JPH0523058B2 - - Google Patents

Info

Publication number
JPH0523058B2
JPH0523058B2 JP58228421A JP22842183A JPH0523058B2 JP H0523058 B2 JPH0523058 B2 JP H0523058B2 JP 58228421 A JP58228421 A JP 58228421A JP 22842183 A JP22842183 A JP 22842183A JP H0523058 B2 JPH0523058 B2 JP H0523058B2
Authority
JP
Japan
Prior art keywords
charge
coupled device
input
voltage
bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58228421A
Other languages
Japanese (ja)
Other versions
JPS60120567A (en
Inventor
Hisanobu Tsukasaki
Shuzo Matsumoto
Kazuo Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22842183A priority Critical patent/JPS60120567A/en
Priority to US06/672,369 priority patent/US4625322A/en
Publication of JPS60120567A publication Critical patent/JPS60120567A/en
Publication of JPH0523058B2 publication Critical patent/JPH0523058B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C27/00Electric analogue stores, e.g. for storing instantaneous values
    • G11C27/04Shift registers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • G11C19/287Organisation of a multiplicity of shift registers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • H01L27/1057Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components comprising charge coupled devices [CCD] or charge injection devices [CID]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、電荷結合装置に関するものであり特
に注入される転送電荷量のうち直流成分が最適に
なる様にその入力部のバイアス条件を自動的に決
定する装置に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a charge-coupled device, and in particular, automatically adjusts the bias conditions of the input section of the charge-coupled device so that the DC component of the amount of transferred charge to be injected is optimized. This relates to a device that determines the

〔発明の背景〕[Background of the invention]

従来の電荷結合装置は、交流信号成分を良好に
転送するために、その入力部において直流バイア
ス電荷を予め調整する必要がある。以下図面を用
いてこの問題点について説明する。
Conventional charge-coupled devices require preconditioning of the DC bias charge at their input in order to successfully transfer AC signal components. This problem will be explained below using the drawings.

第1図に電荷結合装置の入力部の断面構造と動
作時の各ゲート電極下における内部電位を、また
第2図に駆動パルス波形をそれぞれ示し、入力動
作について説明する。第1図の例は2層ゲート電
極構造、2相駆動の埋め込みチヤンネル型電荷結
合装置で、入力方法としてダイオードカツトオフ
法を用いた場合を示している。まず第1図の構造
について説明する。1はP型半導体基板、2は高
濃度のN型拡散層、3はN型埋め込み層、4,
5,6,7はそれぞれP型不純物をN型埋め込み
層3にドープして形成された濃度の低いN型埋め
込み層である。ゲート8〜15の電圧が同一の場
合、この低濃度の、N型埋め込み層4,5,6が
あるゲート電極8,10,12,14下の内部電
位と、同埋め込み層がないゲート電極9,11,
13下の内部電位との間に差が生じる。この内部
電位の差により電荷の逆流を阻止して電荷転送に
方向性をもたせている。8〜15はそれぞれゲー
ト電極、16〜19はそれぞれ駆動パルス入力端
子である。電極8には第2図Psに示される入力
端子16よりサンプリングパルスが、電極9には
定電圧源21より直流電圧が、電極10,11お
よび14,15にはそれぞれ入力端子17,19
より第2図P1に示される駆動パルスが、電極1
2,13には入力端子18より第2図P2に示さ
れる駆動パルスがそれぞれ入力される。20は定
電圧源で抵抗23を介してN型拡散層2に直流バ
イアス電圧を与える。21も定電圧源でゲート電
極9に直流電圧を与える。22は信号源で交流結
合コンデンサ24を介して被遅延信号をN型拡散
層2に供給する。
The input operation will be described with reference to FIG. 1 showing the cross-sectional structure of the input section of the charge-coupled device and the internal potential under each gate electrode during operation, and FIG. 2 showing the drive pulse waveform. The example shown in FIG. 1 is a buried channel charge coupled device with a two-layer gate electrode structure and two-phase drive, in which a diode cut-off method is used as the input method. First, the structure shown in FIG. 1 will be explained. 1 is a P-type semiconductor substrate, 2 is a high concentration N-type diffusion layer, 3 is an N-type buried layer, 4,
5, 6, and 7 are N-type buried layers with low concentration formed by doping the N-type buried layer 3 with P-type impurities, respectively. When the voltages of the gates 8 to 15 are the same, the internal potential under the gate electrodes 8, 10, 12, 14 with the low concentration N-type buried layers 4, 5, 6 and the gate electrode 9 without the same buried layer. ,11,
A difference occurs between the internal potential below 13. This difference in internal potential prevents reverse flow of charges and gives directionality to charge transfer. 8 to 15 are gate electrodes, and 16 to 19 are drive pulse input terminals, respectively. Sampling pulses are applied to the electrode 8 from the input terminal 16 shown in FIG.
Therefore, the driving pulse shown in Fig. 2 P1 is applied to electrode 1.
The drive pulses shown in FIG. 2 , P2 , are input to the input terminals 2 and 13, respectively. Reference numeral 20 denotes a constant voltage source that applies a DC bias voltage to the N-type diffusion layer 2 via a resistor 23. 21 is also a constant voltage source and applies a DC voltage to the gate electrode 9. A signal source 22 supplies a delayed signal to the N-type diffusion layer 2 via an AC coupling capacitor 24.

ここでは定電圧源20,21は調整された適当
な電圧であるとする。第2図に示されるように時
刻t=t1にはサンプリングパルスPsはレベル
Highとなりゲート電極8下の内部電位は深くな
り、ゲート電極8,9の下の電位の井戸はN型拡
散層2から供給される電荷で、N型拡散層2の電
位まで満たされる。この時、駆動パルスP1はレ
ベルLowであるのでゲート電極10の下の内部
電位は浅く、供給電荷に対しては電位障壁として
働く。時刻t=t2にはサンプリングパルスPsはレ
ベルLowとなるためゲート電極8の下の内部電
位は浅くなり、電極9の下の電位の井戸は電荷供
給源であるN型拡散層2と切断される。この時ゲ
ート電極の9下に蓄積される電荷QiNは、電極9
の下の電位φRとN型拡散層2の電位Vs1の差にほ
ぼ比例する。すなわち、QiN=K(φR−Vs1)とな
る。ここでKはゲート電極9の面積等に依存する
定数である。時刻t=t3には駆動パルスP1がレベ
ルHigh、駆動パルスP2がレベルLowになり電極
9下の電荷は電極11下の電位の井戸に転送され
る。時刻t=t5には駆動パルスP1,P2が反転し、
電極11下の電荷は電極13下に転送される。以
降、駆動パルスP1,P2が反転する毎に電荷の転
送が行なわれる。ここで電位Vs1は、定電圧源2
0の電位VDCと信号源22の交流信号f(t)の和で
あるので、供給される電荷QiNは QiN=K(φR−VDC)−Kf(t) (1) となり交流信号に比例した電荷Kf(t)と直流電荷
K(φR−VDC)の和で表わされる。
Here, it is assumed that the constant voltage sources 20 and 21 have adjusted appropriate voltages. As shown in Figure 2, at time t= t1 , the sampling pulse Ps is at the level
The internal potential under the gate electrode 8 becomes high, and the potential wells under the gate electrodes 8 and 9 are filled with charges supplied from the N-type diffusion layer 2 up to the potential of the N-type diffusion layer 2. At this time, since the drive pulse P1 is at a low level, the internal potential under the gate electrode 10 is shallow and acts as a potential barrier against the supplied charges. At time t= t2, the sampling pulse Ps becomes low level, so the internal potential under the gate electrode 8 becomes shallow, and the potential well under the electrode 9 is disconnected from the N-type diffusion layer 2, which is the charge supply source. Ru. At this time, the charge Qi N accumulated under the gate electrode 9 is
It is approximately proportional to the difference between the potential φ R below and the potential Vs 1 of the N-type diffusion layer 2. That is, Qi N =K(φ R −Vs 1 ). Here, K is a constant that depends on the area of the gate electrode 9, etc. At time t= t3, the drive pulse P1 becomes high level and the drive pulse P2 becomes low level, so that the charge under the electrode 9 is transferred to the potential well below the electrode 11. At time t= t5 , drive pulses P 1 and P 2 are reversed,
Charges under electrode 11 are transferred to under electrode 13. Thereafter, charge transfer is performed every time the drive pulses P 1 and P 2 are reversed. Here, the potential Vs 1 is the constant voltage source 2
Since it is the sum of the zero potential V DC and the AC signal f(t) of the signal source 22, the supplied charge Qi N is Qi N = K (φ R − V DC ) − Kf(t) (1) and the AC signal is It is expressed as the sum of a charge Kf(t) proportional to the signal and a DC charge K (φ R −V DC ).

次に出力部の動作を説明する。第3図に浮遊拡
散層増幅法における出力部の断面構造と動作時の
各電極下の内部電位を示す。まず第3図の構造に
ついて説明する。69はN型拡散層で、転送され
てくる電荷に対してドレインとして働く。70は
N型の浮遊拡散層で、こ拡散層70とP型基板7
1との間に形成される接合容量で、転送されてく
る電荷を電圧に変換する。72,73は第1図の
3と同様のN型埋め込み層、74,75,76は
第1図の4,5,6と同様の濃度の低いN型埋め
込み層である。77〜82はゲート電極、83,
84,85は駆動パルス入力端子である。電極7
7,78には入力端子83より駆動パルス(第2
図P2)が、電極79,80には入力端子84よ
り駆動パルス(第1図P1)が、電極81には定
電圧源86より適当な直流電圧が、電極82には
入力端子85よりリセツトパルス(第2図PR
がそれぞれ入力される。87は定電圧源、89,
92は定電流源、88,91はN型MOSトラン
ジスタ、90はサンプルホールド、93は出力端
子である。
Next, the operation of the output section will be explained. FIG. 3 shows the cross-sectional structure of the output section in the floating diffusion layer amplification method and the internal potential under each electrode during operation. First, the structure shown in FIG. 3 will be explained. Reference numeral 69 denotes an N-type diffusion layer, which acts as a drain for transferred charges. 70 is an N-type floating diffusion layer, and this diffusion layer 70 and the P-type substrate 7
The junction capacitance formed between 1 and 1 converts the transferred charge into voltage. 72 and 73 are N-type buried layers similar to 3 in FIG. 1, and 74, 75, and 76 are low-concentration N-type buried layers similar to 4, 5, and 6 in FIG. 77-82 are gate electrodes, 83,
84 and 85 are drive pulse input terminals. Electrode 7
Drive pulses (second
P2 ), the electrodes 79 and 80 receive a drive pulse (P1 in Fig. 1 ) from the input terminal 84, the electrode 81 receives a suitable DC voltage from the constant voltage source 86, and the electrode 82 receives a drive pulse from the input terminal 85. Reset pulse (Fig. 2 P R )
are input respectively. 87 is a constant voltage source, 89,
92 is a constant current source, 88 and 91 are N-type MOS transistors, 90 is a sample hold, and 93 is an output terminal.

時刻t=t3には駆動パルスP1はレベルHighな
ので電極80下の電位の井戸には電極78下の電
位の井戸から転送された電荷が蓄積している。ま
たリセツトパルスPRがレベルHighなので電極8
5下の内部電位は下がり、浮遊拡散層70と拡散
層69は導通し浮遊拡散層70の電位は拡散層6
9の電位すなわち電圧源87により定められる電
位に等しくなる。この動作はリセツト動作と呼ば
れる時刻t=t4にはリセツトパルスPRはレベル
Lowになり浮遊拡散層70は拡散層69すなわ
ち定電圧源87と絶縁される。時刻t=t6には駆
動パルスP1,P2が反転し、電極80下の電荷は
浮遊拡散層70に転送される。転送された電荷を
Qs1 G、浮遊拡散層の接合容量をCとすると、浮遊
拡散層70に現われる電圧変化ΔVは、およそ ΔV=Qs1 G/C で表わされる。時刻t=t7には駆動パルスP1,P2
が再び反転し電極80の下の電位の井戸には次の
信号電荷が蓄積される。以降t3からの繰り返しと
なる。したがつて浮遊拡散層70に現われる電圧
波形は、第4図aに示す様に、駆動パルスと同じ
周期の櫛形波形となる。この電圧波形の高電位側
はリセツト動作によつて定まる定電圧源87の電
圧である。転送電荷は電子であるため先に述べた
浮遊拡散層70に現われる電圧変化ΔVは負とな
り、電圧波形の低電圧側は、信号電荷に比例した
電圧変化が現われるのである。すなわち第4図a
の低電位側エンベロープが、被遅延信号である。
第4図aに示される信号はN型MOSトランジス
タ88と定電流源89より構成されるソースホロ
ワを介してサンプルホールド回路90へ入力され
る。第4図bに示されるサンプルホールドされた
信号波形は、N型MOSトランジスタ91と定電
流源92より構成されるソースホロワを介して出
力端子93より取り出される。この後に、帯域制
限することにより第4図cに示される信号の波形
を得ることが出来る。
At time t=t 3 , the driving pulse P 1 is at a high level, so that the charge transferred from the potential well below the electrode 78 is accumulated in the potential well below the electrode 80 . Also, since the reset pulse P R is at a high level, the electrode 8
The internal potential below 5 falls, and the floating diffusion layer 70 and the diffusion layer 69 are electrically connected, and the potential of the floating diffusion layer 70 is lower than that of the diffusion layer 6.
9, that is, the potential determined by the voltage source 87. This operation is called a reset operation.At time t= t4 , the reset pulse P R reaches the level
The floating diffusion layer 70 is insulated from the diffusion layer 69, that is, from the constant voltage source 87. At time t=t 6 , the driving pulses P 1 and P 2 are reversed, and the charges under the electrode 80 are transferred to the floating diffusion layer 70 . The transferred charge
When Qs 1 G and the junction capacitance of the floating diffusion layer are C, the voltage change ΔV appearing in the floating diffusion layer 70 is approximately expressed as ΔV=Qs 1 G /C. At time t= t7 , drive pulses P 1 and P 2
is inverted again, and the next signal charge is accumulated in the potential well below the electrode 80. From then on, the process is repeated from t3 . Therefore, the voltage waveform appearing in the floating diffusion layer 70 becomes a comb-shaped waveform having the same period as the driving pulse, as shown in FIG. 4a. The high potential side of this voltage waveform is the voltage of the constant voltage source 87 determined by the reset operation. Since the transferred charges are electrons, the voltage change ΔV appearing in the floating diffusion layer 70 described above is negative, and a voltage change proportional to the signal charge appears on the low voltage side of the voltage waveform. In other words, Figure 4a
The low potential side envelope of is the delayed signal.
The signal shown in FIG. 4a is input to the sample and hold circuit 90 via a source follower composed of an N-type MOS transistor 88 and a constant current source 89. The sampled and held signal waveform shown in FIG. After this, by band-limiting, the signal waveform shown in FIG. 4c can be obtained.

ここで、最大転送電荷量について考えてみる。
第1図の時刻t=t3における内部電位図におい
て、電極10下と11下の内部電位差ΔφTSは、
N型埋め込み層3の濃度と低濃度のN型埋め込み
層4の濃度等のプロセスによつて決まる定数であ
る。ΔφTSなる深さを越えて電荷を入力しようと
すると第1図の時刻t3→t5の変化において電荷が
電極11下から電極9下へ逆流する。すなわち入
力部で供給される電荷には上限KΔφTSが存在す
る。また駆動パルスP1,P2が反転する毎に転送
される電荷の上限も同じくKΔφTSである。したが
つて最大転送電荷量QMAX=KΔφTSとなる。0
QiNQMAXであるから 0K(φR−VDC)−Kf(t)KΔφTS (2) となり、信号源22の信号f(t)をAsinωtと表わ
すと 0φR−VDC−AsinωtΔφTS (3) となり信号の最大振幅AMAXは φR−VDC=1/2ΔφTSの時で (4) AMAX=ΔφTS/2 (5) となる。このことは入力部における最適な供給バ
イアス電荷量が最大転送電荷量QMAXの1/2である
ことを示している。そこで通常は(4)式を満たす様
に定電圧源20,21の値を設定する必要があ
る。ところが、VDCは定電圧源20の電位にのみ
依存しているが、φRは定電圧源21、N型埋め
込み層3の濃度、およびゲート電極9と半導体基
板間の絶縁酸化膜の厚さ等に依存している。ま
た、先に述べた様にΔφTSはN型埋め込み層3の
濃度、低濃度のN型拡散層4,5,6,7の濃度
等に依存している。以上の様にVDC,φRΔφTSの間
には集積回路的整合性はなく、素子のバラツキ等
を考慮すると必ず調整が必要となる。一般的に
は、単一正弦波を入力し出力の高調波歪が最小に
なる様に調整を行なつている。この方法では手動
もしくは特殊な調整治具を用いることになり製造
コスト上昇の要因となる。また先に述べたように
VDC,φR,ΔφTSの間に整合性がないため温度補償
の設計が困難でもある。
Now, let's consider the maximum transfer charge amount.
In the internal potential diagram at time t= t3 in FIG. 1, the internal potential difference Δφ TS between the electrodes 10 and 11 is as follows:
This is a constant determined by processes such as the concentration of the N-type buried layer 3 and the concentration of the low-concentration N-type buried layer 4. If an attempt is made to input charges beyond the depth Δφ TS , the charges will flow back from below the electrode 11 to below the electrode 9 at the change from time t 3 to time t 5 in FIG. That is, there is an upper limit KΔφ TS for the charge supplied at the input section. Further, the upper limit of the charge transferred each time the driving pulses P 1 and P 2 are inverted is also KΔφ TS . Therefore, the maximum transfer charge amount Q MAX =KΔφ TS . 0
Since Qi N Q MAX , it becomes 0K(φ R −V DC )−Kf(t)KΔφ TS (2), and if the signal f(t) of the signal source 22 is expressed as Asinωt, 0φ R −V DC −AsinωtΔφ TS ( 3) The maximum amplitude of the signal A MAX is when φ R −V DC = 1/2Δφ TS (4) A MAX = Δφ TS /2 (5). This shows that the optimal amount of bias charge supplied at the input section is 1/2 of the maximum transfer charge amount Q MAX . Therefore, it is usually necessary to set the values of the constant voltage sources 20 and 21 so as to satisfy equation (4). However, while V DC depends only on the potential of the constant voltage source 20, φ R depends on the constant voltage source 21, the concentration of the N-type buried layer 3, and the thickness of the insulating oxide film between the gate electrode 9 and the semiconductor substrate. etc. Furthermore, as described above, Δφ TS depends on the concentration of the N-type buried layer 3, the concentration of the low-concentration N-type diffusion layers 4, 5, 6, 7, and the like. As described above, there is no consistency between V DC and φ R Δφ TS in terms of integrated circuits, and adjustment is always required when considering variations in elements. Generally, a single sine wave is input and adjustments are made so that harmonic distortion in the output is minimized. This method requires manual adjustment or the use of a special adjustment jig, which increases manufacturing costs. Also as mentioned earlier
It is also difficult to design temperature compensation because there is no consistency between V DC , φ R , and Δφ TS .

〔発明の目的〕[Purpose of the invention]

本発明の目的は電荷結合装置の入力部における
直流バイアスの調整を不要とし、常に適正な直流
バイアス電圧を供給するバイアス電圧決定装置を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a bias voltage determining device that does not require adjustment of the DC bias at the input section of a charge-coupled device and always supplies an appropriate DC bias voltage.

〔発明の概要〕[Summary of the invention]

本発明の概要は次の通りである。第5図にダイ
オードカツトオフ法における入力電圧と注入電荷
との関係を示す。入力電圧がViNL以下の場合は常
に最大転送電荷量にあたるQMAXの電荷が注入さ
れている。入力電圧がViNL以上ViNH以下の場合に
は入力電圧に応じた電荷が注入されており、入力
電圧がViNL以上ViNH以下の時に信号成分が正常に
電荷に変換されることが判る。また入力電圧が
ViNH以上の場合には常にQMiNの電荷が注入されて
いるが、QMiNは入力部での雑音によるランダムな
電荷成分でありほぼ零と考えてもよい。注入電荷
がQMAXあるいはQMiNとなり入力電圧の範囲は、
温度やプロセスのばらつきによる変動に比べて十
分に広く、注入電荷がQMAXあるいはQMiNになる
様に予め入力電圧を設定しておくことは容易であ
る。以上述べた様な入力部の特性を用いて、
QMAXの電荷を注入する様に設定された第1の入
力部とQMiNの電荷を注入する様に設定された第2
の入力部とから転送されてくる電荷の加算、分配
を行なうことにより、ダイナミツクレンジのほぼ
中心の電荷(QMAX+QMiN)/2の検出が可能と
なる。また前述した様にQMiNはほぼ零であるの
で、第2の入力部及び加算部を省いても同様の効
果を期待できる。あるいは、電荷結合装置の最大
転送電荷量QMAXは蓄積ゲート面積にほぼ比例す
るため、信号用主電荷結合装置のおよそ1/2の蓄
積ゲート面積を持つ電荷結合装置をViNL以下の入
力電圧で動作させることにより常にQMAX/2の
電荷の検出が可能となる。
The outline of the present invention is as follows. FIG. 5 shows the relationship between input voltage and injected charge in the diode cutoff method. When the input voltage is less than Vi NL, charge of Q MAX , which is the maximum amount of charge transferred, is always injected. It can be seen that when the input voltage is more than or equal to Vi NL and less than Vi NH , a charge corresponding to the input voltage is injected, and when the input voltage is more than or equal to Vi NL and less than Vi NH , the signal component is normally converted to charge. Also, the input voltage
When Vi NH or higher, a charge of Q MiN is always injected, but Q MiN is a random charge component due to noise at the input section and can be considered to be almost zero. When the injected charge is Q MAX or Q MiN , the input voltage range is
It is easy to set the input voltage in advance so that the injected charge is Q MAX or Q MiN , which is sufficiently wide compared to fluctuations due to temperature and process variations. Using the characteristics of the input section as described above,
A first input set to inject a charge of Q MAX and a second input set to inject a charge of Q MiN .
By adding and distributing the charges transferred from the input section of , it becomes possible to detect the charge (Q MAX +Q MiN )/2 approximately at the center of the dynamic range. Furthermore, as described above, since Q MiN is approximately zero, the same effect can be expected even if the second input section and addition section are omitted. Alternatively, since the maximum transfer charge Q MAX of a charge-coupled device is approximately proportional to the storage gate area, a charge-coupled device with a storage gate area approximately half that of the main signal charge-coupled device can be used at an input voltage below Vi NL . By operating it, it is possible to always detect a charge of Q MAX /2.

前述した手段により、温度、プロセス等の変動
要因に影響を受けることなく、常に電荷結合装置
のダイナミツクレンジの中心の電荷の検出を行な
う第1の電荷結合装置と、信号用主電荷結合装置
と特性をほぼ等しくする第2の電荷結合装置を設
け、第1、第2の電荷結合装置の出力を比較し両
者が一致する様に第2の電荷結合装置の入力バイ
アス電荷に負帰還をかけることにより、第2の電
荷結合装置はダイナミツクレンジのほぼ中心に自
動的にバイアスされる。したがつて前記第2の電
荷結合装置の入力バイアス条件をもつて、信号用
主電荷結合装置の入力バイアス条件とすることに
より信号用主電荷結合装置は常に最適状態にバイ
アスされることになる。
A first charge-coupled device that always detects the charge at the center of the dynamic range of the charge-coupled device without being affected by fluctuation factors such as temperature and process, and a main charge-coupled device for signals by the above-described means. A second charge-coupled device having substantially equal characteristics is provided, the outputs of the first and second charge-coupled devices are compared, and negative feedback is applied to the input bias charge of the second charge-coupled device so that the outputs of the first and second charge-coupled devices match. automatically biases the second charge-coupled device approximately to the center of the dynamic range. Therefore, by setting the input bias condition of the second charge-coupled device as the input bias condition of the main charge-coupled device for signal, the main charge-coupled device for signal is always biased in the optimum state.

〔発明の実施例〕[Embodiments of the invention]

以下、図を参照して本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第6図は本発明の一実施例を示すブロツク図で
ある。同図において、25は第1の電荷結合装
置、35は第2の電荷結合装置、39は信号用主
電荷結合装置、33,38および42はサンプル
ホールド、34は比較器である。
FIG. 6 is a block diagram showing one embodiment of the present invention. In the figure, 25 is a first charge coupled device, 35 is a second charge coupled device, 39 is a main charge coupled device for signals, 33, 38 and 42 are sample holds, and 34 is a comparator.

ここで、第1の電荷結合装置25は、第1の入
力部26、第2の入力部27、加算部28、分配
部30出力部31,32よりなる。第1の入力部
26は最大転送電荷量QMAXの電荷を入力する様
に設定されており、第2の入力部27は入力電荷
が零となる様に設定されている。第1の入力部2
6と第2の入力部27とから転送されて来た電荷
は加算部28にて電荷加算され、電荷がオーバー
フローしない様にチヤンネル幅のやや太い転送部
29によつて転送され、更に分配部30にて2分
配され、それぞれQMAX/2ずつの電荷を出力部
31及び32に転送する。出力部32に転送され
た電荷は出力部32で電圧に変換され、サンプル
ホールド33を経てQMAX/2に対応する直流電
圧となる。このサンプルホールド33の出力電圧
は、比較器34に入力され、第2の電荷結合装置
35の出力部37に接続されたサンプルホールド
38の出力電圧と比較して、サンプルホールド3
3と38の出力電圧が等しくなる様に第2の電荷
結合装置35の入力部36のバイアス電圧を変化
させる際の基準電圧となる。上記手段により第2
の電荷結合装置35の入力部36の入力バイアス
電圧は常にダイナミツクレンジの中心部にバイア
スされており、このバイアス電圧を信号用主電荷
結合装置39の入力部40のバイアス電圧として
用いることにより、外部からの調整を行なうこと
なしに信号用主電荷結合装置39を最適バイアス
で動作させることが出来る。さらに温度変化、経
時変化等の外乱要因に対してもフイードバツクに
よる制御を行なつているため常に最適バイアスの
維持が可能である。
Here, the first charge-coupled device 25 includes a first input section 26, a second input section 27, an addition section 28, and output sections 31 and 32 of a distribution section 30. The first input section 26 is set to input charge of the maximum transfer charge amount Q MAX , and the second input section 27 is set so that the input charge is zero. First input section 2
6 and the second input section 27 are added together in the addition section 28, transferred to the transfer section 29 with a slightly thick channel width to prevent the charge from overflowing, and further transferred to the distribution section 30. The charge is divided into two by Q MAX /2 and transferred to output sections 31 and 32, respectively. The charge transferred to the output section 32 is converted into a voltage at the output section 32, passes through a sample hold 33, and becomes a DC voltage corresponding to Q MAX /2. The output voltage of this sample hold 33 is input to a comparator 34 and compared with the output voltage of a sample hold 38 connected to the output section 37 of the second charge-coupled device 35.
This serves as a reference voltage when changing the bias voltage of the input section 36 of the second charge-coupled device 35 so that the output voltages 3 and 38 are equal. By the above means, the second
The input bias voltage at the input 36 of the charge-coupled device 35 is always biased to the center of the dynamic range, and by using this bias voltage as the bias voltage at the input 40 of the main signal charge-coupled device 39, The signal main charge coupled device 39 can be operated at the optimum bias without any external adjustment. Furthermore, since control is performed using feedback for disturbance factors such as temperature changes and changes over time, it is possible to maintain the optimum bias at all times.

第7図は本発明の別の実施例を示すブロツク図
である。同図において、43は第1の電荷結合装
置、49は第2の電荷結合装置、44,50は入
力部、46,47,51は出力部、48,52は
サンプルホールド、53は比較器である。
FIG. 7 is a block diagram showing another embodiment of the present invention. In the figure, 43 is a first charge-coupled device, 49 is a second charge-coupled device, 44 and 50 are input sections, 46, 47 and 51 are output sections, 48 and 52 are sample and hold devices, and 53 is a comparator. be.

第1の電荷結合装置43の入力部44は、最大
転送電荷量QMAXの電荷を入力する様に設定され
ている。この入力部44から転送されて来た電荷
は分配部45にて、それぞれQMAX/2ずつの電
荷に分配される。これによりサンプルホールド4
8の出力はQMAX/2の電荷すなわち電荷結合装
置のダイナミツクレンジの中心にあたる電荷に対
応した出力となる。このサンプルホールド48の
出力をレフアレンスとして、サンプルホールド5
2の出力が同じになるように第2の電荷結合装置
49の入力部50に負帰還をかけている。この入
力部50の入力バイアス条件を信号用主電荷結合
装置の入力バイアス条件とすることにより主電荷
結合装置の入力部を最適バイアスで動作させるこ
とができる。
The input section 44 of the first charge-coupled device 43 is set to input charges of the maximum transfer charge amount Q MAX . The charges transferred from the input section 44 are distributed by the distribution section 45 into charges of Q MAX /2, respectively. This allows sample hold 4
The output of No. 8 corresponds to the charge of Q MAX /2, that is, the charge corresponding to the center of the dynamic range of the charge-coupled device. Using the output of this sample hold 48 as a reference, the sample hold 5
Negative feedback is applied to the input section 50 of the second charge-coupled device 49 so that the two outputs are the same. By setting the input bias condition of the input section 50 as the input bias condition of the main charge-coupled device for signals, the input section of the main charge-coupled device can be operated with an optimum bias.

第8図は本発明のまた別の実施例を示すブロツ
ク図である。同図において、54は第1の電荷結
合装置、59は第2の電荷結合装置、64は信号
用主電荷結合装置、57,61および68はサン
プルホールド、58は比較器である。
FIG. 8 is a block diagram showing another embodiment of the present invention. In the figure, 54 is a first charge coupled device, 59 is a second charge coupled device, 64 is a main charge coupled device for signals, 57, 61 and 68 are sample holds, and 58 is a comparator.

ここで第1の電荷結合装置54の入力部55の
チヤンネル幅は、信号用主電荷結合装置64の入
力部および転送部のチヤンネル幅のおよそ1/2で
あり、入力部55は最大の電荷を注入する様に設
定されている。この時入力部55からは、およそ
QMAX/2の電荷、すなわち信号用主電荷結合装
置64のダイナミツクレンジのほぼ中心の電荷が
入力される。これにより、第1の電荷結合装置5
4のサンプルホールド57の出力電圧をレフアレ
ンスとし、第2の電荷結合装置59のサンプルホ
ールド61の出力電圧と等しくなる様に、比較器
58にて比較を行ない、可変電圧源62の制御を
行なうことにより第2の電荷結合装置59の入力
部60は常にダイナミツクレンジの中心にバイア
スされる。前記バイアス電圧を抵抗63を介して
主電荷結合装置64の入力部65に供給すること
により、信号源67から交流結合コンデンサ66
を介して入力される信号成分に常に最適のバイア
ス電圧を与えることが出来る。
Here, the channel width of the input section 55 of the first charge-coupled device 54 is approximately 1/2 of the channel width of the input section and transfer section of the main charge-coupled device 64 for signals, and the input section 55 receives the maximum charge. It is set to inject. At this time, approximately
A charge of Q MAX /2, that is, a charge approximately at the center of the dynamic range of the signal main charge coupling device 64 is input. As a result, the first charge-coupled device 5
Using the output voltage of the sample hold 57 of the second charge coupled device 59 as a reference, the comparator 58 performs a comparison so that the voltage is equal to the output voltage of the sample hold 61 of the second charge coupled device 59, and controls the variable voltage source 62. Therefore, the input 60 of the second charge-coupled device 59 is always biased to the center of the dynamic range. By supplying said bias voltage via a resistor 63 to an input 65 of a main charge coupling device 64, a signal source 67 is connected to an AC coupling capacitor 66.
The optimum bias voltage can always be applied to the signal component input via the .

また、入力部から注入される電荷は入力部ソー
ス拡散層(第1図における2)の電位と、第2番
目のゲート電極(第1図における9)下の内部電
位との差で計量される。よつて比較器58の出力
を第2の電荷結合装置59および信号用主電荷結
合装置64の入力部に帰還する場合の帰還先は入
力部ソース拡散層でも第2番目のゲート電極でも
同様の効果を得られることは明白である。さらに
他の入力方法においても、電荷を計量する2つの
電位(ダイオードカツトオフ法における前説明の
入力部ソース拡散層電位と第2番目のゲート電極
下の電位に相当)のどちらに帰還することも可能
であることも明白である。
Furthermore, the charge injected from the input section is measured by the difference between the potential of the input section source diffusion layer (2 in Figure 1) and the internal potential under the second gate electrode (9 in Figure 1). . Therefore, when the output of the comparator 58 is fed back to the input section of the second charge-coupled device 59 and the main charge-coupled device for signal 64, the same effect can be obtained whether the feedback destination is the input section source diffusion layer or the second gate electrode. It is clear that you can get Furthermore, in other input methods, it is also possible to feed back to either of the two potentials (corresponding to the input source diffusion layer potential and the potential under the second gate electrode described above in the diode cut-off method) that measure the charge. It is also clear that it is possible.

本発明は前記実施例に限定されるものではな
く、入力方法、出力方法、表面チヤンネル型や埋
め込みチヤンネル型、あるいは駆動相数等に関係
なく、またBBDにも適用可能であることは理解
すべきである。
It should be understood that the present invention is not limited to the above embodiments, and is applicable to BBD regardless of input method, output method, surface channel type, buried channel type, number of drive phases, etc. It is.

〔発明の効果〕〔Effect of the invention〕

本発明によれば無調整で電荷結合装置の入力部
を最適条件で動作させることができるので、従来
要した調整用可変抵抗器が不要であり、経済的で
あり、さらに装置の小形化にもつながるという利
点がある。
According to the present invention, the input section of a charge-coupled device can be operated under optimal conditions without adjustment, so there is no need for a variable resistor for adjustment, which was required in the past, and it is economical and can also be used to reduce the size of the device. It has the advantage of being connected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、電荷結合装置の入力部の断面構造お
よび動作時の内部電位を示す模式図、第2図は電
荷結合装置の駆動パルス波形を示す波形図第3図
は電荷結合装置の出力部の断面構造および動作時
の内部電圧を示す模式図、第4図は電荷結合装置
の出力波形を示す波形図、第5図は電荷結合装置
の入力部の特性を示す図、第6図は本発明の一実
施例を示すブロツク図、第7図は本発明の別の実
施例を示すブロツク図、第8図は本発明のまた別
の実施例を示すブロツク図である。 25,43および54……第1の電荷結合装
置、35,49および59……第2の電荷結合装
置、34,53および58……比較器、39およ
び64……信号用主電荷結合装置。
Figure 1 is a schematic diagram showing the cross-sectional structure of the input part of the charge-coupled device and the internal potential during operation. Figure 2 is a waveform diagram showing the drive pulse waveform of the charge-coupled device. Figure 3 is the output part of the charge-coupled device. Fig. 4 is a waveform diagram showing the output waveform of the charge-coupled device, Fig. 5 is a diagram showing the characteristics of the input section of the charge-coupled device, and Fig. 6 is a schematic diagram showing the internal voltage during operation. FIG. 7 is a block diagram showing another embodiment of the invention, and FIG. 8 is a block diagram showing yet another embodiment of the invention. 25, 43 and 54... first charge coupled device, 35, 49 and 59... second charge coupled device, 34, 53 and 58... comparator, 39 and 64... main charge coupled device for signals.

Claims (1)

【特許請求の範囲】 1 第1の電圧が印加される高濃度のN型埋め込
み層と該N型埋め込み層に近接して配置され、第
2の電圧が印加されるゲート電極とを有し、第1
の電圧と第2の電圧の差に応じてバイアス電荷量
が決定される入力部を有する信号用の電荷結合装
置の入力部のバイアス電荷決定装置であつて、 直流バイアス電圧が供給される入力部と、第1
のサンプルホールド回路が接続される出力部とを
有するバイアス電荷決定用の第1の電荷結合装置
と、 信号用の電荷結合装置の入力部と同一構造の入
力部と、第2のサンプルホールド回路が接続さ
れ、上記バイアス電荷決定用の第1の電荷結合装
置の出力部と同一構造の出力部とを有するバイア
ス電荷決定用の第2の電荷結合装置と、 第1、第2のサンプルホールド回路の出力信号
を比較する比較器と、 上記比較器の出力信号を上記第2の電荷結合装
置の入力部にバイアス電圧として帰還する帰還手
段と、 上記第2の電荷結合装置の入力部のバイアス電
圧を上記信号用の電荷結合装置の入力部へ供給す
る供給手段 とを備えていることを特徴とする電荷結合装置の
バイアス電荷決定装置。
[Scope of Claims] 1. A highly doped N-type buried layer to which a first voltage is applied and a gate electrode placed close to the N-type buried layer and to which a second voltage is applied; 1st
A bias charge determining device for an input section of a signal charge coupling device having an input section in which the amount of bias charge is determined according to the difference between a voltage of 1 and a second voltage, the input section being supplied with a DC bias voltage. and the first
a first charge-coupled device for bias charge determination having an output section to which a sample-and-hold circuit is connected; an input section having the same structure as the input section of the charge-coupled device for signals; and a second sample-and-hold circuit. a second charge-coupled device for bias charge determination, which is connected to the first charge-coupled device and has an output section having the same structure as the output section of the first charge-coupled device for bias charge determination; and first and second sample-and-hold circuits. a comparator for comparing output signals; feedback means for feeding back the output signal of the comparator to the input section of the second charge-coupled device as a bias voltage; A bias charge determination device for a charge-coupled device, characterized in that it comprises supply means for supplying the signal to an input of the charge-coupled device.
JP22842183A 1983-11-18 1983-12-05 Bias charge determining unit of charge coupled device Granted JPS60120567A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP22842183A JPS60120567A (en) 1983-12-05 1983-12-05 Bias charge determining unit of charge coupled device
US06/672,369 US4625322A (en) 1983-11-18 1984-11-16 Charge coupled device provided with automatic bias-voltage setting means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22842183A JPS60120567A (en) 1983-12-05 1983-12-05 Bias charge determining unit of charge coupled device

Publications (2)

Publication Number Publication Date
JPS60120567A JPS60120567A (en) 1985-06-28
JPH0523058B2 true JPH0523058B2 (en) 1993-03-31

Family

ID=16876206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22842183A Granted JPS60120567A (en) 1983-11-18 1983-12-05 Bias charge determining unit of charge coupled device

Country Status (1)

Country Link
JP (1) JPS60120567A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145368A (en) * 1979-04-27 1980-11-12 Toshiba Corp Charge transfer device
JPS55150281A (en) * 1979-05-14 1980-11-22 Matsushita Electric Ind Co Ltd Charge coupled element device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145368A (en) * 1979-04-27 1980-11-12 Toshiba Corp Charge transfer device
JPS55150281A (en) * 1979-05-14 1980-11-22 Matsushita Electric Ind Co Ltd Charge coupled element device

Also Published As

Publication number Publication date
JPS60120567A (en) 1985-06-28

Similar Documents

Publication Publication Date Title
US4139784A (en) CCD Input circuits
US5191398A (en) Charge transfer device producing a noise-free output
US4625322A (en) Charge coupled device provided with automatic bias-voltage setting means
EP0324456B1 (en) An output circuit of a charge transfer device
US4159430A (en) Charge transfer device for processing video-frequency signals
JPS6233751B2 (en)
EP0280097B1 (en) Charge transfer device with booster circuit
US6600513B1 (en) Charge transfer device
JPS6065571A (en) Semiconductor device
US4758741A (en) Photosensitive device ensuring an anti-blooming effect
USRE31612E (en) CCD Input circuits
JPH0523058B2 (en)
CA1101122A (en) Low noise ccd input circuit
US4374334A (en) Signal comparator apparatus
US5306932A (en) Charge transfer device provided with improved output structure
US4280067A (en) Semiconductor charge transfer device having a decoupling gate for stopping reverse charge flow
US4503550A (en) Dynamic CCD input source pulse generating circuit
JP2679450B2 (en) Semiconductor device
US4360745A (en) Depletion capacitance compensator
JP2864553B2 (en) CCD delay device
JPH041960B2 (en)
US5132759A (en) Solid-state imaging device in which reverse bias voltage is automatically set
US5224134A (en) Charge transfer device having circuit for adjusting the high level of the reset pulse
US5381177A (en) CCD delay line capable of automatic adjustment of an input bias voltage to charge transfer regions
US4524450A (en) Automatic adjustment of the amplitudes of plural-phase CCD clocking voltages