JPS60121245A - Copper alloy for terminal or connector and its manufacture - Google Patents

Copper alloy for terminal or connector and its manufacture

Info

Publication number
JPS60121245A
JPS60121245A JP22944683A JP22944683A JPS60121245A JP S60121245 A JPS60121245 A JP S60121245A JP 22944683 A JP22944683 A JP 22944683A JP 22944683 A JP22944683 A JP 22944683A JP S60121245 A JPS60121245 A JP S60121245A
Authority
JP
Japan
Prior art keywords
temperature
annealing
alloy
copper alloy
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22944683A
Other languages
Japanese (ja)
Other versions
JPH0338335B2 (en
Inventor
Motohisa Miyato
宮藤 元久
Isao Hosokawa
功 細川
Satoru Katayama
花多山 悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP22944683A priority Critical patent/JPS60121245A/en
Publication of JPS60121245A publication Critical patent/JPS60121245A/en
Publication of JPH0338335B2 publication Critical patent/JPH0338335B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled alloy having superior tensile strength and a high elastic limit value while eliminating the defects and problems of two kinds of phosphor bronze or phosphor bronze for a spring by specifying the amounts of Sn and P contained in Cu and adding a prescribed amount of Fe or Co. CONSTITUTION:This Cu alloy for a terminal or a connector consists of, by weight, 3.0-6.5% Sn, 0.025-0.045% P, 0.05-0.15% Fe and/or Co and the balance Cu. A Cu alloy ingot having said composition is hot rolled at >=about 80% draft and cooled from >=about 600 deg.C to <=about 350 deg.C at >=about 25 deg.C/min cooling rate. The alloy is cold rolled at >=about 80% draft, annealed at 350-550 deg.C for about 5-180min, and finish-rolled according to the use. The alloy is then subjected to tension annealing at about 200-500 deg.C for about 5-60sec to relieve the local stress. Lonnealing may be carried out at about 200-500 deg.C for about 30-180min before the tension annealing. Thus, the desired alloy is obtd.

Description

【発明の詳細な説明】 本発明は端子・コネクター用銅合金およびその製造法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a copper alloy for terminals and connectors and a method for manufacturing the same.

端子・コネクター用高級材料には、燐青銅2種および3
種、また、燐青銅3種を低温焼鈍したばね用燐青銅が使
用されている。しカルて、燐青銅は日本工業規格に示さ
れているように、3.0d%以上、9.Ou+t%以下
のSnか含有されでおり、Sn含有策が多くなると通常
の銅合金の連続鋳造による造塊法では、Snが表面層お
よび粒界に偏析し易くなり、この偏析を除去しなければ
熱間圧延に際しての加熱時に鋳塊の表面層が溶けること
がある。また、市販の燐青銅2種或いはばね用燐青銅に
は、Pが0.1〜0〜21%含有されており、普通の造
塊方法では、Soの偏析層と共に714℃の融点を有す
るCuとCu 3Pの共晶が生し易くなるため、熱間加
工性がさらに困難になっている。そして、この共晶はS
nと同様に鋳塊表面のみならず校内および粒界にも分布
する。そのため、Snの偏析層およびCuとCu3Pの
共晶を消失させるための面削と714°C以下の温度に
おける長時間の均質化処理か必要となる。
High-grade materials for terminals and connectors include phosphor bronze type 2 and type 3.
In addition, phosphor bronze for springs is used, which is obtained by annealing three types of phosphor bronze at low temperatures. However, as shown in the Japanese Industrial Standards, phosphor bronze has a content of 3.0 d% or more, 9. Ou+t% or less of Sn is contained, and when the Sn content increases, Sn tends to segregate in the surface layer and grain boundaries in the ingot formation method by continuous casting of ordinary copper alloys, and this segregation must be removed. The surface layer of the ingot may melt during heating during hot rolling. In addition, two types of commercially available phosphor bronzes or phosphor bronzes for springs contain 0.1 to 0 to 21% of P, and in ordinary agglomeration methods, Cu with a melting point of 714°C is mixed with a segregated layer of So. Since a eutectic of Cu and Cu 3P tends to form, hot workability becomes even more difficult. And this eutectic is S
Like n, it is distributed not only on the ingot surface but also within the ingot and at grain boundaries. Therefore, surface milling and long-term homogenization treatment at a temperature of 714° C. or lower are required to eliminate the Sn segregation layer and the eutectic of Cu and Cu3P.

本発明は上記した燐青銅2種またはばね用燐青銅の欠点
や問題点に鑑みなされたものであり、引張強さ、ばね限
界値等か優れた端子・コネクター用銅合金およびその製
造法を提供するものである。
The present invention was made in view of the drawbacks and problems of the above-mentioned two types of phosphor bronze or phosphor bronze for springs, and provides a copper alloy for terminals and connectors with excellent tensile strength, spring limit value, etc., and a method for manufacturing the same. It is something to do.

本発明に係る端子・コネクター用銅合金およびその製造
法は、(1)Sn 3.0〜6.5u+f%、P O,
025〜0.0451%、Feまた4よCoの1種或い
は2種を0.05〜0.15社%含有し、残部実質的に
Cuからなることを特徴とする端子・コネクター用銅合
金を第1の発明とし、(2)Sn 3.0〜6,5田L
%、PO,025−0,,045u+t%、Feまたは
Coの1種或いは2種を0.05〜0.15u+L%含
有し、残部実質的にCuである銅合金の鋳塊を、加工率
80%以上の熱間圧延後600 ’C以上の温度から2
5°C/分以上の冷却速度で350℃の温度まで冷却し
、さらに、加工率80%以上の冷間圧延を行ない、35
0〜550°Cの温度で5〜180分の焼鈍を11なっ
た後、質別調整の仕上圧延を行ない、次いで2 (10
〜500℃の温度で30〜180分の低温焼鈍を行なう
かまたは行なわす1こ、200〜500°Cの温度で5
〜60秒の局部応力除去のテンションアニールを行なう
ことを特徴とする端子・コネクター用銅合金の製造法を
第2の発明とする2つの発明よりなるものである。
The copper alloy for terminals and connectors and the manufacturing method thereof according to the present invention include (1) Sn 3.0 to 6.5u+f%, PO,
025 to 0.0451%, 0.05 to 0.15% of one or both of Fe, 4, and Co, and the remainder substantially consists of Cu. As the first invention, (2) Sn 3.0 to 6.5 den L
%, PO,025-0,,045u+t%, a copper alloy ingot containing 0.05 to 0.15u+L% of one or both of Fe or Co, and the remainder being substantially Cu, was processed at a processing rate of 80 From a temperature of 600'C or more after hot rolling of 2% or more
Cooling to a temperature of 350°C at a cooling rate of 5°C/min or more, and further cold rolling at a processing rate of 80% or more, 35
After annealing for 5 to 180 minutes at a temperature of 0 to 550°C, finish rolling for temper adjustment was performed, and then 2 (10
Low-temperature annealing for 30-180 minutes at a temperature of ~500°C or 1 hour, 5 minutes at a temperature of 200-500°C.
This invention consists of two inventions, the second invention being a method for producing a copper alloy for terminals and connectors, which is characterized by performing tension annealing for local stress relief for ~60 seconds.

本発明に係る端子・コネクター用銅合金およびその製造
法について特徴とするところについて概略の説明をする
と、Snの含有量の」二階をばね用燐青銅よ1)少ない
6,5…し%として造塊時のSnの偏析量を減少させ、
また、Pは0.025〜0.045田L%と少ない含有
量にすることによって、CuとCu、Pどの共晶の量を
少なくし、熱間圧延可能な鋳塊を鋳造することができる
To briefly explain the features of the copper alloy for terminals and connectors and the manufacturing method thereof according to the present invention, the Sn content is 1) lower than that of phosphor bronze for springs, which is 6,5%... Reduces the amount of Sn segregation during agglomeration,
In addition, by keeping the P content as low as 0.025 to 0.045 L%, the amount of Cu and eutectic such as P can be reduced and an ingot that can be hot rolled can be cast. .

FeまたはCOの1種或いは2種を0.05−0.15
1%含有させるのは、FeまたはCoは燐化物を形成し
て析出し、結晶粒の微細化と母相を強化させるためであ
り、Pは溶湯の脱酸に不可欠ではあるが含有量か小ない
と、母相の強化に必要なFeまたはCOの燐化物の析出
量か不足し、多過ぎると母相中に残存して導電率を低下
させるようになる。
0.05-0.15 of one or both of Fe or CO
The reason why Fe or Co is contained at 1% is because it forms phosphides and precipitates, making the crystal grains finer and strengthening the matrix, and P is essential for deoxidizing the molten metal, but the content is small. If not, the precipitated amount of Fe or CO phosphide necessary for strengthening the matrix will be insufficient, and if it is too large, it will remain in the matrix and reduce the electrical conductivity.

さらに、」二記に説明した含有成分および成分割合の銅
合金#塊を、熱間圧延後にFe、CoおよびPをCu母
相中に固溶させることが必須であり、そのためには最低
6(]0°Cの温度から強制冷却する必要があり、この
冷却速度か遅いとFe或0はCoの燐化物か熱間上り状
態で生し、最終製品における合金強化への寄与か減少す
るので、熱間圧延終了後25°C/分以」二の冷却速度
で35 C1’C以下まで冷却しなければならない。ま
た、CLI母相中にFe、CoおよびPを強制固溶した
熱開圧延拐を少なくとも加工率80%の冷開圧延を行な
い転位の分布を均一にし、その後、350〜550 ’
Cの温度で5〜180分の焼鈍を行なうことによって、
Fe或いはCoの燐化物か形成されるのである。
Furthermore, it is essential to dissolve Fe, Co, and P into the Cu matrix after hot rolling the copper alloy # ingot having the components and proportions explained in Section 2. ] It is necessary to perform forced cooling from a temperature of 0°C, and if this cooling rate is slow, Fe or Co phosphides will form in the hot state, reducing their contribution to alloy strengthening in the final product. After the completion of hot rolling, it must be cooled to 35 C1'C or less at a cooling rate of 25 C/min or more. cold open rolling with a processing rate of at least 80% to make the distribution of dislocations uniform, and then
By annealing for 5 to 180 minutes at a temperature of C,
Phosphides of Fe or Co are formed.

そして、生成した燐化物は引張強さ、はね限界値等の敗
械的性質の向」二が、Soを2ulL%余計に含Ki%
ぜることと同等の効果の向上がみられるのである。
The generated phosphide has a tendency to have destructive properties such as tensile strength and spring limit value, but contains an additional 2ul% of So.
The improvement in effectiveness is seen to be equivalent to that of

次に本発明に係る端子・コネクター用銅合金およびその
製造法をさらに詳細に説明する。
Next, the copper alloy for terminals and connectors and the manufacturing method thereof according to the present invention will be explained in more detail.

先ず、本発明に係る端子・コネクター用銅合金の含有成
分および成分割合について具体的に説明する。
First, the components and component ratios of the copper alloy for terminals and connectors according to the present invention will be specifically explained.

5nlCu中1こ固溶することによって、引張強さ、は
ね限界値および成形加工性を向上させる元素であり、含
有量が3.Ou+L%未満ではFe、CoとPが共存し
ていても引張強さ、ぼね限界値および成形加工性かSn
を5,5u+L%含有する燐青銅2種と同等な特性が得
られず、また、6.5u+t%の含有量で燐青銅3種(
Sn 7.0〜9.01%)と同等の特性か得られ、か
つ、熱間圧延の面からみてこれV月二の含有は必要ない
。よって、Sn含有量は3.0〜6.5wt%とする。
It is an element that improves tensile strength, spring limit value, and moldability by solid solution in 5nl Cu, and the content is 3. If it is less than O
It was not possible to obtain the same properties as the two types of phosphor bronze containing 5.5u+L% of
The same properties as Sn (7.0 to 9.01%) can be obtained, and from the viewpoint of hot rolling, the inclusion of this amount is not necessary. Therefore, the Sn content is set to 3.0 to 6.5 wt%.

FeおよびCoはPと共存することにより燐化物を形成
して、引張強さ、ばね限界値か向上し、Fe、Coの含
有量か0.05+uL%未満ではPか0.025〜0.
045u+t%含有されていせも、引張強さ、ばね限界
値を向」ニさせるだけの析出物か生しることがなく、ま
た、0,15u+L%を越えて含有されるとPが0.0
25−0,045u+L%含有されていてもFe、Co
が母相中に固溶して導電率を低下させる。よって、Fe
またはCoの1種或いは2種の含有量は0.05〜0.
151%とする。
When Fe and Co coexist with P, they form phosphides, improving tensile strength and spring limit value.
Even if P is contained in an amount exceeding 0.15u+t%, no precipitates are formed that are sufficient to improve the tensile strength and spring limit values, and if P is contained in an amount exceeding 0.15u+L%,
25-0,045u+L% Fe, Co
is dissolved in the matrix and reduces the conductivity. Therefore, Fe
Or, the content of one or two types of Co is 0.05 to 0.
It will be 151%.

Pは含有量か0.025u+t%未満ではFeまたはC
P is Fe or C if the content is less than 0.025u+t%
.

の1種或いは2Nか0.05−0.15u+L%含有さ
れていても、引張強さ、はね限界値の改善は望むことが
できず、また、0.045u+t%を越えて含有される
とFeまたはCoの1種或いは2種が0.05−0.1
5u+t%含有されていても得られる鋳塊の700〜8
00°Cの温度における熱開圧延性が悪くなる。
Even if 0.05-0.15u+L% of one type or 2N is contained, no improvement in tensile strength or spring limit value can be expected, and if it is contained in excess of 0.045u+t%. One or both of Fe or Co is 0.05-0.1
700-8 of the ingot obtained even if it contains 5u+t%
Hot open rolling properties at a temperature of 00°C deteriorate.

よって、P含有量は0.025−0.045+uL%と
する。
Therefore, the P content is set to 0.025-0.045+uL%.

次に、本発明に係る端子・コネクター用銅合金の製造法
について兵本的に説明する。
Next, a method for producing a copper alloy for terminals and connectors according to the present invention will be explained in detail.

上記に説明した含有成分および成分割合の端子・コネク
ター用銅合金の鋳塊を加工率80%以上で熱間圧延を行
なうのは鋳造組織を完全に破壊し、鋳塊における偏析の
影響をなくすためである。
The reason for hot rolling an ingot of copper alloy for terminals and connectors with the above-mentioned ingredients and ratios at a processing rate of 80% or more is to completely destroy the cast structure and eliminate the effects of segregation in the ingot. It is.

熱間圧延後600°C以上の温度から25°C/分以上
の冷却速度で350℃以下の温度まで冷却するのは、熱
間加工後の状態で燐化物を母相中に固溶させるためであ
り、冷却開始温度が600℃未満では燐化物が析出上ま
た、6QO℃以上の温度から冷却する場合でも冷却速度
が25°C/分より遅いと冷却過程で燐化物が析出する
。即ち、熱間加工後の状態において存在する燐化物は、
続いて行なう冷開加工および焼鈍を行なった場合におい
ても母相と整合性のある析出物とはならず、引張強さお
よびばね限界値の向上には寄与しない。
The reason for cooling from a temperature of 600°C or more after hot rolling to a temperature of 350°C or less at a cooling rate of 25°C/min or more is to dissolve phosphide into the matrix after hot working. If the cooling start temperature is less than 600°C, phosphides will precipitate, and even when cooling from a temperature of 6QO°C or higher, if the cooling rate is slower than 25°C/min, phosphides will precipitate during the cooling process. That is, the phosphide present in the state after hot working is
Even when the subsequent cold-opening and annealing are performed, the precipitates are not consistent with the matrix and do not contribute to improving the tensile strength and spring limit value.

また、冷却終了温度は350°Cで充分であり、350
°C以下に保持しても燐化物は形成され難いのである。
Also, the cooling end temperature is sufficient at 350°C, and 350°C is sufficient.
Phosphides are difficult to form even if the temperature is kept below °C.

さらに、加工率80%以上の冷間圧延を行なうのは、母
相中に均一の転位を分布さぜるのに必要な加工率であり
、続いて行なう焼鈍によって転位分布に応じた均一で微
細な燐化物を析出させることができるものであり、この
冷間加工率は重要である。
Furthermore, performing cold rolling at a processing rate of 80% or higher is the processing rate necessary to uniformly distribute dislocations in the matrix, and the subsequent annealing produces uniform and fine particles according to the dislocation distribution. This cold working rate is important because it can precipitate phosphides.

この冷間圧延後に350〜550°Cの温度において5
〜180分の焼鈍を行なうのは、350℃未満の温度で
は180分を越える焼鈍を行なっても引張強さに寄与す
る燐化物が析出せず、また、550℃を越える温度では
Cu−5n中へのFe、CoおよびP夫々の固溶限が大
となるため析出する燐化物か少なくなり、Sn含有量を
2u+t%増加しただけの引張強さおよびばね限界値の
向上が期待できなくなるからであり、焼鈍時間は5分未
満では未だ平衡に達しないので緒特性が不安定となり、
また、180分を越える時間の焼鈍は目標とする特性は
180分の焼鈍時間で充分得られており無駄である。
5 at a temperature of 350-550°C after this cold rolling.
The reason for performing annealing for ~180 minutes is that at temperatures below 350°C, phosphides, which contribute to tensile strength, will not precipitate even if annealing is performed for more than 180 minutes, and at temperatures above 550°C, Cu-5n will not precipitate. This is because the solid solubility limits of Fe, Co, and P in the steel become large, so fewer phosphides precipitate, and it is no longer possible to expect an improvement in tensile strength and spring limit value by increasing the Sn content by 2u+t%. However, if the annealing time is less than 5 minutes, equilibrium will not be reached yet and the properties will become unstable.
Further, annealing for a time exceeding 180 minutes is wasteful because the target characteristics are sufficiently obtained with an annealing time of 180 minutes.

この焼鈍後に質別調整、即ち、調質仕上圧延後、局部応
力除去と7ラツトな条或いは板間を得るためにテンショ
ンアニールを200〜500℃の温度で5〜60秒行な
うのは、200℃未満の温度では60秒保持してもフラ
ットな板が得られず、また、500 ”cを越えると5
秒間保持しても目標とする引張強さおよびばね限界値を
安定して得ることは難がしい。保持時間は5秒未満では
コイルの端、中央部の機械的性質が異なる等の問題が生
じ、60秒を越えると生産性が著しく阻害される。
After this annealing, temper adjustment is performed, that is, after temper finish rolling, tension annealing is performed at a temperature of 200 to 500°C for 5 to 60 seconds in order to remove local stress and obtain a smooth strip or plate. If the temperature is below 500"C, you will not be able to obtain a flat plate even if you hold it for 60 seconds, and if the temperature exceeds 500"
Even if held for seconds, it is difficult to stably obtain the target tensile strength and spring limit value. If the holding time is less than 5 seconds, problems such as differences in mechanical properties at the ends and center of the coil will occur, and if it exceeds 60 seconds, productivity will be significantly impaired.

しかし、最終の仕上加工率か70%を越えると、ばね限
界値はテンションアニールのような高速量産設備はおけ
るような60秒以内の短時間焼鈍では高いぼね限界値が
得られず、200〜500°Cの温度で30〜180分
コイル7オームでバッチ炉により焼鈍することにより、
目標とするばね限界値が得られた後で上記のテンション
アニールを行なうのがよい。
However, when the final finishing rate exceeds 70%, a high spring limit value cannot be obtained with short-time annealing within 60 seconds, which is possible with high-speed mass production equipment such as tension annealing, and the spring limit value is 200~200%. By annealing in a batch furnace with a coil of 7 ohm for 30-180 minutes at a temperature of 500 °C.
It is preferable to perform the above-mentioned tension annealing after the target spring limit value is obtained.

本発明に係る端子・コネクター用銅合金およびその製造
法の実施例を説明し、併せて比較例を説明する。
Examples of the copper alloy for terminals and connectors and the manufacturing method thereof according to the present invention will be described, and comparative examples will also be described.

実施例 第1表に示す含有成分および成分割合の銅合金となるよ
うに、電解銅をクリプトルミ入炉により木炭被覆下にお
いて約1200 ’Cの温度で溶解し、F(!、Coの
帯片を投入し、これらの溶込みを確認した後、残り30
%の電解銅を投入し、溶湯温度を1160〜1170°
Cの温度まで降下させ、SnとCu−15iut%Pの
中間合金を添加後充分撹伴し、沈静後鋳鉄製のブックモ
ールド鋳型に傾注法で鋳込みダ3解を製造した。
EXAMPLE Electrolytic copper was melted at a temperature of about 1200'C under charcoal coating by cryptoluminization to obtain a copper alloy having the components and proportions shown in Table 1, and a strip of F(!, Co) was melted. After confirming that these have penetrated, the remaining 30
% electrolytic copper and set the molten metal temperature to 1160-1170°.
The temperature was lowered to C, an intermediate alloy of Sn and Cu-15iut%P was added, stirred thoroughly, and after settling, a cast iron mold was poured into a cast iron book mold mold by the tilting method.

鋳塊は60.。Tl1tX 60mmL′X 14 O
r。、。ノの大とさである。
The ingot is 60. . Tl1tX 60mmL'X 14 O
r. ,. It is the size of .

第1表の本発明のNo、1〜No、5および比較例(N
o、8、No、10および11を除く)の両面を計5m
m面削後800℃の温度に加熱し、厚さ1.5+nmま
で熱間圧延し、650℃の温度から水中冷却し、その後
、厚さ0.50〜1.0齢まで冷間圧延し、500°C
の温度で120分の焼鈍を行ない、さらに、冷開圧延を
衡なって、厚さ0.4Ononの板材を製造した。
No. 1 to No. 5 of the present invention in Table 1 and comparative example (N
o, 8, No., 10 and 11) total of 5m on both sides
After milling, it is heated to a temperature of 800°C, hot rolled to a thickness of 1.5+nm, cooled in water from a temperature of 650°C, and then cold rolled to a thickness of 0.50 to 1.0 years. 500°C
Annealing was carried out at a temperature of 120 minutes, and cold-open rolling was then carried out to produce a plate material with a thickness of 0.4 Onon.

比較例のNo、8.10および11のうち、No。Among Comparative Examples No. 8.10 and 11, No.

8は750℃の温度での熱間圧延において割れを生じた
ためその後の加工を中止し、No、 10および11は
特性を比較するために、700℃の温度で5時間溶体化
処理を行なった後、加工率約60%の冷間圧延と450
℃の温度で2時間の中間焼鈍を繰返し行ない、本発明と
略同−の引張強さを有する厚さ0.40mmの板材を作
製した。引張強さは65 Kgf/+n口)2を目1票
とした。
No. 8 had cracks during hot rolling at 750°C, so further processing was discontinued, while Nos. 10 and 11 were subjected to solution treatment at 700°C for 5 hours in order to compare their properties. , cold rolling with a processing rate of about 60% and 450
Intermediate annealing was repeatedly performed for 2 hours at a temperature of .degree. C. to produce a plate material having a thickness of 0.40 mm and having approximately the same tensile strength as the present invention. The tensile strength was 65 Kgf/+n)2.

本発明No、 1− No、 5と比較例No、6.7
および9については、張力10 K gf / nun
2を付加して350℃の温度で20秒の焼鈍を行なった
。比較例No、10および11につし・ては250°C
の温度で2時間の焼鈍を行なった。その結果を第2表に
示す。何れも圧延方向に平行な試験片を調整してその特
性を測定した。なお、90°曲げ加工は30Tonの爽
プレスで3005panの速度で実施して得た結果であ
る。
Present invention No. 1- No. 5 and comparative example No. 6.7
and for 9, the tension 10 K gf/nun
2 was added and annealing was performed at a temperature of 350° C. for 20 seconds. 250°C for Comparative Examples No. 10 and 11
Annealing was performed at a temperature of 2 hours. The results are shown in Table 2. In each case, test pieces parallel to the rolling direction were prepared and their properties were measured. Note that the 90° bending process was performed using a 30 ton refreshing press at a speed of 3005 pans.

第1表および第2表から明らかであるが、本発明No、
1.2および3はSnを21%多く含有する比較例No
、10と、本発明No、4および5はSnを2Illt
%多く含有する比較例No、11と比べると、引張強さ
、ばね限界値、導電率おおよび曲げ試験の何れの特性に
おいても本発明に係る端子・コネクター用銅合金が同等
以上であることが示されている。そして、伸びは加工性
の目安にはなるがあくまでも参考値であることがわかる
As is clear from Tables 1 and 2, the present invention No.
1.2 and 3 are comparative example Nos. containing 21% more Sn
, 10, and invention Nos. 4 and 5 have Sn as 2Illt.
% higher than Comparative Example No. 11, the copper alloy for terminals and connectors according to the present invention is equivalent or better in all properties of tensile strength, spring limit value, electrical conductivity, and bending test. It is shown. It can be seen that elongation is a guideline for workability, but it is only a reference value.

また、第2表かられかるように、本発明No、1と比較
例No、6.7および9を比較すると、Fe。
Moreover, as shown in Table 2, when the present invention No. 1 and the comparative example Nos. 6.7 and 9 are compared, Fe.

CoおよびPが本発明に係る端子・コネクター用銅合金
の含有成分の成分割合を逸脱すると、伸び、ばね限界値
および曲げ加工性が低下することが実証されている。
It has been demonstrated that when Co and P deviate from the content ratios of the copper alloy for terminals and connectors according to the present invention, elongation, spring limit value, and bending workability are reduced.

別に、本発明No、1の熱間上り材15+nm厚さの1
部を切り出し、冷却速度が10℃/分に制御できる炉中
に入れ、650°Cから300°Cまで冷却する比較加
工方法により試料を調整した。この試料の厚さ0 、4
 mmまでの加工方法は上記した通りであり、得られた
結果を第3表に示す。
Separately, the hot-rolled material of the present invention No. 1 has a thickness of 15+nm.
A sample was prepared by a comparative processing method in which a section was cut out, placed in a furnace where the cooling rate could be controlled at 10°C/min, and cooled from 650°C to 300°C. The thickness of this sample is 0, 4
The processing method up to mm is as described above, and the obtained results are shown in Table 3.

第3表 以上説明したように、本発明に係る端子・コネクター用
銅合金およびその製造法は上記の構成を有しているもの
であるか呟燐青銅2種および3種よりSn含有量が2u
+t%少ない含有成分および成分割合からなる銅合金で
あり、これら2つの燐青銅と同等、また、それ以上の特
性を有することは明らかである。
Table 3 As explained above, the copper alloy for terminals and connectors according to the present invention and the method for producing the same have the above-mentioned structure.
It is clear that this is a copper alloy consisting of +t% less contained components and component ratios, and has properties equal to or better than those of these two phosphor bronzes.

Claims (2)

【特許請求の範囲】[Claims] (1) Sn 3.0−6.5u+t%、P O,02
5−0,045u+t%、FeまたはCoの1種或いは
2種を0.05−0.15u+L%含有し、残部実質的
にCuからなることを特徴とする端子・コネクター用銅
合金。
(1) Sn 3.0-6.5u+t%, PO,02
5-0.045u+t%, 0.05-0.15u+L% of one or both of Fe or Co, and the remainder substantially consisting of Cu.
(2) Sn 3.0−6.5wL%、P O,025
−0,045+ut%、FeまたはCoの1種或いは2
種を0.05−0,15u+L%含有し残部実質的にC
uである銅合金の鋳塊を、加工率80%以上の熱間圧延
後600 ’C以上の温度から25℃/分以」二の冷却
速度で350 ’C以下の温度まで冷却し、さらに、加
工率80%以」二の冷開圧延を行ない、350〜550
 ”Cの温度で5〜180分の焼鈍を行なった後、質別
調整の仕上圧延を行ない、次いで、200〜s o o
 ’cの温度で3()〜180分の低温焼鈍を行なうが
または行なわずに、200〜500 ’Cの温度で5〜
60秒の局部応力除去のテンションアニールな行なうこ
とを特徴とする端子・コネクター用銅合金の製造法。
(2) Sn 3.0-6.5wL%, PO,025
-0,045+ut%, one or two of Fe or Co
Contains 0.05-0.15u+L% of seeds and the remainder is substantially C
After hot rolling a copper alloy ingot with a processing rate of 80% or more, the ingot is cooled from a temperature of 600'C or more to a temperature of 350'C or less at a cooling rate of 25°C/min or more, and further, 350-550
After annealing at a temperature of 5 to 180 minutes, finishing rolling for temper adjustment is performed, and then 200 to 180 minutes of annealing is carried out.
With or without low-temperature annealing for 3() to 180 minutes at a temperature of 200 to 500'C.
A method for producing copper alloys for terminals and connectors, characterized by carrying out tension annealing to remove local stress for 60 seconds.
JP22944683A 1983-12-05 1983-12-05 Copper alloy for terminal or connector and its manufacture Granted JPS60121245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22944683A JPS60121245A (en) 1983-12-05 1983-12-05 Copper alloy for terminal or connector and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22944683A JPS60121245A (en) 1983-12-05 1983-12-05 Copper alloy for terminal or connector and its manufacture

Publications (2)

Publication Number Publication Date
JPS60121245A true JPS60121245A (en) 1985-06-28
JPH0338335B2 JPH0338335B2 (en) 1991-06-10

Family

ID=16892333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22944683A Granted JPS60121245A (en) 1983-12-05 1983-12-05 Copper alloy for terminal or connector and its manufacture

Country Status (1)

Country Link
JP (1) JPS60121245A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174841A (en) * 1984-02-21 1985-09-09 Furukawa Electric Co Ltd:The Phosphor-bronze for electronic and electrical instrument
US6436206B1 (en) 1999-04-01 2002-08-20 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
KR100894076B1 (en) * 2007-04-10 2009-04-21 주식회사 풍산 Copper alloy for electric and electro parts having an improved combination of high conductivity, high strength , high workability ? method of manufacture for the same
CN111575511A (en) * 2020-05-26 2020-08-25 昆明理工大学 Method for improving micro-macro segregation of copper-tin alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572849A (en) * 1980-06-04 1982-01-08 Kobe Steel Ltd Copper alloy for electronic parts
JPS58113334A (en) * 1981-12-28 1983-07-06 Tamagawa Kikai Kinzoku Kk Phosphor bronze with superior hot workability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572849A (en) * 1980-06-04 1982-01-08 Kobe Steel Ltd Copper alloy for electronic parts
JPS58113334A (en) * 1981-12-28 1983-07-06 Tamagawa Kikai Kinzoku Kk Phosphor bronze with superior hot workability

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174841A (en) * 1984-02-21 1985-09-09 Furukawa Electric Co Ltd:The Phosphor-bronze for electronic and electrical instrument
JPH0352524B2 (en) * 1984-02-21 1991-08-12 Furukawa Electric Co Ltd
US6436206B1 (en) 1999-04-01 2002-08-20 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
KR100894076B1 (en) * 2007-04-10 2009-04-21 주식회사 풍산 Copper alloy for electric and electro parts having an improved combination of high conductivity, high strength , high workability ? method of manufacture for the same
CN111575511A (en) * 2020-05-26 2020-08-25 昆明理工大学 Method for improving micro-macro segregation of copper-tin alloy

Also Published As

Publication number Publication date
JPH0338335B2 (en) 1991-06-10

Similar Documents

Publication Publication Date Title
JP4943095B2 (en) Copper alloy and manufacturing method thereof
US4260432A (en) Method for producing copper based spinodal alloys
JPH10140269A (en) Copper base alloy and production thereof
WO2011096632A2 (en) Copper alloy having high strength and high conductivity, and preparation method thereof
JP2001049369A (en) Copper alloy for electronic material and its production
JPS60121245A (en) Copper alloy for terminal or connector and its manufacture
JP3980808B2 (en) High-strength copper alloy excellent in bending workability and heat resistance and method for producing the same
US2066512A (en) Alloy
CN112048637B (en) Copper alloy material and manufacturing method thereof
US6436206B1 (en) Copper alloy and process for obtaining same
JP2000038647A (en) Method for working copper alloy
JPS6144142A (en) Copper alloy for terminal or connector and its manufacture
JPH0418016B2 (en)
JP3941308B2 (en) Copper alloy with excellent hot workability
US3852121A (en) Process for making a novel copper base alloy
JP2001049367A (en) High strength, high conductivity and high heat resistance copper base alloy and its production
JP6830135B2 (en) Cu-Ni-Co-Si alloy for electronic components
JPS61143564A (en) Manufacture of high strength and highly conductive copper base alloy
JPH0314901B2 (en)
JP4449254B2 (en) Copper alloy with excellent hot workability and machinability
JPS61186441A (en) High strength copper alloy having high heat resistance and its manufacture
JPS6043448A (en) Copper alloy for terminal or connector and its manufacture
JPS63134640A (en) High-strength copper alloy for spring and its production
JPS648067B2 (en)
JP3932759B2 (en) Copper alloy with excellent hot workability