high potential. Combined signal φ.

はアドレス信号の逆信号であシ、アドレス信号φ7、ダ
ミーアドレス信号が低電位のとtkK高電位となってセ
ンス回路の両側のディジット線を強制的に平衡状態とす
る。又、センス信号φ8はアドレス信号よJ)10〜3
0ナノ秒遅れて高電位となシ、アドレス信号が低電位と
なった直後に低電位になる。
is a signal opposite to the address signal, and when the address signal φ7 and the dummy address signal are at a low potential, tkK becomes a high potential, forcing the digit lines on both sides of the sense circuit to be in a balanced state. Also, the sense signal φ8 is an address signal J) 10 to 3
It becomes a high potential with a delay of 0 nanoseconds, and becomes a low potential immediately after the address signal becomes a low potential.

第4図は第1図および第3図に示したこの発明の実施例
の動作波形図である。プリチャニジ開始(t−0)の直
後に結合信号の例来で“ディジット線り、5は同電位で
プリチャージされ、これに伴ってセンス節点人、Bも同
電位でプリチャージされる。即ち、プリチャージ期間に
既に平衡状態でのプリチャージ動作が行なわれ、別アド
レスの読出動作による逆情報の影響は結合信号の駆動で
除去される。プリチャージ終了〔t■φいφ。(OFF
))でセンス節点λBの電位はディジット線D%Dから
の電子電荷の流入で同一電位で下降し、アドレス信号、
ダミーアドレス信号の駆動時〔を−φ1、φ。
FIG. 4 is an operational waveform diagram of the embodiment of the invention shown in FIGS. 1 and 3. Immediately after the start of precharging (t-0), the coupling signal ``digit line 5'' is precharged to the same potential, and accordingly, the sense node B is also precharged to the same potential. That is, During the precharge period, a precharge operation is already performed in an equilibrium state, and the influence of reverse information due to a read operation of another address is removed by driving the combined signal.Precharge end [t■φ φ.(OFF
)), the potential of the sense node λB falls at the same potential due to the inflow of electron charge from the digit line D%D, and the address signal,
When driving the dummy address signal [-φ1, φ.

(ON))からメモリセルおよびダミーセルの影響を受
けて差電圧ΔVを得るようKなる。前述の従来回路と同
一条件でこの実施例は0.4V以上の差電圧を生じる。
(ON)) to obtain a differential voltage ΔV under the influence of the memory cell and dummy cell. Under the same conditions as the conventional circuit described above, this embodiment produces a voltage difference of 0.4V or more.

センス信号の駆動(t−QB(ON)) で高電位のセ
ンス節点Bは、このセンス節点例のディジット線りの電
位となシ、低電位のセンス節点Aはこのセンス節点側の
ディジット線りと共に電源の低電位(−0V)まで下降
し、この低電位が情報信号として読み出されているアド
レスのメモリセルに書き込まれ、リフレッシュ動作が行
なわれる。又、再びプリチャージが開始される前に高電
位・低電位が明確に分散されたディジット線り、]5、
もしくはその一方に、又社センス節点A%Bもしくはそ
の一方に接続する読出回路(図示しない)からメモリセ
ルの情報読出が行なわれ、この後再びプリチャージが開
始される。
When the sense signal is driven (t-QB(ON)), the sense node B with a high potential is the potential of the digit line of this sense node example, and the sense node A with a low potential is the potential of the digit line on the side of this sense node. At the same time, the voltage drops to the low potential (-0V) of the power supply, and this low potential is written as an information signal to the memory cell at the address being read, and a refresh operation is performed. Also, before precharging starts again, a digit line with high and low potentials clearly dispersed,]5.
Alternatively, information is read from the memory cell from a read circuit (not shown) connected to the sense node A%B or one of them, and then precharging is started again.

lTR−RAMではプリチャージ期間にダミーセルの容
量素子への電荷量が制御され、この電荷量はワード信号
駆動時にメモリセルの情報“11および°o2の中間に
センス節点Bの変化が起るように制御される。即ち、上
述の説明では第1図のメモリセルの容量素子C□のトラ
ンジスタ側の節点がOvであるような情報101の読出
動作を示したが、情報”l”の読出動作ではこのセンス
節点A′の特性を示す。
In the lTR-RAM, the amount of charge to the capacitive element of the dummy cell is controlled during the precharge period, and this amount of charge is controlled so that the change in the sense node B occurs between the memory cell information "11" and °o2 when a word signal is driven. In other words, in the above explanation, the read operation of the information 101 is shown in which the node on the transistor side of the capacitive element C□ of the memory cell in FIG. 1 is Ov, but in the read operation of the information "l", The characteristics of this sense node A' are shown below.

又、量近試みられている2TR−RAMでは@1図のダ
ミーアドレス線とアドレス線とが同一アドレス線であシ
、メモリセルとダミーセルとを全く同一のトランジスタ
と容量素子とで構成されるため、メモリセル内には常に
情報111°0″もしく祉情報@0″、°l”が蓄積さ
れる。この2TR−RAMへのこの発明の実施社同−差
電圧を得るメモリセルの容量素子の容量値が1/2以下
に減少し、ダミーセルのプリチャージ時の電荷制御が不
要となるためきわめて動作の安全性と確実性が得られる
In addition, in the 2TR-RAM that is being tried in the near future, the dummy address line and the address line in Figure @1 are the same address line, and the memory cell and dummy cell are composed of exactly the same transistor and capacitive element. , information 111°0'' or social information @0'', °l'' is always stored in the memory cell.The capacitive element of the memory cell that obtains the differential voltage The capacitance value of the dummy cell is reduced to less than 1/2, and charge control during precharging of the dummy cell is no longer necessary, resulting in extremely safe and reliable operation.

lTR−RAM、2TR−RAMのいずれにおいても発
明線従来回路に比してセンス回路両側に伸びるディジッ
ト線の平衡が得られるためセンス開始時のセンス節点の
差電圧が大きく、プリチャージ時間の短縮においても確
実な情報読出が行なわれる。この発明によれば従来回路
例によるアクセス時間とサイクル時間の100 a8と
170n8 はそれぞれ50n8と120n8にまで短
縮され、メモリセルの容量値をV4にまで減少しても読
出可能である。
In both 1TR-RAM and 2TR-RAM, the balance of the digit lines extending on both sides of the sense circuit is achieved compared to the invention line conventional circuit, so the differential voltage at the sense node at the start of sensing is large, which reduces the precharge time. Information can also be reliably read. According to the present invention, the access time and cycle time of 100a8 and 170n8 in the conventional circuit example are shortened to 50n8 and 120n8, respectively, and reading is possible even if the capacitance value of the memory cell is reduced to V4.

上にこの発明の実施例につき説明したが、この発明は必
要に応じて追加、変更が容易である。即ち結合用トラン
ジスタはセンス回路の両側に伸びる一対のディジット線
をプリチャージ時に導電せしめるもので、この発明に必
須な構成要素であるが、このほか同一の結合信号でゲー
ト電極が駆動される他のトランジスタを付加し、そのド
レイン・ソースをそれぞれ2点のセンス節点に接続する
こともできる。
Although the embodiments of the present invention have been described above, additions and changes to the present invention can be easily made as necessary. That is, the coupling transistor makes a pair of digit lines extending on both sides of the sense circuit conductive during precharging, and is an essential component of the present invention. It is also possible to add transistors and connect their drains and sources to two sense nodes, respectively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の回路図、第2図社従来回
路の動作波形図、第3図は、第1図の実施例の駆動信号
波形図、第4図は第1図の実施例の動作波形図である。 図中、11はアドレス線、12はダミーアドレス線%D
%Dはセンス回路の両側に伸びるディジット線%Q□は
メモリセルのトランジスタ、C□はメモリセルの容量素
子sQzはダミーセルのトランジスタ、C2はダミーセ
ルの容量素子、C3、Q4aディジット線り、Dとセン
ス回路をそれぞれ結合するトランジスタs Ql。はデ
ィジット線D%五を結合す手続補正書(方式) 特許庁長官 殿 1、事件の表示 昭和59年 特許願第101952号
2、発明ノ名称 記憶集積回路 3、補正をする者 事件との関係 出 願 人 東京都港区芝五丁目33番1号
Fig. 1 is a circuit diagram of an embodiment of the present invention, Fig. 2 is an operating waveform diagram of the conventional circuit, Fig. 3 is a drive signal waveform diagram of the embodiment of Fig. 1, and Fig. 4 is a diagram of the drive signal waveform of the embodiment of Fig. 1. FIG. 3 is an operational waveform diagram of the embodiment. In the figure, 11 is an address line, 12 is a dummy address line%D
%D is the digit line extending on both sides of the sense circuit %Q□ is the transistor of the memory cell, C□ is the capacitive element of the memory cell sQz is the transistor of the dummy cell, C2 is the capacitive element of the dummy cell, C3, Q4a digit line, D and Transistors s Ql respectively couple the sense circuits. is a procedural amendment (method) for combining digit lines D%5 Director General of the Patent Office 1, Indication of case 1982 Patent Application No. 101952 2, Title of invention Memory integrated circuit 3, Relationship with the person making the amendment case Applicant: 5-33-1 Shiba, Minato-ku, Tokyo

Claims (1)

【特許請求の範囲】 複数のワード線とこれらと交叉する複数のディジット線
との各交叉部に設けられたメモリセルと、該メモリセル
が接続された一対のディジット線に接続され、センス制
御信号に応答してセンス動作を行うセンス回路と、前記
一対のディジット線に夫々プリチャージ信号に応答して
プリチャージ電圧を供給する ・° ・ 給ナミプリチャージ回路と、前記一対のディジット線間
に接続された結合トランジスタとを有し、プリチャージ
時に前記センス制御信号を止めて前記結合トランジスタ
を導通せしめ、プリチャージ後前記結合トランジスタを
非導通罠して前記センス制御信号を前記センス回路に供
給するようにしたことを特徴とする記憶集積回路。
[Scope of Claims] A memory cell provided at each intersection of a plurality of word lines and a plurality of digit lines intersecting these, and a sense control signal connected to a pair of digit lines to which the memory cell is connected. a sense circuit that performs a sensing operation in response to the above, and a sense circuit that supplies a precharge voltage to the pair of digit lines in response to the precharge signal, respectively. and a coupling transistor configured to stop the sense control signal during precharging to make the coupling transistor conductive, and trap the coupling transistor to be non-conductive after precharging to supply the sense control signal to the sense circuit. A memory integrated circuit characterized by:
JP59101952A 1984-05-21 1984-05-21 Storage integrated circuit Granted JPS60121590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59101952A JPS60121590A (en) 1984-05-21 1984-05-21 Storage integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59101952A JPS60121590A (en) 1984-05-21 1984-05-21 Storage integrated circuit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP51129909A Division JPS5939836B2 (en) 1976-10-27 1976-10-27 memory integrated circuit

Publications (2)

Publication Number Publication Date
JPS60121590A true JPS60121590A (en) 1985-06-29
JPH0156475B2 JPH0156475B2 (en) 1989-11-30

Family

ID=14314220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59101952A Granted JPS60121590A (en) 1984-05-21 1984-05-21 Storage integrated circuit

Country Status (1)

Country Link
JP (1) JPS60121590A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140457A (en) * 1985-12-16 1987-06-24 Toshiba Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140457A (en) * 1985-12-16 1987-06-24 Toshiba Corp Semiconductor device
JPH0817038B2 (en) * 1985-12-16 1996-02-21 株式会社東芝 Semiconductor device

Also Published As

Publication number Publication date
JPH0156475B2 (en) 1989-11-30

Similar Documents

Publication Publication Date Title
JP2763880B2 (en) Sense amplifier circuit
JP2907928B2 (en) DRAM type integrated semiconductor memory and inspection method thereof
JPH0713857B2 (en) Semiconductor memory device
EP0124868B1 (en) Semiconductor memory
JPS60239993A (en) Dynamic semiconductor memory device
JPH01130391A (en) Semiconductor memory
US4539661A (en) Static-type semiconductor memory device
US4286178A (en) Sense amplifier with dual parallel driver transistors in MOS random access memory
US4858193A (en) Preamplification method and apparatus for dram sense amplifiers
EP0426071B1 (en) Semiconductor memory apparatus
US4736343A (en) Dynamic RAM with active pull-up circuit
JP2814862B2 (en) Semiconductor storage device
JPS60121590A (en) Storage integrated circuit
JPS6149760B2 (en)
JPS639095A (en) Static type semiconductor memory
JPS5939836B2 (en) memory integrated circuit
JPH0453040B2 (en)
JPS5935114B2 (en) Width increase circuit
JPS61273794A (en) Dynamic mos memory
JPH0235400B2 (en)
JPH029084A (en) Dynamic ram
JPH02218090A (en) Semiconductor memory
JPS63308790A (en) Semiconductor storage device
JPH07111833B2 (en) Static semiconductor memory device
JPS6058558B2 (en) semiconductor storage device