JPH0453040B2 - - Google Patents

Info

Publication number
JPH0453040B2
JPH0453040B2 JP2567685A JP2567685A JPH0453040B2 JP H0453040 B2 JPH0453040 B2 JP H0453040B2 JP 2567685 A JP2567685 A JP 2567685A JP 2567685 A JP2567685 A JP 2567685A JP H0453040 B2 JPH0453040 B2 JP H0453040B2
Authority
JP
Japan
Prior art keywords
bit line
sense
cell
potential
sense amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2567685A
Other languages
Japanese (ja)
Other versions
JPS61184794A (en
Inventor
Junichi Myamoto
Junichi Tsujimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP60025676A priority Critical patent/JPS61184794A/en
Publication of JPS61184794A publication Critical patent/JPS61184794A/en
Publication of JPH0453040B2 publication Critical patent/JPH0453040B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0404Matrix technologies
    • G09G2300/0417Special arrangements specific to the use of low carrier mobility technology
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0852Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor being a dynamic memory with more than one capacitor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Read Only Memory (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体記憶装置、特にEPROM、
E2PROMなどの不揮発生メモリに使用して好適
なビツト線データセンス系に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a semiconductor memory device, particularly an EPROM,
This invention relates to a bit line data sense system suitable for use in non-volatile memory such as E2 PROM.

(発明の技術的背景〕 第5図は、従来のオープンビツトライン形式を
採用したダイナミツク型ランダムアクセスメモリ
(RAM)の一部であつて、メモリセルアレイに
おける各カラムのうち1つのカラムを代表的に示
している。BLおよびは中央に位置する同期型
センスアンプSAに各一端が接続され各地端が両
側方向に延設された一対のビツト線、MCは上記
一方のビツト線BLに接続された複数のメモリセ
ルおよび1個のダミーセルのうち代表的に示され
た1個のメモリセル、MDは同じく前記他方のビ
ツト線に接続された複数のメモリセルおよび
1個のダミーセルのうち代表的に示されたダミー
セル、WLは前記メモリセルMCを選択するため
のワード線、WDは前記ダーミセルMDを選択す
るためのダミーワード線、C1、C2は前記各ビツ
ト線BL,の負荷容量である。
(Technical Background of the Invention) FIG. 5 shows a portion of a dynamic random access memory (RAM) employing a conventional open bit line format, in which one column out of each column in a memory cell array is representatively shown. BL and MC are a pair of bit lines connected to the synchronous sense amplifier SA located in the center, with each end extending in both directions, and MC is a pair of bit lines connected to one of the bit lines BL. One memory cell MD is representatively shown among the memory cells and one dummy cell, and MD is also representatively shown among the plurality of memory cells and one dummy cell connected to the other bit line. WL is a word line for selecting the memory cell MC, WD is a dummy word line for selecting the dummy cell MD, and C 1 and C 2 are load capacitances of each bit line BL.

第6図は、上記メモリでのセルデータ読出し動
作におけるシーケンス動作波形を示している。即
ち、先ずプリーチヤージ期間に各ワード線および
各ダミーワード線が非活性状態のままで図示しな
いプリチヤージ・イコライズ回路によりビツト線
BL,がプリチヤージされると共にイコライズ
される。次に、フリーランニング期間に、たとえ
ば図示のメモリセルMCが選択されるものとすれ
ば、そのワード線WLおよびこれはセンスアンプ
SAを介して反対側に位置するダミーワード線
WDが活性化され、メモリセルMCおよびダミー
セルMDが選択される。これにより、上記メモリ
セルMCの電荷蓄積状態(データ内容)に応じて
ビツト線BL,間に微少な電位差が生じる。次
に、センスラツチ期間にセンスアンプSAが動作
し、上記ビツト線BL,間の電位差がセンスラ
ツチされ、さらにビツト線BL,の一方がVDD
電源電位、地方が接地電位になるまで増幅され
る。これにより、データの読み出しが行なわれる
と共に前記選択セルに対する再書き込みが行なわ
れる。
FIG. 6 shows sequence operation waveforms in a cell data read operation in the memory. That is, first, during the precharge period, each word line and each dummy word line remain in an inactive state, and the bit line is
BL, is precharged and equalized. Next, during the free running period, if the illustrated memory cell MC is selected, its word line WL and sense amplifier
Dummy word line located on the opposite side via SA
WD is activated and memory cell MC and dummy cell MD are selected. As a result, a slight potential difference is generated between the bit line BL and the bit line BL depending on the charge storage state (data content) of the memory cell MC. Next, the sense amplifier SA operates during the sense latch period, the potential difference between the bit lines BL and BL is sense latched, and one of the bit lines BL is set to VDD.
The power supply potential is amplified until the local potential reaches ground potential. As a result, data is read and rewritten to the selected cell.

上記メモリにおいては、セル構造はパツシプで
あり、センスアンプSAとしてたとえばCMOS(相
補性絶縁ゲート型)回路を用いたものとして、こ
の部分の電力消費がないものとすれば、センスラ
ツチ動作によりピツト線電位が定まつた後におけ
る貫通電流経路は存在しないことになる。
In the above memory, the cell structure is passive, and assuming that a CMOS (complementary insulated gate) circuit is used as the sense amplifier SA, and there is no power consumption in this part, the pit line potential is set by the sense latch operation. There is no through current path after this is determined.

一方、メモリの大容量比に伴ない、ビツト線の
寄生容量が増加し、セルの縮小化に伴なつてセル
のコンダクタンスが小さくなると、アクテイブな
セル構造を持つEPROM(紫外線消去・再書込み
可能な読出し専用メモリ)とかE2PROM(電気的
消去・再書込み可能な読出し専用メモリ)などと
不揮発生メモリについても、前記オープンビツト
ライン形式の採用が有望となる。何故なら、この
形式によれば、対称のビツト線間で寄生容量効果
が相殺されるので、選択セルとダミーセルとの比
較的小さいコンダクタンス差により決まるビツト
線間の微少電位差をセンスすることができる。
On the other hand, as memory capacity increases, parasitic capacitance of bit lines increases, and cell conductance decreases as cells become smaller. The adoption of the open bit line format is also promising for nonvolatile generation memories such as read-only memory (read-only memory) and E 2 PROM (electrically erasable/rewritable read-only memory). This is because, according to this format, parasitic capacitance effects are canceled out between symmetrical bit lines, so it is possible to sense a minute potential difference between the bit lines determined by a relatively small conductance difference between the selected cell and the dummy cell.

第7図は、上記説明に基いて、たとえば2トラ
ンジスタ構造のメモリセルを有するE2PROMに
内部同期型のオープンビツトライン形式を採用し
た場合の一部を示しており、第5図に比べてメモ
リセル1、ダミーセル2の構造が異なり、その他
は同じてあるので第5図中と同一符号を付してそ
の説明を省略している。なお、上記内部同期型と
は、アドレス切換時にその変化を検出して内部で
パルスを発生し、これをトリガとしてプリチヤー
ジ・イコライズ、フリーランニング、データラツ
チの読取りサイクルをとる方式である。
Based on the above explanation, FIG. 7 shows a part of a case where an internally synchronized open bit line format is adopted for an E 2 PROM having a two-transistor structure memory cell. The structures of the memory cell 1 and the dummy cell 2 are different, and the other parts are the same, so the same reference numerals as in FIG. 5 are given and the explanation thereof is omitted. The internal synchronization type is a system in which a change in address is detected at the time of address switching, a pulse is generated internally, and this is used as a trigger to perform precharge/equalization, free running, and data latch read cycles.

第8図は、上記E2PROMにおけるメモリセル
1データの読出し動作に対応するシーケンス動作
波形を示している。この動作は、第6図を参照し
て前述した動作と殆んど同じであるが、センス増
幅後のセルへの再書込みは行なわれず、ダミーセ
ル2のコンダンスは選択セル1のデータ消去状態
(高インピーダンス状態)とプログラム状態(低
インピーダンス状態)との中間に位置している。
FIG. 8 shows sequence operation waveforms corresponding to the read operation of memory cell 1 data in the E 2 PROM. This operation is almost the same as the operation described above with reference to FIG. It is located between the high impedance state) and the programmed state (low impedance state).

〔背景技術の問題点〕[Problems with background technology]

ところで、上記オープンビツトライン形式の
E2PROMにおいては次に述べるような3つの問
題点がある。(1)センスラツチ動作後のビツト線電
位が安定した状態において、選択セルおよびダミ
ーセルが有限のコンダクタンスを有するので、第
7図中に示すようにセンスアンプSA→一方のビ
ツト線BL→選択セル1の直流経路が生じて電流
i1が流れると共に、センスアンプSA→地方のビ
ツト線→ダミーセル2の直流経路が生じて電
流i2が流れる。このような電流i1、i2は、メモリ
セルアレイにおけるビツト線分あるいはそれに準
ずる本数分流れるので膨大な電流消費となる。(2)
または、上記電流i1、i2が流れるので、ラツチ状
態でのビツト線最高電位VD1はVDD電源電位まで
達しない、即ちセンスアンプSAの増幅機能が弱
い。このように、ビツト線のハイレベル電位VD1
が低いと、センスアンプSAの次段バツフアのゲ
ート入力レベルが低くなるので読出し速度が遅く
なり、ラツチ速度(遷移時間)も遅くなる。この
問題は、センスアンプSAのプルアツプ側トラン
ジスタのコンダクタンスgmを上げることによつ
てある程度解消できるが、これに伴なつて電流消
費の増大を招くことは避けられない。(3)また、比
較的高電位の前記ハイレベル電位VD1になつてい
る一方のビツト線に接続されているメモリセル
群、ダミーセルは、そのトランスフアゲートトラ
ンジスタQ2のドレインに上記VD1が長時間にわた
つて印加されることによつてフローテイングゲー
トトランジスタQ1の電荷放出を生じさせるので
好ましくない。
By the way, the above open bit line format
There are three problems with E 2 PROM as described below. (1) When the bit line potential is stable after the sense latch operation, the selected cell and dummy cell have finite conductance, so as shown in FIG. A DC path is created and the current
As the current i 1 flows, a DC path from the sense amplifier SA to the local bit line to the dummy cell 2 is created, and a current i 2 flows. These currents i 1 and i 2 flow for the bit line or equivalent number of bit lines in the memory cell array, resulting in enormous current consumption. (2)
Alternatively, since the currents i 1 and i 2 flow, the highest bit line potential V D1 in the latched state does not reach the V DD power supply potential, that is, the amplification function of the sense amplifier SA is weak. In this way, the high level potential V D1 of the bit line
When is low, the gate input level of the next stage buffer of the sense amplifier SA becomes low, so the read speed becomes slow and the latch speed (transition time) also becomes slow. This problem can be solved to some extent by increasing the conductance gm of the pull-up transistor of the sense amplifier SA, but this inevitably causes an increase in current consumption. (3) In addition, the memory cell group or dummy cell connected to one bit line which is at the high level potential V D1 which is a relatively high potential has the above V D1 long at the drain of its transfer gate transistor Q 2 . This is not preferable because the application over a long period of time causes charge discharge from the floating gate transistor Q1 .

上述したような問題は、EPROMにオープンピ
ツトライン形式を採用した場合にも同様に生じ
る。
The above-mentioned problems also occur when an open pit line format is adopted for EPROM.

〔発明の目的〕[Purpose of the invention]

本発明は上記の事情に鑑みてなされたもので、
データ読出し速度を向上でき、センス動作後にお
ける電流消費を抑制でき、メモリ内容の信頼性を
向上し得る半導体記憶装置を提供するものであ
る。
The present invention was made in view of the above circumstances, and
The present invention provides a semiconductor memory device that can improve data read speed, suppress current consumption after sensing operation, and improve reliability of memory contents.

〔発明の概要〕[Summary of the invention]

即ち、本発明は、メモリセルアレイの各カラム
におけるそれぞれメモリセルおよびダミーセルが
接続されたビツト線対のビツト線間の電位差をセ
ンスアンプによりセンス増幅してデータ読出しを
行なう半導体記憶装置において、前記センスアン
プの両入力端と対応するビツト線対の各ビツト線
との間に少なくとも各1個設れられ、前記、ビツ
ト線対のプリチヤージ時にはオン状態に制御さ
れ、このビツト線対のビツト線間の電位差が前記
センスアンプによりセンスラツチされた後にオフ
状態に制御されるトランスフアゲートと、前記ビ
ツト線と電極との間にそれぞれ設けられプリチヤ
ージを行うスイツチ素子と、前記ビツト線対の各
ビツト線と接地端との間にそれぞれ設けられ、前
記トランスフアゲートがオフ状態になつたのちオ
ン状態に制御されて上記各ビツト線を接地電位に
ブルダウンするトランジスタとを具備することを
特徴とするものである。
That is, the present invention provides a semiconductor memory device in which a sense amplifier senses and amplifies the potential difference between bit lines of a pair of bit lines to which a memory cell and a dummy cell are connected in each column of a memory cell array to read data. At least one of them is provided between both input ends of the bit line pair and each bit line of the corresponding bit line pair, and is controlled to be in an on state when the bit line pair is precharged, and the potential difference between the bit lines of the bit line pair is a transfer gate that is controlled to be in an off state after being sense-latched by the sense amplifier; a switch element that performs precharging provided between the bit line and the electrode; and a ground terminal between each bit line and the ground terminal of the bit line pair. The present invention is characterized in that it includes a transistor provided between each of the bit lines, which is controlled to be turned on after the transfer gate is turned off, thereby pulling down each bit line to the ground potential.

したがつて、センスラツチ後にセンスアンプと
ビツト線との間が電気的に分離されるので、セン
スアンプのセンスデータの遷移時間が短かく、し
かもセンスデータはVDD電源電位と接地電位との
間でフルスイングし、データ読出し速度が速くな
る。また、センスラツチ後の電流消費が抑制さ
れ、セルのドレインに高電位がかかることなく、
セルに対する誤つた書込みが行なわれることもな
く、セルデータの信頼性が高くなる。
Therefore, since the sense amplifier and the bit line are electrically isolated after the sense latch, the transition time of the sense data of the sense amplifier is shortened, and moreover, the sense data is connected between the V DD power supply potential and the ground potential. Full swing and faster data read speed. In addition, current consumption after sense latch is suppressed, and high potential is not applied to the drain of the cell.
Erroneous writing to cells is not performed, and the reliability of cell data is increased.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照して本発明の一実施例を詳細
に説明する。第1図は本発明に至る改良前のオー
プンビツトライン形式を採用したE2PROMの一
部であつて、メモリセルアレイにおける各カラム
のうち1つのカラムを代表的に示している。SA
はたとえばCMOSフリツプフロツプ回路を用い
た同期型センスアンプ、BLおよびは上記セン
スアンプSAの左右両側方向に延設された一対の
ビツト線、1は上記一方のビツト線BLに接続さ
れた複数のメモリセルおよび1個のダミーセルの
うち代表的に示された1個のメモリアル、2は同
じく前記地方とビツト線に接続された複数の
メモリセルおよび1個のダミーセルのうち代表的
に示されたダミーセル、WLは前記メモリセル1
を選択するためのワード線、WDは前記ダミーセ
ル2を選択するためのダミーワード線、C1、C2
は前気各ビツト線BL、の負荷容量である。前
記各セルは、電気的消去および書込みが可能であ
つて、ビツト線にドレインが接続されたトランス
フアゲート用MOSトランジスタQ2とフローテイ
ングゲートトランジスタQ1とからなる。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a part of an E.sup.2 PROM employing an open bit line format prior to the improvement leading to the present invention, and representatively shows one column out of each column in the memory cell array. S.A.
For example, 1 is a synchronous sense amplifier using a CMOS flip-flop circuit, BL and 1 are a pair of bit lines extending in both left and right directions of the sense amplifier SA, and 1 is a plurality of memory cells connected to one of the bit lines BL. and 1 memorial representatively shown among 1 dummy cells; 2 is a dummy cell representatively shown among a plurality of memory cells and 1 dummy cell similarly connected to the region and the bit line; WL; is the memory cell 1
WD is a dummy word line for selecting the dummy cell 2, C 1 , C 2
is the load capacity of each bit line BL. Each cell can be electrically erased and written, and is composed of a transfer gate MOS transistor Q2 and a floating gate transistor Q1 , each having a drain connected to a bit line.

さらに、本発明においては、前記センスアンプ
SAと各ビツト線BL,との間に所定期間(プ
リチヤージ、フリーランニング、センスラツチ動
作期間)はオン状態になり、センスラツチ動作後
から次のサイクルのプリチヤージが開始するまで
の期間はオフ状態に制御されるそれぞれ少なくと
も1個以上(本例では1個)のMOSトランジス
タからなるトランスフアゲート31,32が設けら
れている。
Furthermore, in the present invention, the sense amplifier
It is controlled to be in the on state for a predetermined period (precharge, free running, and sense latch operation period) between SA and each bit line BL, and is controlled to be in the off state during the period from the sense latch operation until the precharge of the next cycle starts. Transfer gates 3 1 and 3 2 each consisting of at least one (one in this example) MOS transistor are provided.

次に、上記メモリにおけるセルデータ読出し動
作について第2図a,bを参照して説明する。即
ち、先ずプリチヤージ期間に各ワード線および各
ダミーワード線が非活性状態のままで図示しない
プリチヤージ・イコライズ回路によりピツト線
BL,がプリチヤージされると共にイコライズ
(等電位化)される。次に、フリーランニング期
間にたとえば図示のメモリセル1が選択されるも
のとすれば、そのワード線WLおよびこれとはセ
ンスアンプSAを介して反対側に位置するダミー
ワード線WDが活性化され、メモリセル1および
ダミーセル2が選択される。これにより、上記メ
モリセル1の電荷蓄積状態(データ内容)に応じ
てビツト線BL,間に微少な電位差が生じる。
次に、センスラツチ期間にセンスアンプSAが動
作し、上記ビツト線BL,間の電位差がセンス
ラツチされる。このラツチ動作後に前記ビツト線
BL,に直列接続されているトランスフアゲー
ト31,32がオフ状態になる。これにより、セン
スアンプSAはピツト線負荷から分離するので、
その両入力端の各電位VSSは第2図aに示す
ように急激にVDD電源側あるいは接地電源側へ遷
移する。しかも、このときセンスアンプSAから
ビツト線BL,を通してセルに流入する電流は
存在しないので、上記各電位遷移はVDD電源電位
あるいは接地電位までフルスイングし、このよう
にしてセンスデータの電位が定まつた後において
直流経路は存在しないので電流消費は生じない。
一方、前記したようにトランスフアゲート31
2がオフ状態になつた途端、各ビツト線BL,
BLの電位はセンスアンプSAの電位遷移には追随
しなくなるので、各セルのトランスフアゲート用
トランジスタQ2のドレインに高電位の負担がか
かる現象は避けられる。この場合、選択セル1が
ハイインピーダンス状態(データが消去された
“1”状態)であるか、あるいはロウインピーダ
ンス状態(データが書き込まれた“0”状態)で
あるかに応じて選択セル側のビツト線BLの電位
は第2図b中に示すよういに変化し、ダミーセル
側のビツト線の電位は図示の如く変化する。
Next, a cell data read operation in the memory will be explained with reference to FIGS. 2a and 2b. That is, first, during a precharge period, each word line and each dummy word line remain in an inactive state, and a pit line is set by a precharge/equalization circuit (not shown).
BL, is precharged and equalized (equalized potential). Next, if the illustrated memory cell 1 is selected during the free running period, the word line WL and the dummy word line WD located on the opposite side via the sense amplifier SA are activated. Memory cell 1 and dummy cell 2 are selected. As a result, a slight potential difference is generated between the bit lines BL and BL depending on the charge storage state (data content) of the memory cell 1.
Next, the sense amplifier SA operates during the sense latch period, and the potential difference between the bit lines BL and BL is sense latched. After this latch operation, the bit line
Transfer gates 3 1 and 3 2 connected in series to BL are turned off. This isolates the sense amplifier SA from the pit wire load, so
The respective potentials V S and S at both input terminals suddenly transition to the V DD power supply side or the ground power supply side, as shown in FIG. 2a. Moreover, at this time, there is no current flowing into the cell from the sense amplifier SA through the bit line BL, so each of the potential transitions described above fully swings to the V DD power supply potential or ground potential, and in this way, the potential of the sense data is fixed. Since there is no direct current path after this, no current consumption occurs.
On the other hand, as mentioned above, the transfer gate 3 1 ,
As soon as 3 2 turns off, each bit line BL,
Since the potential of BL no longer follows the potential transition of the sense amplifier SA, a phenomenon in which a high potential is applied to the drain of the transfer gate transistor Q2 of each cell can be avoided. In this case, depending on whether the selected cell 1 is in a high impedance state (“1” state where data is erased) or a low impedance state (“0” state where data is written), The potential of the bit line BL changes as shown in FIG. 2b, and the potential of the bit line on the dummy cell side changes as shown.

即ち、上記例のE2PROMによれば、センスラ
ツチ後にセンスアツプとビツト線との間が電気的
に分離されるので、センスアンプSAのセンスデ
ータの遷移時間が短かく、しかもセンスデータは
VDD電源電位と接地電位との間でフルスイングし
て次段バツフアのゲート入力レベルが高くなり、
データ読出し速度が速くなる。またセンスラツチ
後にセンスアンプとビツト線との間で直流電流が
流れることもなく、電流消費が抑制される。ま
た、センスラツチ後にセルのドレインに高電位が
かかることもなく、セルに対する誤つた書込みが
行なわれることもなく、セルデータの信頼性が高
い。
That is, according to the E 2 PROM of the above example, since the sense amplifier and the bit line are electrically isolated after the sense latch, the transition time of the sense data of the sense amplifier SA is short, and the sense data is
V DD fully swings between the power supply potential and the ground potential, and the gate input level of the next stage buffer becomes high.
Data read speed becomes faster. Furthermore, no direct current flows between the sense amplifier and the bit line after the sense latch, and current consumption is suppressed. Further, a high potential is not applied to the drain of the cell after sense latch, and erroneous writing to the cell is not performed, resulting in high reliability of cell data.

第3図は本発明の実施例である。前述したよう
なセンスラツチ後におけるセルドレインに対する
電圧負担をさらに軽減するためには、第3図に示
すように各ビツト線BL,と接地端との間に各
1個のプルタウン用MOSトランジスタ41,42
を接続し、前記トランスフアゲート31,32がオ
フ状態になつた後に次のプリチヤージ開始までに
わたつて上記トランジスタ41,42をオン状態に
制御するようにするとよい。なお、第3図におい
て、前記第1図中と同一部分には同一符号を付し
ており、4はビツト線プリチヤージおよびビツト
線電位イコライズ用のプリチヤージ・イコライズ
回路を示している。上記したようなトランジスタ
1,42によつて、センスアンプSAのセンスラ
ツチ後にビツト線BL,がセンスアンプSAか
ら分離された後でビツト線BL,が接地電位に
なるので、セルに対する誤つた書込みが防止され
ると共に、セルのドレイン端がフローテイング状
態であることに起因する誘導ノイズの問題を避け
ることが可能になる。また、上記第3図の回路に
よれば、データセンス感度がさらに向上するとい
う副次的な効果が得られる。即ち、第4図は、第
3図の回路においてたとえば2回にわたつて連続
した反転データの読取りを行なつた場合のビツト
線BL,の電位変化を示している。ここで、プ
リチヤージサイクルにおいてプリチヤージ動作と
イコライズ動作とが同時に行なわれた段階でビツ
ト線間電位差が小さいほどデータセンスを高感度
で行なうことが可能になるものであり、第3図の
回路によれば、プリチヤージサイクル開始時t1
t2の前に両ビツト線BL,とも接地電位になつ
ていて、前サイクルの読み出しデータの履歴が残
つていないのでデータセンスを高感度で行なうこ
とができる。
FIG. 3 shows an embodiment of the invention. In order to further reduce the voltage burden on the cell drain after the sense latch as described above, one pull-down MOS transistor 4 1 is connected between each bit line BL and the ground terminal, as shown in FIG. 4 2
It is preferable that the transistors 4 1 and 4 2 are controlled to be in the on state after the transfer gates 3 1 and 3 2 are in the off state and until the start of the next precharge. In FIG. 3, the same parts as in FIG. 1 are given the same reference numerals, and 4 indicates a precharge/equalization circuit for bit line precharging and bit line potential equalization. By means of the transistors 41 and 42 described above, the bit line BL becomes the ground potential after the bit line BL is separated from the sense amplifier SA after the sense amplifier SA senses the sense latch, so that an erroneous write to the cell can be prevented. In addition, it is possible to avoid the problem of induced noise caused by the floating state of the drain end of the cell. Further, according to the circuit shown in FIG. 3, a secondary effect of further improving data sensing sensitivity can be obtained. That is, FIG. 4 shows the potential change of the bit line BL when, for example, inverted data is read twice consecutively in the circuit of FIG. Here, in the precharge cycle, when the precharge operation and the equalization operation are performed simultaneously, the smaller the potential difference between the bit lines, the more sensitive the data sensing becomes. According to t 1 at the start of the precharge cycle,
Before t2 , both bit lines BL are at ground potential, and no history of read data from the previous cycle remains, so data sensing can be performed with high sensitivity.

なお、本発明はオープンビツトライン形式の
EPROMに適用した場合にも有効である。また、
E2PROMやEPROMは、各メモリセルのパター
ンが方形に近いのでパターンレイアウトの容易
性、効率の点でオープンビツトライン形式の採用
が有利であるが、これに限らずビツト線対の各ビ
ツト線が対向して平行に設けられるフオールデツ
ドビツトライン形式を採用した場合にも本発明を
適用可能である。
Note that the present invention is based on the open bit line format.
It is also effective when applied to EPROM. Also,
E 2 PROM and EPROM have a nearly rectangular pattern for each memory cell, so it is advantageous to use an open bit line format in terms of ease of pattern layout and efficiency. The present invention can also be applied to the case where a folded bit line format in which the bit lines are arranged facing each other in parallel is adopted.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明の半導体記憶装置によれ
ば、センスアンプ両入力端と対応する各ビツト線
との間にトランスフアーゲートを挿入してセンス
アンプのセンスラツチ後に上記トランスフアゲー
トをオフ状態に制御することによつて、データ読
出し速度の向上、センス動作後における電流消費
の抑制、メモリ内容の信頼性の向上を実現でき
る。
As described above, according to the semiconductor memory device of the present invention, a transfer gate is inserted between both input terminals of the sense amplifier and each corresponding bit line, and the transfer gate is controlled to be in an off state after the sense amplifier is sense-latched. As a result, it is possible to improve data read speed, suppress current consumption after sensing operation, and improve reliability of memory contents.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に至る改良前のE2PROMの一
部を示す回路図、第2図a,bは第1図のメモリ
のセルデータ読出し動作におけるセンスアンプの
両入力端の電位変化およびビツト線対の電位変化
を示す図、第3図は本発明の実施例を示す回路
図、第4図は第3図のメモリのデータ読出し動作
が2回連続した場合のビツト線対の電位変化を示
す図、第5図は従来のオープンビツトライン形式
のダイナミツク型RAMの一部を示す回路図、第
6図は第5図のメモリのセルデータ読出し動作に
おけるビツト線対の電位変化を示す図、第7図は
従来のオープンビツトライン形式をそのまま採用
したE2PROMの一部を示す回路図、第8図は第
7図のメモリのセルデータ読出し動作におけるビ
ツト線対の電位変化を示す図である。 1……メモリセル、2……ダミーセル、31
2……トランスフアゲート、41,42……MOS
トランジスタ、BL,……ビツト線、SA……
センスアンプ、4……プリチヤージ用スイツチ素
子。
FIG. 1 is a circuit diagram showing a part of the E 2 PROM before the improvement leading to the present invention, and FIGS. 3 is a circuit diagram showing an embodiment of the present invention, and FIG. 4 is a diagram showing the potential change of the bit line pair when the data read operation of the memory shown in FIG. 3 is performed twice in succession. FIG. 5 is a circuit diagram showing part of a conventional open bit line type dynamic RAM, and FIG. 6 is a diagram showing potential changes in bit line pairs during cell data read operation of the memory shown in FIG. , FIG. 7 is a circuit diagram showing part of an E 2 PROM that employs the conventional open bit line format as is, and FIG. 8 is a diagram showing potential changes in the bit line pair during cell data read operation of the memory shown in FIG. It is. 1... Memory cell, 2... Dummy cell, 3 1 ,
3 2 ...transfer gate, 4 1 ,4 2 ...MOS
Transistor, BL,...Bit line, SA...
Sense amplifier, 4...Switch element for pre-charge.

Claims (1)

【特許請求の範囲】[Claims] 1 それぞれメモリセルおよびダミーセルが接続
されたビツト線対のビツト線間の電位差をセンス
アンプによりセンス増幅してデータ読出しを行な
う電気的にデータ書込み可能な不揮発性の半導体
記憶装置において、前記センスアンプの両入力端
と対応するビツト線対の各ビツト線との間に少な
くとも各1個設けられ、前記ビツト線対のプリチ
ヤージ時にはオン状態に制御され、このビツト線
対のビツト線間の電位差が前記センスアンプによ
りセンスラツチされた後にオフ状態に制御される
トランスフアゲートと、前記センスアンプの両入
力端と電源との間にそれぞれ設けられ、前記プリ
チヤージ時にオン状態になつて前記ビツト線対の
プリチヤージを行うためのスイツチ素子と、前記
ビツト線対の各ビツト線と接地端との間にそれぞ
れ設けられ、前記トランスファゲートがオフ状態
になつたのちオン状態に制御されて上記各ビツト
線を接地電位にプルダウンするトランジスタとを
具備したことを特徴とする不揮発生の半導体記憶
装置。
1. In an electrically data-writable nonvolatile semiconductor memory device in which data is read by sense-amplifying the potential difference between the bit lines of a pair of bit lines to which a memory cell and a dummy cell are respectively connected, the sense amplifier At least one circuit is provided between both input terminals and each bit line of the corresponding bit line pair, and is controlled to be in an on state when the bit line pair is precharged, and the potential difference between the bit lines of the bit line pair is determined by the sense voltage. A transfer gate is provided between a transfer gate that is controlled to be off after being sense latched by an amplifier, and both input terminals of the sense amplifier and the power supply, and is turned on at the time of precharging to precharge the bit line pair. A switch element is provided between each bit line of the bit line pair and a ground terminal, and is controlled to be on after the transfer gate is turned off to pull down each bit line to the ground potential. A non-volatile semiconductor memory device characterized by comprising a transistor.
JP60025676A 1985-02-13 1985-02-13 Semiconductor memory device Granted JPS61184794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60025676A JPS61184794A (en) 1985-02-13 1985-02-13 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60025676A JPS61184794A (en) 1985-02-13 1985-02-13 Semiconductor memory device

Publications (2)

Publication Number Publication Date
JPS61184794A JPS61184794A (en) 1986-08-18
JPH0453040B2 true JPH0453040B2 (en) 1992-08-25

Family

ID=12172386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60025676A Granted JPS61184794A (en) 1985-02-13 1985-02-13 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS61184794A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2656280B2 (en) * 1987-07-01 1997-09-24 三菱電機株式会社 Nonvolatile semiconductor memory device
IT1232974B (en) * 1987-12-01 1992-03-11 Sgs Microelettronica Spa POLARIZATION AND PRELOAD CIRCUIT FOR BIT LINE OF EPROM MEMORY CELLS IN CMOS TECHNOLOGY
JPH04119597A (en) * 1990-09-07 1992-04-21 Mitsubishi Electric Corp Sense amplifier for nonvolatile semiconductor storage device
GB9423036D0 (en) * 1994-11-15 1995-01-04 Sgs Thomson Microelectronics An integrated circuit memory device
JPH11306782A (en) 1998-04-24 1999-11-05 Sharp Corp Semiconductor memory device
KR100295657B1 (en) * 1998-08-21 2001-08-07 김영환 Data input and output circuit of semiconductor memory

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51140442A (en) * 1975-05-13 1976-12-03 Ncr Co Memory circuit
JPS53114625A (en) * 1977-03-17 1978-10-06 Nec Corp Amplifier circuit
JPS5813519U (en) * 1981-07-20 1983-01-27 ヒタコン写真用品販売株式会社 Flashlight device that prevents accidental flashing
JPS5817594A (en) * 1981-07-23 1983-02-01 Seiko Epson Corp Semiconductor storage device
JPS58128087A (en) * 1982-01-25 1983-07-30 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51140442A (en) * 1975-05-13 1976-12-03 Ncr Co Memory circuit
JPS53114625A (en) * 1977-03-17 1978-10-06 Nec Corp Amplifier circuit
JPS5813519U (en) * 1981-07-20 1983-01-27 ヒタコン写真用品販売株式会社 Flashlight device that prevents accidental flashing
JPS5817594A (en) * 1981-07-23 1983-02-01 Seiko Epson Corp Semiconductor storage device
JPS58128087A (en) * 1982-01-25 1983-07-30 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device

Also Published As

Publication number Publication date
JPS61184794A (en) 1986-08-18

Similar Documents

Publication Publication Date Title
US5241503A (en) Dynamic random access memory with improved page-mode performance and method therefor having isolator between memory cells and sense amplifiers
KR100329024B1 (en) Destructive read type memory circuit, restoring circuit for the same and sense amplifier
US6954392B2 (en) Method for reducing power consumption when sensing a resistive memory
JP2782682B2 (en) Static memory cell
TW451206B (en) Sense amplifier circuit, memory device using the circuit and method for reading the memory device
KR970001340B1 (en) Dynamic random access memory
JPH0352676B2 (en)
KR100197757B1 (en) Dynamic semiconductor memory device
KR910009442B1 (en) Semiconductor memory device
JPH0210593A (en) Sensing amplifier for memory and method of reading data
CN1759448B (en) Sense amplifier, storage apparatus and computer system comprising the same, and method thereof
KR910006109B1 (en) Sense amp driving device and method for dram
US4622655A (en) Semiconductor memory
JP3112021B2 (en) Semiconductor memory
JPS6044751B2 (en) dynamic semiconductor memory
JPS60239993A (en) Dynamic semiconductor memory device
KR940004515B1 (en) Dynamic semiconductor memory device
JPS6362839B2 (en)
JPH0453040B2 (en)
TW200426847A (en) Semiconductor memory device
JPH10162587A (en) Ferroelectric memory
JP3904359B2 (en) Semiconductor memory device using semiconductor MOS / bipolar composite transistor
JPH06176572A (en) Semiconductor memory device
JPH0787035B2 (en) Semiconductor storage device
WO2023082734A1 (en) Readout circuit, memory, and readout method for memory data

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term