JPS60120567A - Bias charge determining unit of charge coupled device - Google Patents

Bias charge determining unit of charge coupled device

Info

Publication number
JPS60120567A
JPS60120567A JP22842183A JP22842183A JPS60120567A JP S60120567 A JPS60120567 A JP S60120567A JP 22842183 A JP22842183 A JP 22842183A JP 22842183 A JP22842183 A JP 22842183A JP S60120567 A JPS60120567 A JP S60120567A
Authority
JP
Japan
Prior art keywords
charge
coupled device
bias
input
input section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22842183A
Other languages
Japanese (ja)
Other versions
JPH0523058B2 (en
Inventor
Hisanobu Tsukasaki
塚崎 久暢
Shuzo Matsumoto
脩三 松本
Kazuo Kondo
和夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22842183A priority Critical patent/JPS60120567A/en
Priority to US06/672,369 priority patent/US4625322A/en
Publication of JPS60120567A publication Critical patent/JPS60120567A/en
Publication of JPH0523058B2 publication Critical patent/JPH0523058B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C27/00Electric analogue stores, e.g. for storing instantaneous values
    • G11C27/04Shift registers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • G11C19/287Organisation of a multiplicity of shift registers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • H01L27/1057Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components comprising charge coupled devices [CCD] or charge injection devices [CID]

Abstract

PURPOSE:To always supply a suitable DC bias voltage by comparing the outputs of the first charge coupled device for detecting the optimum bias charge with that of the second charge coupled device, and setting the input bias of a signal main charge coupled device under the input bias condition of the second charge coupled device when both coincide. CONSTITUTION:Charges transferred from the first and second input units 26, 27 are added by an adder 28, then transferred by a thicker transfer unit 29 of channel width, further divided by a divider 30, and transferred for charges of QMAX/ 2 to output units 31, 32. The charged transferred to the unit 32 is converted by the unit 32 to a voltage, and becomes a DC voltage corresponding to QMAX through a sample-holder 33. The output voltage of the holder 33 is inputted to a compartor 34, compared with the output voltage of a sample-holder 38 connected with the output unit 37 of the second charge coupled device 35, and becomes a reference voltage in case of varying the bias voltage of the unit 36 of the second device 35 so that the outputs of the holders 33, 38 become equal.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明け、電荷結合装置に関するものであり特に注入さ
れる転送電荷量のうち直流成分が最適になる様にその入
力部のバイアス条件を自動的に決定する装置に関するも
のである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a charge-coupled device, and in particular automatically adjusts the bias conditions of the input section so that the DC component of the amount of transferred charge to be injected is optimized. This relates to a device that determines the

〔発明の背景〕[Background of the invention]

従来の電荷結合装置は、交流信号成分を良好に転送する
ために、その入力部において直流バイアス電荷を予め調
整する必要がある。以下図面を用いてこの問題点につい
て説明する。
Conventional charge-coupled devices require preconditioning of the DC bias charge at their input in order to successfully transfer AC signal components. This problem will be explained below using the drawings.

第1図に電荷結合装置の入力部の断面構造と動作時の各
ゲート電極下における内部電位を、また第2図に駆動パ
ルス波形をそれぞれ示し、入力動作について説明する。
The input operation will be described with reference to FIG. 1 showing the cross-sectional structure of the input section of the charge-coupled device and the internal potential under each gate electrode during operation, and FIG. 2 showing the drive pulse waveform.

第1図の例は2J脅ゲート電極構造、2相駆動の埋め込
みチャンネル型電荷結合装置で、入力方−法としてダイ
オードカットオフ法を用いた場合を示(7ている。まず
第1図の構造について説明する。1はP型半導体基板、
2は高濃度のN型拡散層、6はN型埋め込み層、4,5
,6.7はそれぞれP型不純物をN型埋め込み層乙にド
ープして形成された濃度の低いN型埋め込み層である。
The example in Figure 1 shows a buried channel type charge-coupled device with a 2J gate electrode structure and two-phase drive, using the diode cutoff method as the input method. 1 is a P-type semiconductor substrate,
2 is a high concentration N-type diffusion layer, 6 is an N-type buried layer, 4, 5
, 6.7 are N-type buried layers with low concentration formed by doping the N-type buried layer B with P-type impurities, respectively.

ゲート8〜15の電圧が同一の場合、この低濃度の、N
型埋め込み層4,5.6があるゲート電極8,1゜12
.14下の内部電位と、同埋め込み層がないゲート電極
9 、11.15下の内部電位との間に差が生じる。こ
の内部電位の差により電荷の逆流を阻止して電荷転送に
方向性をもたせている。8〜15はそれぞれゲート電極
、16〜19はそれぞれ駆動パルス入力端子である。電
極8には第2図P8に示されるツカ端子16よりサンプ
リングパルスが、電極9には定電圧源21より直流電圧
が、電極10.11および14.15にはそれぞれ入力
端子17、19より第2図P1に示される駆動パルスが
、電極12.15には入力端子18より第2図P2に示
される駆動パルスがそれぞれ入力される。20は定電圧
源で抵抗2尋を介してN型拡散層2に直流バイアス電圧
を与える。21も定電圧源でゲート電極9に直流電圧を
与える。22は信号源で交流結合コンデンサ24ヲ介し
て被遅延信号t−Nm拡散層2に供給する。
When the voltages of gates 8 to 15 are the same, this low concentration of N
Gate electrode 8,1°12 with mold buried layer 4,5.6
.. A difference occurs between the internal potential under the gate electrode 14 and the internal potential under the gate electrode 9 and 11.15, which do not have the same buried layer. This difference in internal potential prevents reverse flow of charges and gives directionality to charge transfer. 8 to 15 are gate electrodes, and 16 to 19 are drive pulse input terminals, respectively. Sampling pulses are applied to the electrode 8 from the terminal 16 shown in FIG. A driving pulse shown in FIG. 2 P1 is inputted to the electrode 12.15, and a driving pulse shown in FIG. 2 P2 is inputted from the input terminal 18, respectively. 20 is a constant voltage source that applies a DC bias voltage to the N type diffusion layer 2 through two resistors. 21 is also a constant voltage source and applies a DC voltage to the gate electrode 9. A signal source 22 supplies a delayed signal t-Nm to the diffusion layer 2 via an AC coupling capacitor 24.

ここでは定電圧源20.21は調整された適当な電圧で
あるとする。第2図に示されるように時刻t = t+
にはサンプリングパルスP8ハレペルHi ghとなり
ゲート電極8下の内部電位は深くなり、ゲート電極8.
9の下の電位の井戸はN湿1拡散層2から供給される電
荷で、N型拡散層2の電位まで満たされる。この時、駆
動パルスP+は・レベルLowであるのでゲート電極1
0の下の内部電位は浅く、供給電荷に対しては電位障壁
として働く。時刻t=tzにはサンプリングパルスPs
はレベルLowとなるためゲート電極8の下の内部電位
は浅くなり、電極9の下の電位の井戸は電荷供給掠であ
るN型拡散層2と切断される。
Here, it is assumed that the constant voltage sources 20 and 21 have a regulated appropriate voltage. As shown in FIG. 2, time t = t+
Then, the sampling pulse P8 goes high, and the internal potential under the gate electrode 8 becomes deep.
The potential well below 9 is filled with charges supplied from the N-type diffusion layer 2 up to the potential of the N-type diffusion layer 2. At this time, since the drive pulse P+ is at a low level, the gate electrode 1
The internal potential below 0 is shallow and acts as a potential barrier against the supplied charge. At time t=tz, the sampling pulse Ps
Since the level becomes Low, the internal potential under the gate electrode 8 becomes shallow, and the potential well under the electrode 9 is disconnected from the N-type diffusion layer 2, which is a charge supply hole.

この時ゲート電極の9下に蓄積される電荷QiNは、電
極9の下の電位φRとN型拡散層2の電位V81の差に
ほぼ比例する。すなわち、QiN−K(φHVs+)と
なる。ここでKはゲート電極9の面積等に依存する定数
である。時刻t=taにハ駆動ハルスP1がレベルnt
gh、 駆TJhハルスP2がレベルLowになり電極
9下の電荷は電極11下の電位の井戸に転送される。時
刻t”tsには駆動パルスP1.P2が反転し、電極1
1下の電荷は電極16下に転送される。以降、駆動パル
スPI、P2が反転する毎に電荷の転送が行なわれる。
At this time, the charge QiN accumulated under the gate electrode 9 is approximately proportional to the difference between the potential φR under the electrode 9 and the potential V81 of the N-type diffusion layer 2. That is, QiN-K(φHVs+). Here, K is a constant that depends on the area of the gate electrode 9, etc. At time t=ta, the driving force P1 reaches the level nt.
gh, the drive TJh Hals P2 becomes level Low, and the charge under the electrode 9 is transferred to the potential well under the electrode 11. At time t"ts, the driving pulses P1 and P2 are reversed, and the electrode 1
The charge below 1 is transferred to below the electrode 16. Thereafter, charge transfer is performed every time the drive pulses PI and P2 are inverted.

ここで電位VHは、定電圧源20の電位Vl)Cと侶号
源22の交流信号f (t)の和であ仝ので、供給され
る電荷QiNは QiN =K(φn−VDC) −K f(t) (i
)となり交流信号に比例した電荷Kf(t)と直流電荷
K(φR−VυC)の和で表わされる。
Here, the potential VH is the sum of the potential Vl)C of the constant voltage source 20 and the AC signal f (t) of the voltage source 22, so the supplied charge QiN is QiN = K (φn - VDC) - K f(t) (i
), and is expressed as the sum of the charge Kf(t) proportional to the AC signal and the DC charge K(φR−VυC).

次に出力部の動作を説明する。第6図に浮遊拡散層増幅
法における出力部の断面構造と動作時の各電極下の内部
電位を示す。まず第6図の構造について説明する。69
はN型拡散層で、転送されてくる電荷に対してドレイン
として働く。
Next, the operation of the output section will be explained. FIG. 6 shows the cross-sectional structure of the output section in the floating diffusion layer amplification method and the internal potential under each electrode during operation. First, the structure shown in FIG. 6 will be explained. 69
is an N-type diffusion layer and acts as a drain for transferred charges.

70はILfflの浮遊拡散層で、この拡散層70とP
型基板71との間に形成される接合容量で、転送されて
くる電荷を電圧に変換する。72.75は第1図の3と
同様のN型埋め込み層、 74.75.76は第1図の
4.5.6と同様の濃度の低いN型埋め込みj−である
。、77〜82はゲート電極、83.8485は駆動パ
ルス入力端子である。電極77.78には入力端子83
より駆動パルス(第2図P2)が、電極79.80には
入力端子84より駆動パルス(第2図1)1)が、′電
極81には定電圧源86より適当な直流電圧が、電極8
2には入力端子85よりリセットパルス(第2図PR)
がそれぞれ入力される。87は定電圧源、 89.92
は定電流源、 88.91はN型MO8)ランジスタ、
90はサンプルホールド。
70 is a floating diffusion layer of ILffl, and this diffusion layer 70 and P
A junction capacitance formed between the mold substrate 71 converts the transferred charge into voltage. 72.75 is an N-type buried layer similar to 3 in FIG. 1, and 74.75.76 is a low concentration N-type buried layer j- similar to 4.5.6 in FIG. , 77-82 are gate electrodes, and 83.8485 is a drive pulse input terminal. The electrodes 77 and 78 have input terminals 83
A driving pulse (Fig. 2 P2) is applied to the electrodes 79 and 80, a driving pulse (Fig. 2 1) 1) is applied to the electrode 81 from the constant voltage source 86, and an appropriate DC voltage is applied to the electrode 81 from the constant voltage source 86. 8
2 is a reset pulse from input terminal 85 (Figure 2 PR)
are input respectively. 87 is a constant voltage source, 89.92
is a constant current source, 88.91 is an N-type MO8) transistor,
90 is sample hold.

93は出力端子である。93 is an output terminal.

時刻t=taには駆動パルスP+はレベルHighすの
で電極80下の電位の井戸には電極78下の′電位の井
戸から転送された電荷が蓄積している。まfC−’)セ
ットパルスPRがレベルHighなので電極85下の内
部電位は下がり、浮遊拡散層7oと拡散層69は導通し
浮遊拡散層70の電位は拡散層69の電位すなわち電圧
源87により定められる電位に等しくなる。この動作は
リセット動作と呼ばれる、時刻t = t41c ハ!
JセットハルスPRはレベルLowになp浮遊拡散層7
0は拡散層69すなわち定電圧源87と絶縁される。時
刻t=t6には駆動パルスP1.P2が反転し、電極8
0下の電荷は浮遊拡散層70に転送される。転送された
電荷YcQ++lG、浮遊拡散ノーの接合容量をCとす
ると、浮遊拡散層7゜に現われる電圧変化ΔV は、お
よそ ΔV=Q81G C−− で表わされる。時刻t=hには駆動パルスP1+P2が
再び反転し電極80の下の電位の井戸には次の信号電荷
が蓄積される。以降t3からの繰り返しとなる。したが
って浮遊拡散層70に現われる電圧波形は、第4図(a
)に示す様に、駆動パルスと同じ周期の櫛形波形となる
。この電圧波形の高電位側はリセット動作によって定ま
る定電圧源87の電圧である。転送電荷は電子であるた
め先に述へた浮遊拡散層70に現われる電圧変化Δ〜は
負となり、電圧波形の低電位側は、信号電荷に比例しり
電圧変化が現われるのである。すなわち第4図(a)の
低電位側エンベロープが、被遅延(m号である。第4図
(a)に示される信号はN型MOSトランジスタ88と
定電流源89より構成されるノースホロワを介してサン
プルホールド回路90へ入力される。第4図(b)に示
されるサンプルホールドされた(N号波形は、N型MO
Sトランジスタ91と定電流源92より構成されるソー
スホロワを介して出力端子96より取り出される。
At time t=ta, the driving pulse P+ is at a high level, so that the charge transferred from the potential well below the electrode 78 is accumulated in the potential well below the electrode 80. fC-') Since the set pulse PR is at a high level, the internal potential under the electrode 85 decreases, and the floating diffusion layer 7o and the diffusion layer 69 are electrically connected, and the potential of the floating diffusion layer 70 is determined by the potential of the diffusion layer 69, that is, the voltage source 87. It becomes equal to the potential. This operation is called a reset operation, at time t = t41c ha!
J set Hals PR becomes level Low and p floating diffusion layer 7
0 is insulated from the diffusion layer 69, that is, from the constant voltage source 87. At time t=t6, drive pulse P1. P2 is reversed and electrode 8
Charges below 0 are transferred to the floating diffusion layer 70. When the transferred charge YcQ++1G and the junction capacitance of the floating diffusion node are C, the voltage change ΔV appearing in the floating diffusion layer 7° is approximately expressed as ΔV=Q81G C−−. At time t=h, the driving pulses P1+P2 are inverted again, and the next signal charge is accumulated in the potential well below the electrode 80. Thereafter, the process is repeated from t3. Therefore, the voltage waveform appearing in the floating diffusion layer 70 is as shown in FIG.
), it becomes a comb-shaped waveform with the same period as the drive pulse. The high potential side of this voltage waveform is the voltage of the constant voltage source 87 determined by the reset operation. Since the transferred charges are electrons, the voltage change Δ~ appearing in the floating diffusion layer 70 described above is negative, and the voltage change appears in proportion to the signal charge on the low potential side of the voltage waveform. That is, the low potential side envelope in FIG. 4(a) is the delayed (m) signal. The sample-and-hold (N waveform) shown in FIG.
The signal is taken out from an output terminal 96 via a source follower composed of an S transistor 91 and a constant current source 92.

この後に、帯域制限することにより第4図(C)に示談
れる1M号の波形を得ることが出来る。
After this, by band-limiting, it is possible to obtain the waveform of No. 1M shown in FIG. 4(C).

ここで、最大転送電荷量について考えてみる。Now, let's consider the maximum transfer charge amount.

第1図の時刻t”taにおける内部電位図において、電
極10下と11下の内部電位差ΔφTSは、N型埋め込
み層6の濃度と低濃度のN型埋め込みLm 4の濃度等
のプロセスによって決まる定数である。Δφ’rsなる
深さを越えて電荷を入力しようとすると第1図の時刻t
3→t5の変化において電性が電極11下から電極9下
へ逆流する。すなわち入力部で供給される電荷に(徒上
限にΔφTSが存在する。ま7′c駆動パルスPt、P
2が反転する毎に転送される電荷の上限も同じ< ff
、ΔφTSである。したがって最大転送電荷fl QI
IIAX = KΔφTSとなる。O<QiN≦Q、M
AXであるから0くK(φR−VDC) −K f(t
)≦にΔφTs(2)となり、信号源22の信号f (
t)をA Sin 61 tと表わすと 0≦φR−VDC−Am’ωt≦ΔφTS (5)とな
り信号の最大振幅A MAXは となる。このことは入力部における最適な供給バイアス
電荷量が最大転送電荷量QMAXの1/2であることを
示している。そこで通常は(4)式を満たす様に定電圧
源20.21の値を設定する必要がある。ところが、V
DCは定電圧源20の電位にのみ依存しているが、φR
は定電圧源21.N型埋め込み層6の濃度、およびゲー
ト電極92半導体基板間の絶縁酸化膜の厚さ等に依存し
ている。
In the internal potential diagram at time t"ta in FIG. 1, the internal potential difference ΔφTS between the electrodes 10 and 11 is a constant determined by processes such as the concentration of the N-type buried layer 6 and the concentration of the low-concentration N-type buried layer Lm4. When trying to input charge beyond the depth Δφ'rs, time t in Figure 1
At the change from 3 to t5, the electrical property flows backward from below the electrode 11 to below the electrode 9. That is, in the charge supplied at the input section, ΔφTS exists at the upper limit.
The upper limit of the charge transferred each time 2 is reversed is also the same < ff
, ΔφTS. Therefore, the maximum transfer charge fl QI
IIAX = KΔφTS. O<QiN≦Q, M
Since AX, 0kuK(φR-VDC) -K f(t
)≦, ΔφTs(2), and the signal f (
t) as A Sin 61 t, 0≦φR−VDC−Am′ωt≦ΔφTS (5), and the maximum amplitude of the signal A MAX becomes. This indicates that the optimum amount of bias charge to be supplied at the input section is 1/2 of the maximum transfer charge amount QMAX. Therefore, it is usually necessary to set the values of the constant voltage sources 20 and 21 so as to satisfy equation (4). However, V
Although DC depends only on the potential of constant voltage source 20, φR
is a constant voltage source 21. It depends on the concentration of the N-type buried layer 6 and the thickness of the insulating oxide film between the gate electrode 92 and the semiconductor substrate.

また、先に述べた様にΔφT8はN型埋め込み層6の濃
度、低濃度のN型拡散層4,5,6.7の濃度等に依存
している。以上の様にVD c +φRΔφTsの間に
は集積回路的整合性はなく、素子のバラツキ等を考慮す
ると必ず調整が必要とな、る。一般には、単一正弦波を
入力し出力の高調波歪が最小になる様に調整を行なって
いる。この方法では手動もしくは特殊な調整治具を用い
ること なり製造コスト上昇の要因となる。
Further, as described above, ΔφT8 depends on the concentration of the N-type buried layer 6, the concentration of the low-concentration N-type diffusion layers 4, 5, 6.7, and the like. As described above, there is no consistency between VD c +φRΔφTs in terms of integrated circuits, and adjustment is always required when considering variations in elements. Generally, a single sine wave is input and adjustments are made so that harmonic distortion in the output is minimized. This method requires manual adjustment or the use of special adjustment jigs, which increases manufacturing costs.

また先に述べたようにVDC+φR1ΔφT8の間に整
合性がないため温度補償の設計が困難でもある。
Furthermore, as mentioned earlier, there is no consistency between VDC+φR1ΔφT8, making it difficult to design temperature compensation.

〔発明の目的〕[Purpose of the invention]

本発明の目的は電荷結合装置の入力部における直流バイ
アスの調整を不要とし、常に適正な直流バイアス電圧を
供給するバイアス電圧決定装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a bias voltage determining device that does not require adjustment of the DC bias at the input section of a charge-coupled device and always supplies an appropriate DC bias voltage.

〔発明の概要〕[Summary of the invention]

本発明の概要は次の通りである。第5図にダイオードカ
ットオフ法における入力電圧と注入電荷との関係を示す
。入力電圧がViNt、以下の場合は常に最大転送電荷
量にあたるQMAXの電荷が注入されている。入力電圧
がVi NJ上ViNa 以下の場合には入力電圧に応
じた電荷が注入されており、入力電圧がviNL以上V
iNa以下の時に信号成分が正常に電荷に変換されるこ
とが判る。また入力電圧がViNH以上の場合には常に
QMiNの電荷が注入されているが、QMINは入力部
での雑音によるジンダムな電荷成分でありほぼ零と考え
てもよい。注入電荷がQ MAXあるいはQMINとな
る入力電圧の範囲は、温度やプロセスのばらつきによる
変動に比べて十分に広く、注入電荷がQMAXあるいは
QMINになる様に予め入力電圧を設定しておくことは
容易である。以上述べた様な入力部の特性を用いて、Q
MAXの電荷を注入する様に設定された第1の入力部と
QMINの電荷を注入する様に設定された第2の入力部
とから転送されてくる電荷の加算1分配を行なうことに
より、ダイナミックレンジのほぼ中心の電荷(QIII
AX ” QMIN ) / 2の検出が可能となる。
The outline of the present invention is as follows. FIG. 5 shows the relationship between input voltage and injected charge in the diode cutoff method. When the input voltage is less than or equal to ViNt, charges of QMAX, which is the maximum amount of transferred charges, are always injected. When the input voltage is below ViNJ and above ViNa, charge corresponding to the input voltage is injected, and when the input voltage is above viNL and below V
It can be seen that the signal component is normally converted into charge when the value is less than iNa. Further, when the input voltage is equal to or higher than ViNH, the charge of QMiN is always injected, but QMIN is a random charge component due to noise at the input section and can be considered to be almost zero. The input voltage range in which the injected charge reaches QMAX or QMIN is sufficiently wide compared to fluctuations due to temperature and process variations, and it is easy to set the input voltage in advance so that the injected charge reaches QMAX or QMIN. It is. Using the characteristics of the input section as described above, Q
The dynamic The charge near the center of the range (QIII
AX”QMIN)/2 can be detected.

また前述した様にQMINはほぼ零であるので、第2の
入力部及び加算部を省いても同様の効果全期待できる。
Further, as mentioned above, since QMIN is approximately zero, the same effect can be expected even if the second input section and addition section are omitted.

あるいは、電荷結合装置の最大転送電荷量QMAXは蓄
積ゲート面積にほぼ比例するため、信号用主電荷結合装
置のおよそ1/2の蓄積ゲート面積を持つ電荷結合装置
をViNL以下の入力電圧で動作させることにより常に
QMAX/2の電荷の検出が可能となる 前述した手段により、温度、プロセス等の変動要因に影
響を受けることなく、常に電荷結合装置のダイナミック
レンジの中心の電荷の検出を行なう第1の電荷結合装置
と、信号用主電荷結合装置と特性をほぼ等しくする第2
の電荷結合装置金膜け、第1.第2の電荷結合装置の出
力を比較し両者が一致する様に第2の電荷結合装置の入
力バイアス電荷に負帰還?かけることにより、第2の電
荷結合装置はダイナミックレンジのほぼ中心に自動的に
バイアスされる0したがって前記第2の電荷結合装置の
入カッくイアス条件をもって、信号用主電荷結合装置の
入力バイアス条件とすることにより信号用主電荷結合装
置は常に最適状態にバイアスされることになる。
Alternatively, since the maximum transfer charge amount QMAX of a charge-coupled device is approximately proportional to the storage gate area, a charge-coupled device with a storage gate area approximately 1/2 that of the main signal charge-coupled device is operated with an input voltage below ViNL. By using the above-mentioned means, the charge at the center of the dynamic range of the charge-coupled device can always be detected without being affected by fluctuation factors such as temperature and process. a second charge-coupled device whose characteristics are approximately equal to those of the main charge-coupled device for signals;
charge-coupled device with gold coating, 1st. Negative feedback to the input bias charge of the second charge-coupled device so that the output of the second charge-coupled device is compared and the two match? By multiplying by 0, the second charge-coupled device is automatically biased approximately to the center of its dynamic range. By doing so, the main signal charge coupled device is always biased to the optimum state.

〔発明の実施例〕[Embodiments of the invention]

以下、図を参照して本発明の詳細な説明する0 第6図は本発明の一実施例を示すブロック図である。同
図において、25は第1の電荷結合装置、35は第20
′亀荷結合装置、59は信号用主′Iル荷結合装置、 
55.38および42はサンプルホールド、ろ4は比較
器である。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 6 is a block diagram showing an embodiment of the present invention. In the figure, 25 is the first charge coupled device, 35 is the 20th charge coupled device, and 35 is the 20th charge coupled device.
59 is a signal main cargo coupling device;
55, 38 and 42 are sample holds, and filter 4 is a comparator.

ここで、第1の電荷結合装置1i25は、第1の入力部
26.第2の入力部27.加算部289分配部30出力
部31.52よりなる。′ig1の入力部26は最大転
送電荷量QMAXの電荷を入力する様に設定されており
、第2の入力部27は入力電荷が零となる様に設定され
ている。第1の入力部26と第2の入力部27とから転
送されて来た電荷は加算部2Bにて電荷加算され、電荷
がオーバーフローしない様にチャンネル幅のやや太い転
送部29によって転送され、更に分配部ろ0にて2分配
され、それぞれQMAX/2ずつの電荷全出力部31及
び62に転送する。出力部62に転送された電荷は出力
部ろ2で電圧に変換され、サンプルホールド65ヲ経て
QMAX/2に対応する直流電圧となる。このテンプル
ホールド55の出力′電圧は、比較器64に入力され、
第2の電荷結合装置65の出力部67に接続されたサン
プルホールド68の出力電圧と比値し”C1サンプルホ
ールド33と58の出力電圧が等しくなる様に第2の電
荷結合装置35の入力部66のバイアス電圧を変化させ
る際の基準電圧となる。上記手段により第2の電荷結合
装置35の入力部66の入力バイアス′札圧は常にダイ
ナミックレンジの中心部にバイアスされており、このバ
イアス電圧を伯号用玉電荷結合装置69の入力部40の
バイアス電圧として用いることにより、外部からの調整
を行なうことなしに信号用主電荷結合装置59t−最適
バイアスで動作させることが出来る。さらに温度変化、
経時変化等の外乱要因に対してもフィードバックによる
制御を行なっているため常に最適バイアスの維持が可能
である。
Here, the first charge-coupled device 1i25 has a first input section 26. Second input section 27. It consists of an adder 289, a distributor 30, and an output section 31.52. The input section 26 of 'ig1 is set to input charge of the maximum transfer charge amount QMAX, and the second input section 27 is set so that the input charge is zero. The charges transferred from the first input section 26 and the second input section 27 are added together in the addition section 2B, and transferred by the transfer section 29, which has a slightly thicker channel width to prevent charges from overflowing. The distribution unit 0 divides the charge into two parts, and transfers them to the total charge output parts 31 and 62, each having QMAX/2. The charge transferred to the output section 62 is converted into a voltage at the output section 2, and then passes through a sample hold 65 to become a DC voltage corresponding to QMAX/2. The output 'voltage of this temple hold 55 is input to a comparator 64,
The output voltage of the sample hold 68 connected to the output section 67 of the second charge coupled device 65 is compared to the output voltage of the sample hold 68 connected to the output section 67 of the second charge coupled device 65. This serves as a reference voltage when changing the bias voltage of 66. By the above means, the input bias voltage of the input section 66 of the second charge-coupled device 35 is always biased to the center of the dynamic range, and this bias voltage By using this as the bias voltage of the input section 40 of the signal charge coupling device 69, the signal main charge coupling device 59t can be operated at the optimum bias without external adjustment. ,
Since feedback control is performed even against disturbance factors such as changes over time, it is possible to maintain the optimum bias at all times.

第7図は本発明の別の実施例を示すブロック図である。FIG. 7 is a block diagram showing another embodiment of the invention.

同図において、45は第1の電荷結合装置、49は第2
の電荷結合装置;44,50は入力部、 46.47.
51は出力部、 48.52はサンプルホールド、50
は比較器である。
In the same figure, 45 is a first charge coupled device, 49 is a second charge coupled device, and 49 is a second charge coupled device.
charge-coupled device; 44, 50 are input parts; 46.47.
51 is the output section, 48.52 is the sample hold, 50
is a comparator.

第1の電荷結合装置46の入力部44は、最大転送電荷
量QMAXの電荷を入力する様に設定されている。この
入力部44から転送されて来た電荷は分配部45にて、
それぞれQMAX/2ずつの電荷に分配される。これに
よりサンプルホールド48の出力はQMAX/2の電荷
すなわち電荷結合装置のダイナミックレンジの中心にあ
たる電荷に対応した出力となる。このサンプルホールド
48の出力をレファレンスとして、サンプルホールド5
2の出力が同じになるように第2の電荷結合装置49の
入力部50に負帰還をかけている。この入力部50の入
力バイアス条件を信号用主電荷結合装置の入力バイアス
条件とすることにより主電荷結合装置の入力部全最適バ
イアスで動作させることができる。
The input section 44 of the first charge coupling device 46 is set to input charges of the maximum transfer charge amount QMAX. The charges transferred from the input section 44 are sent to the distribution section 45,
Each charge is divided into QMAX/2 charges. As a result, the output of the sample hold 48 becomes an output corresponding to the charge of QMAX/2, that is, the charge corresponding to the center of the dynamic range of the charge coupled device. Using the output of this sample hold 48 as a reference, the sample hold 5
Negative feedback is applied to the input section 50 of the second charge-coupled device 49 so that the two outputs are the same. By setting the input bias condition of the input section 50 as the input bias condition of the main charge-coupled device for signals, all input sections of the main charge-coupled device can be operated with the optimum bias.

第8園は本発明のまた別の実施例を示すブロック図であ
る。同図におい”C154は第1の電荷結合装置、59
1は@2の電荷結合装置、64は信号用主電荷結合装置
、 57.61および68はテンプルホールド、58は
比較器である。
The eighth garden is a block diagram showing another embodiment of the present invention. In the figure, "C154" is the first charge-coupled device, 59
1 is a charge coupling device @2, 64 is a main charge coupling device for signals, 57. 61 and 68 are temple holds, and 58 is a comparator.

ここで第1の電荷結合装置d54の入力部55のチャン
ネル幅は、信号用主電荷結合装装置64の入力部および
転送部のチャンネル幅のおよそ1/2であり、入力部5
5は最大の電荷全注入する様に設定されている。この時
入力部55からは、およそQhaAx/2の電荷、すな
わち信号用主電荷結合装置64のダイナミックレンジの
ほぼ中心の電荷が入力される。これにより、第1の電荷
結合装置54のサンプルホールド57の出力′電圧全し
フ゛アレンスとし、第2の電荷結合装置59のサンプル
ホールド61の出力電圧と等しくなる様に、比較器5B
にて比奴を行ない、可変′電圧源62の制御全行なうこ
とにより第2の喧荷結合装[59の入力部60は営にダ
イナミックレンジの中心にバイアスされる。前記バイア
ス電圧を抵抗65ヲ介して主電荷結合装置64の人力部
65に供給することにより、信号源67から交流結合コ
ンデンサ66を介して入力される信号成分に常に最適の
バイアス電圧を与えることが出来る。
Here, the channel width of the input section 55 of the first charge coupled device d54 is approximately 1/2 of the channel width of the input section and the transfer section of the main charge coupled device 64 for signals.
5 is set to inject the maximum amount of charge. At this time, a charge of approximately QhaAx/2, that is, a charge approximately at the center of the dynamic range of the signal main charge coupling device 64 is inputted from the input section 55. As a result, the output voltage of the sample hold 57 of the first charge-coupled device 54 is set as a total reference voltage, and the output voltage of the comparator 5B is made equal to the output voltage of the sample-hold 61 of the second charge-coupled device 59.
By controlling the variable voltage source 62, the input 60 of the second signal coupling device 59 is biased toward the center of the dynamic range. By supplying the bias voltage to the human power section 65 of the main charge coupling device 64 via the resistor 65, it is possible to always provide the optimal bias voltage to the signal component input from the signal source 67 via the AC coupling capacitor 66. I can do it.

また、入力部から注入される電荷は入力部ソース拡散層
(第1図における2)の電位と、第2番目のゲート電極
(第1図における9)下の内部電位との差で計量される
。よって比較器58の出力を第2の′^f、荷結合装置
59および信号用主柘1向結合装置464の入力部に帰
還する場合の帰還光は人力部ソース拡散層でもlT+ 
2 ’t1.f目のゲート′社極でも同様の効果全得ら
れることは明白である。さらに他の入力方法においても
、電荷を計量する2つの電位(ダイオードカットオフ法
における前説明の入力部ソース拡散層電位と第2右目の
ゲート6を極下の電位に相当)のどちらに帰還するとと
も可能であることも明白である。
Furthermore, the charge injected from the input section is measured by the difference between the potential of the input section source diffusion layer (2 in Figure 1) and the internal potential under the second gate electrode (9 in Figure 1). . Therefore, when the output of the comparator 58 is fed back to the input section of the second '^f, the load coupling device 59 and the main one-way coupling device 464 for signals, the feedback light is lT+ even in the human source diffusion layer.
2 't1. It is clear that the same effect can be obtained with the f-th gate 'shapoku'. Furthermore, in other input methods, it is possible to return to either of the two potentials (corresponding to the potential of the input source diffusion layer described above in the diode cutoff method and the lowest potential of the second right gate 6) to measure the charge. It is also clear that both are possible.

本発明は前記実施例に限定されるものではなく、入力方
法、出力方法1表面チャンネル型や埋め込みチャンネル
型、あるいは駆動相数等tこljJ係なく、聾たH B
 Dにも適用可能であることd■l解ずべきである。
The present invention is not limited to the above embodiments, and can be used regardless of the input method, output method, surface channel type, buried channel type, number of drive phases, etc.
It should be understood that this is also applicable to D.

〔発明の効果〕〔Effect of the invention〕

本発明によれば前調整で′[1i、l’r結合装置の入
力fits k a 適条件で動作させることができる
ので、従来安[〜たWI4整用可変抵抗器が不要であり
、経済的であり、さらに装置k(の小形化にもつながる
という利点がある。
According to the present invention, the input of the coupling device can be operated under suitable conditions through pre-adjustment, so the conventionally cheap WI4 adjustment variable resistor is not required, making it economical. Moreover, there is an advantage that it also leads to miniaturization of the device (k).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、電荷結合装置の入力部の断面構造および動作
時の内部電位を示す模式図、第2図は電荷結合装置の駆
動パルス波形を示す波形図第3図は電荷結合装置の出力
部の断面構造および動作時の内部電圧を示す模式図、第
4図は電荷結合装置の出力波形を示す波形図、第5図は
電荷結合装置の入力部の特性を示す図、第6図は本発明
の一実施例を示すブロック図、第7図は本発明の別の実
施例を示すブロック図、第8図は本発明のまた別の実施
例を示すブロック図である。 25.45および54・・・第1の電荷結合装置35.
49および59・・・第2の電荷結合装置54.55お
よび58・・・比較器 39および64・・・信号用主電荷結合装置代理人弁理
士 高 橋 明 大 第2図 t+ t2 b t4b tc t7 ¥3記 晰4図 囁S図 vlNL ViNH へ力電圧 囁6図 A 絶7区 dχ (±
Figure 1 is a schematic diagram showing the cross-sectional structure of the input part of the charge-coupled device and the internal potential during operation. Figure 2 is a waveform diagram showing the drive pulse waveform of the charge-coupled device. Figure 3 is the output part of the charge-coupled device. Fig. 4 is a waveform diagram showing the output waveform of the charge-coupled device, Fig. 5 is a diagram showing the characteristics of the input section of the charge-coupled device, and Fig. 6 is a schematic diagram showing the internal voltage during operation. FIG. 7 is a block diagram showing another embodiment of the invention, and FIG. 8 is a block diagram showing another embodiment of the invention. 25.45 and 54...first charge coupled device 35.
49 and 59...Second charge-coupled device 54.55 and 58...Comparator 39 and 64...Main charge-coupled device for signal Patent attorney Akira Takahashi Diagram 2 t+ t2 b t4b tc t7 ¥3 record 4 figure whisper S figure vlNL ViNH he force voltage whisper 6 figure A absolute 7 section dχ (±

Claims (1)

【特許請求の範囲】 1)信号用主電荷結合装置の入力部のバイアス電荷決定
装置であって、信号用主電荷結合装置の最適バイアス電
荷を検出するための第1の電荷結合装置と、第2の電荷
結合装置と、前記第1.第2の電荷結合装置の出力を比
較し、両者が一致する様に前記第2の電荷結合装置の入
力部より注入されるバイアス電荷を調節する手段とから
なり、前記第2の電荷結合装置の入力部バイアス条件を
もって信号用主電荷結合装置の入力部バイアスとするこ
とを特徴とする電荷結合装置のバイアス電荷決定装置。 2)信号用主電荷結合装置のダイナミックレンジの上限
の電荷を注入する様に設定された第1の入力部と、同じ
く下限の電荷を注入する様に設定された第2の入力部と
を持ち、前記2つの入力部から転送されてくる電荷の加
算。 分配を行なうことにより信号用主電荷結合装置のダイナ
ミックレンジのほぼ中心の電荷を′検出する第1の電荷
結合装置を持つ特許請求の範囲第1項記載の電荷結合装
置のバイアス電荷決定装置。 5)信号用主電荷結合装置のダイナミックレンジの上限
の電荷を注入する様に設定された入力部を持ち、前記入
力部から転送されてくる電荷の分配を行なうことにより
信号用主電荷結合装置のダイナミックレンジのほぼ中心
の電荷を検出する第1の電荷結合装置を持つ特許請求の
範囲第1項の電荷結合装置のバイアス電荷決定装置。 4)信号用主電荷結合装置のおよそ1/2のチャンネル
幅の入力部であって、同人力部におけるダイナミックレ
ンジの上限の電荷を注入する様に設定された第1の入力
部と、同じく下限の電荷を注入する様に設定された第2
の入力部とを持ち、前記2つの入力部から転送されてく
る電荷の加算を行なうことにより信号用主電荷結合装置
のダイナミックレンジのほぼ中心の電荷を検出する第1
の電荷結合装置を持つ特許請求の範囲第1項の電荷結合
装置のバイアス電荷決定装置。 5)信号用主電荷結合装置のおよそ1/2のチャンネル
幅の入力部を持ち、同人力部におけるタイナミックレン
ジの上限の電荷を注入する様に設定することにより信号
用主電荷結合装置のダイナミックレンジのほぼ中心の電
荷を検出する第1の電荷結合装置を持つ特許請求の範囲
第1項の電荷結合装置のバイアス電荷決定装置。
[Scope of Claims] 1) A bias charge determination device for an input section of a main charge-coupled device for signals, comprising a first charge-coupled device for detecting an optimum bias charge of the main charge-coupled device for signals; 2 of the charge-coupled devices; means for comparing the outputs of the second charge-coupled device and adjusting the bias charge injected from the input section of the second charge-coupled device so that the outputs of the second charge-coupled device match; A bias charge determining device for a charge coupled device, characterized in that an input bias condition is used as an input bias of a main charge coupled device for signals. 2) having a first input section configured to inject a charge at the upper limit of the dynamic range of the main charge-coupled device for signals, and a second input section also configured to inject a charge at the lower limit; , addition of charges transferred from the two input sections. 2. A bias charge determination device for a charge-coupled device as claimed in claim 1, further comprising a first charge-coupled device that detects a charge approximately at the center of the dynamic range of the signal main charge-coupled device by performing distribution. 5) It has an input section that is set to inject the charge at the upper limit of the dynamic range of the main charge-coupled device for signals, and the main charge-coupled device for signals is injected by distributing the charge transferred from the input section. A bias charge determination device for a charge-coupled device according to claim 1, wherein the first charge-coupled device detects a charge approximately at the center of the dynamic range. 4) An input section with a channel width approximately 1/2 of the main charge-coupled device for signals, the first input section being set to inject the charge at the upper limit of the dynamic range in the power section, and the first input section also at the lower limit. The second one is set to inject a charge of
a first input section for detecting a charge approximately at the center of the dynamic range of the main signal charge coupling device by adding the charges transferred from the two input sections;
A bias charge determination device for a charge-coupled device according to claim 1, having a charge-coupled device. 5) The dynamic range of the main charge-coupled device for signals can be increased by having an input section with a channel width approximately 1/2 that of the main charge-coupled device for signals, and setting it to inject the charge at the upper limit of the dynamic range in the input section. 2. A bias charge determination device for a charge-coupled device according to claim 1, wherein the first charge-coupled device detects a charge approximately at the center of the charge-coupled device.
JP22842183A 1983-11-18 1983-12-05 Bias charge determining unit of charge coupled device Granted JPS60120567A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP22842183A JPS60120567A (en) 1983-12-05 1983-12-05 Bias charge determining unit of charge coupled device
US06/672,369 US4625322A (en) 1983-11-18 1984-11-16 Charge coupled device provided with automatic bias-voltage setting means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22842183A JPS60120567A (en) 1983-12-05 1983-12-05 Bias charge determining unit of charge coupled device

Publications (2)

Publication Number Publication Date
JPS60120567A true JPS60120567A (en) 1985-06-28
JPH0523058B2 JPH0523058B2 (en) 1993-03-31

Family

ID=16876206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22842183A Granted JPS60120567A (en) 1983-11-18 1983-12-05 Bias charge determining unit of charge coupled device

Country Status (1)

Country Link
JP (1) JPS60120567A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145368A (en) * 1979-04-27 1980-11-12 Toshiba Corp Charge transfer device
JPS55150281A (en) * 1979-05-14 1980-11-22 Matsushita Electric Ind Co Ltd Charge coupled element device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145368A (en) * 1979-04-27 1980-11-12 Toshiba Corp Charge transfer device
JPS55150281A (en) * 1979-05-14 1980-11-22 Matsushita Electric Ind Co Ltd Charge coupled element device

Also Published As

Publication number Publication date
JPH0523058B2 (en) 1993-03-31

Similar Documents

Publication Publication Date Title
CA1120588A (en) Ccd input circuits
US4156818A (en) Operating circuitry for semiconductor charge coupled devices
Tompsett Surface potential equilibration method of setting charge in charge-coupled devices
KR920004653B1 (en) Semiconductor integrated circuit
US4625322A (en) Charge coupled device provided with automatic bias-voltage setting means
EP0280097B1 (en) Charge transfer device with booster circuit
JPS58104527A (en) Flash type analog-to-digital converter
JPS60120567A (en) Bias charge determining unit of charge coupled device
USRE31612E (en) CCD Input circuits
US4173734A (en) Voltage dividing integrated circuit device
CA1101122A (en) Low noise ccd input circuit
JPS63501394A (en) Filling spill for charge input to CCD
US3983409A (en) Bucket-brigade circuit
EP0638996B1 (en) Chopper type differential amplifier using MOS gate capacitors
US4503550A (en) Dynamic CCD input source pulse generating circuit
GB1596335A (en) Differential charge transfer device
JPH041960B2 (en)
JPH0680689B2 (en) Bias voltage determination device
US5132759A (en) Solid-state imaging device in which reverse bias voltage is automatically set
JPS63289866A (en) Charge transfer device
JPH06215597A (en) Input circuit of charge coupled device
US5115155A (en) CCD delay line
JPS6245360Y2 (en)
JP3031334B2 (en) Solid-state imaging device and output circuit thereof
JP2513190B2 (en) Charge coupled device