JPS60120318A - Optical waveguide - Google Patents

Optical waveguide

Info

Publication number
JPS60120318A
JPS60120318A JP58228470A JP22847083A JPS60120318A JP S60120318 A JPS60120318 A JP S60120318A JP 58228470 A JP58228470 A JP 58228470A JP 22847083 A JP22847083 A JP 22847083A JP S60120318 A JPS60120318 A JP S60120318A
Authority
JP
Japan
Prior art keywords
light
optical waveguide
optical
waveguide
guided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58228470A
Other languages
Japanese (ja)
Inventor
Mamoru Miyawaki
守 宮脇
Hajime Sakata
肇 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58228470A priority Critical patent/JPS60120318A/en
Publication of JPS60120318A publication Critical patent/JPS60120318A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/11Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves
    • G02F1/125Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves in an optical waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PURPOSE:To prevent an optical breakage in an optical waveguide having electro- optic or acousto-optic effect and propagating the waveguide light different from the 1st waveguide light which utilizes said effect through the same optical path. CONSTITUTION:An optical waveguide layer 2 is formed by diffusing Ti, on a substrate 1 made of LiNbO3 crystal, and prism light couplers 3, 4, and 5 and a comb-shaped electrode 6 are formed thereupon. When semiconductor laser light 7 with 780nm wavelength is inputted by the incidence prism photocoupler 3 in the X-axis direction of the optical waveguide 2 on the crystal substrate 1, the waveguide light 8 is diffracted with a surface acoustic wave 9 which is generted by a comb-shaped electrode 6 and propagates in the (z) axi direction of the crystal substrate 1 and projected from the prism photocoupler 5. Then, HeNe laser light 10 for external irradiation which has shorter wavelength of 632.8nm than the laser light 7 is made incident to the optical waveguide 2 by the prism coupler 4 in the (-z) direction of the crystal substrate 1. Consequently, the current density in the optical waveguide 2 in an irradiation direction 7 is increased to prevent an optical breakage.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は光導波路に関し、更に詳細には集積光学構造体
に用いる光導波路に関する。
TECHNICAL FIELD The present invention relates to optical waveguides, and more particularly to optical waveguides for use in integrated optical structures.

〔従来技術〕[Prior art]

現在、光導波路基板として、音響光学効果もしくは電気
光学効果に優れ、かつ光伝搬損失が少ないニオブ酸リチ
ウム(以下LiNb0.と記す)結晶及びタンタル酸リ
チウム(以下LiTaO3と記す)結晶が広く用いられ
ている。
Currently, lithium niobate (hereinafter referred to as LiNb0.) crystal and lithium tantalate (hereinafter referred to as LiTaO3) crystal, which have excellent acousto-optic effect or electro-optic effect and low optical propagation loss, are widely used as optical waveguide substrates. There is.

前記結晶基板を用いて、薄膜光導波路を作製する代表的
な方法として、チタン(以下TIと記す)を前記結晶基
板の表面に、高温で熱拡散することによシ、該結晶基板
の表面に基板の屈折率よルわずかに大きな屈折率を有す
る光導波層を形成する(9 ) 方法がある。しかし、この方法によシ作製された薄膜光
導波路は、光学損傷を受け易く、非常に小さいパワーの
光しか該導波路に導入できないという欠点がある。ここ
で光学損傷とは、「光導波路に入力する光強度を増大し
て−ったときに、該光導波路内を伝搬し外部に取)出さ
れる光の強度が、散乱によって前記入力光強度に比例し
て増大しなくなる現象」を言う。
A typical method for producing a thin film optical waveguide using the crystal substrate is to heat titanium (hereinafter referred to as TI) on the surface of the crystal substrate by thermally diffusing it at high temperature. There is a method (9) of forming an optical waveguide layer having a refractive index slightly larger than that of the substrate. However, thin film optical waveguides fabricated by this method are susceptible to optical damage and have the disadvantage that only light of very low power can be introduced into the waveguide. Optical damage here refers to ``When the intensity of light input to an optical waveguide is increased, the intensity of the light propagating within the optical waveguide and taken out to the outside decreases to the intensity of the input light due to scattering. ``a phenomenon in which it ceases to increase proportionately.''

上記光学損傷現象は、前記LiNbO3結晶及びL I
 T aOa結晶だけに限らず、ニオブ酸バリウムナト
リウム〔以下B & 2NaNb 5015と記す〕、
ニオブ酸ストロンチウムバリウム〔以下5rXBa1−
XNb20.Hと記す〕、タンタル酸カリウム〔以下K
T aOsと記す〕、チタン酸バリウム〔以下na4T
i、0.2と記す〕等の結晶でも観測され、音響光学効
果もしくは電気光学効果を利用したさまざまな導波路型
光素子を作る上で大きな問題となっていた。
The above optical damage phenomenon is caused by the LiNbO3 crystal and the L I
Not limited to T aOa crystals, but also barium sodium niobate [hereinafter referred to as B & 2NaNb 5015],
Strontium barium niobate [hereinafter 5rXBa1-
XNb20. (denoted as H), potassium tantalate (hereinafter referred to as K)
TaOs], barium titanate (hereinafter referred to as na4T)
It has also been observed in crystals such as (denoted as i, 0.2), and has become a major problem in producing various waveguide-type optical devices that utilize the acousto-optic effect or the electro-optic effect.

従来、この光学損傷を低減させるために、光導波路素子
の外部から、上記光導波路素子に使用するレーザー光よ
シも短波長の光を照射する方法が提案されている(発明
者: Lucero s John A 。
Conventionally, in order to reduce this optical damage, a method has been proposed in which light of a shorter wavelength than the laser beam used for the optical waveguide element is irradiated from outside the optical waveguide element (Inventor: Lucero S John A.

EP 0028538 AI )。上記方法によシ光学
損傷は低減するものの、外部から光を照射する装置が大
がか如となること、又、外部から照射するパワーが大き
く、大電力を必要とする等という問題点を有していた。
EP 0028538 AI). Although the above method reduces optical damage, it has the problems of requiring a large device for irradiating light from the outside, and requiring a large amount of power to irradiate from the outside. Was.

〔本発明の目的〕[Object of the present invention]

本発明は、以上の如き従来技術に鑑み、構造が小型且つ
簡単で、更には少ない消費電力にて光学損傷を低減させ
ることのできる光導波路を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned prior art, it is an object of the present invention to provide an optical waveguide which is compact and simple in structure and can reduce optical damage with low power consumption.

以上の如き目的は、電気光学効果又は音響光学効果を利
用する第1の導波光とは別の第2の導波光を該第1導波
光の光路上に伝搬させることによシ達成される。
The above objects are achieved by propagating a second guided light, which is different from the first guided light, using the electro-optic effect or the acousto-optic effect, on the optical path of the first guided light.

〔本発明の実施例〕[Example of the present invention]

以下、添付図面を用いて本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail using the accompanying drawings.

第1図は本発明の第1実施例による光導波路であシ、1
はy板LINbO,結晶基板、2はTIを拡散した光導
波路層、3,4.5はプリズム光結合器、6はくし型電
極である。結晶基板もしくは先導波路は上記実施例に限
定されるものではなく〜光学損傷現象を生ずる材料であ
れば有効である。波長780 nmの半導体レーデ−光
7は入射プリズム光結合器3によ多結晶基板1のX軸方
向に光導波路2中に入力され、導波光8はくし型電極6
から発生した結晶基板1の2軸方向に伝搬する弾性表面
波9により回折され、プリズム光結合器5から出射する
。本発明においては、光偏向もしくは光変調用レーザー
光7とは別に上記レーデ−光7よシも短波長の光を導波
することによシ光導波路2内が照射される。本実施例に
おいては、波長632.8nm OHeN・レーザー光
10を結晶基板lの一2軸方向にプリズム光結合器4よ
シ光導波路内へ入射させた。外部照射用レーザー光10
を入射させずに1光偏向もしくは光変調用レーザー光7
のみを光導波路2内に導波させた場合、上記出射レーデ
−光11のパワーが0.1 mW/H以上になると光学
損傷現象が生じた。しかし本発明の第1実施例に示す(
5) 如く、外部照射用レーザー光IOを5 mW/11のノ
4ワーで入射させる場合、上記出射レーザー光11のノ
’?ワーが5 rnW/mxの場合でも光学損傷現象は
生じなかった。本実施例は、上記説明の如く、外部照射
光を導波光にすることによシ、上記照射光の光導波路内
でのエネルギー密度を極めて高くすることができ、その
分、照射光用の消費電力を低くできるという効果をもっ
ている。
FIG. 1 shows an optical waveguide according to a first embodiment of the present invention.
2 is a y-plate LINbO crystal substrate, 2 is an optical waveguide layer in which TI is diffused, 3, 4.5 are prism optical couplers, and 6 is a comb-shaped electrode. The crystal substrate or the guiding waveguide is not limited to the above embodiments, but any material that causes optical damage can be used. Semiconductor radar light 7 with a wavelength of 780 nm is inputted into the optical waveguide 2 in the X-axis direction of the polycrystalline substrate 1 by the input prism optical coupler 3, and the guided light 8 is input to the comb-shaped electrode 6.
It is diffracted by the surface acoustic waves 9 generated from the crystal substrate 1 and propagated in the biaxial directions of the crystal substrate 1, and is emitted from the prism optical coupler 5. In the present invention, the inside of the optical waveguide 2 is irradiated by guiding light having a shorter wavelength than the radar light 7, in addition to the laser light 7 for optical deflection or light modulation. In this example, an OHeN laser beam 10 having a wavelength of 632.8 nm was made to enter the optical waveguide through the prism optical coupler 4 in the direction of one or two axes of the crystal substrate l. Laser light for external irradiation 10
1 laser beam for optical deflection or optical modulation without inputting
When only the laser beam was guided into the optical waveguide 2, an optical damage phenomenon occurred when the power of the output radar beam 11 exceeded 0.1 mW/H. However, as shown in the first embodiment of the present invention (
5) As shown, when the external irradiation laser beam IO is incident at a power of 5 mW/11, the output laser beam 11 is No optical damage phenomenon occurred even when the power was 5 rnW/mx. As explained above, in this embodiment, by converting the external irradiation light into guided light, the energy density of the irradiation light within the optical waveguide can be made extremely high, and the consumption of the irradiation light is accordingly increased. This has the effect of reducing power consumption.

次に、本発明の第2実施例による光導波路について第2
図を用いて説明する。第2図において、1はy板LiN
b0.結晶基板、2はTIを拡散した光導波路層、3,
5は、プリズム光結合器、6はくし型電極、15は回折
格子型光結合器、16は、反射板である。本第2実施例
は、第1実施例と同様、波長780 nmの半導体レー
ザー光7は、結晶基板1の!軸方向にプリズム光結合器
3によル\光導波路2中に入力され、導波光8は、くシ
型電極6から発生した弾性表面波9によシ回折され、プ
リズム光結合器5から出射する。一方、波長632.8
nmのHeNeレーザー光10全10晶基板1の一2軸
(6) 方向に、回折格子型光結合器15よシ光導波路へ入射さ
せる。一方回折格子型光結合器15のある側と反対側の
結晶基板の2面の端面に反射板16が設けられているた
め、回折格子型光結合器15から入射した導波光12は
、上記反射板16で反射し、+Z軸方向へ伝搬する。反
射板16は、上記反射板を設ける端面を研摩したのちA
tの薄膜を蒸着することによシ作製した。本第2実施例
における光導波路は、一方の端面に反射板を設けること
によシ外部照射光のエネルギー密度をさらに高めること
ができるという効果をもっている。
Next, we will discuss the second embodiment of the optical waveguide according to the second embodiment of the present invention.
This will be explained using figures. In Fig. 2, 1 is a y-plate LiN
b0. a crystal substrate; 2 is an optical waveguide layer in which TI is diffused; 3;
5 is a prism optical coupler, 6 is a comb-shaped electrode, 15 is a diffraction grating type optical coupler, and 16 is a reflection plate. In the second embodiment, as in the first embodiment, the semiconductor laser beam 7 with a wavelength of 780 nm is applied to the crystal substrate 1! The guided light 8 is input into the optical waveguide 2 by the prism optical coupler 3 in the axial direction, and is diffracted by the surface acoustic wave 9 generated from the comb-shaped electrode 6, and then output from the prism optical coupler 5. do. On the other hand, the wavelength is 632.8
A total of 10 nm HeNe laser beams are made to enter the optical waveguide through the diffraction grating type optical coupler 15 in the direction of one of the two axes (6) of the 10-crystalline substrate 1. On the other hand, since reflection plates 16 are provided on the two end faces of the crystal substrate on the side where the diffraction grating type optical coupler 15 is located and the opposite side, the guided light 12 incident from the diffraction grating type optical coupler 15 is reflected by the reflected light. It is reflected by the plate 16 and propagated in the +Z-axis direction. The reflector plate 16 is prepared by polishing the end face on which the reflector plate is provided.
It was fabricated by depositing a thin film of t. The optical waveguide according to the second embodiment has the effect that the energy density of externally irradiated light can be further increased by providing a reflecting plate on one end face.

次に本発明の第3実施例による光導波路について、第3
図を用いて説明する。第3図において、1はX板LIN
bO,結晶基板、2はTiを拡散した光導波路層、21
.22は回折格子型光結合器、6はくし型電極、23は
波長780 nmの半導体レーザーである。本第3実施
例の光導波路においては、2軸方向を向く研摩された光
導波路端面に半導体レーザー23を直接結合し、上記半
導体レーザー光から入射された導波光を外部照射光とす
るものである。
Next, regarding the optical waveguide according to the third embodiment of the present invention, the third
This will be explained using figures. In Figure 3, 1 is the X plate LIN
bO, crystal substrate; 2 is optical waveguide layer in which Ti is diffused; 21
.. 22 is a diffraction grating type optical coupler, 6 is a comb-shaped electrode, and 23 is a semiconductor laser with a wavelength of 780 nm. In the optical waveguide of the third embodiment, a semiconductor laser 23 is directly coupled to the polished end face of the optical waveguide facing in the biaxial direction, and the guided light incident from the semiconductor laser light is used as external irradiation light. .

波長830 nmの偏向用もしくは変調用レーザー光7
は、回折格子型光結合器21により光導波路内に入力さ
れ、上記入射導波光8は、くシ型電極6から発生した弾
性表面波9によシ回折され、回折格子型光結合器22か
ら出射する。一方、直接結合された半導体レーザー23
からの外部照射用導波光は、第3図において符号24で
示す如く、レーザーの発散角に和尚するひろがシ角で光
導波路2内を伝搬する。第1実施例と同様、光学損傷測
定実験を行なった所、外部照射用レーザー光を加えない
場合、偏向もしくは変調されたレーザー光11の出射パ
ワーがl mW/gin以上になると光学損傷現象が生
じたのに対し、外部照射用導波光24を照射した場合、
上記レーザー光11の出射パワー10 mW/IBmの
場合でも光学損傷現象は生じなかった。外部照射光と変
調用レーザー光との波長の関係を調べるために、変調用
レーザー光の波長を外部照射光のものと同一の780 
nmとし、光学損傷の実験を行なったが、前記結果と同
様、出射パワー10 mW/xiの場合でも光学損傷現
象は見つからなかった。又、変調用レーザー光の波長を
外部照射光(λ−780nm)よシも短い632.8n
mとし実験を行なうと、上記レーザー光11の出射パワ
ーが0.2 mW/mm以上になると光学損傷が生じ、
外部照射用導波光の波長は変調用レーデ−光の波長と同
一もしくはそれ以下の場合に有効であることがわかった
。又、外部照射用導波光を2軸方向に伝搬させる場合と
−Z軸方向に伝搬させる場合とでは特に差はないことも
わかった。以上、説明した如く、本第3実施例の光導波
路は、第1゜第2実施例と同様、照射光のために必要と
される消費電力が少なくて済むばかシではなく、光導波
路の端面に半導体レーザーを直接結合するだけでよく、
簡単を構成でしかもコンパクトになるといり効果をもっ
ている。
Laser light for polarization or modulation with a wavelength of 830 nm 7
is inputted into the optical waveguide by the diffraction grating type optical coupler 21, and the incident guided wave light 8 is diffracted by the surface acoustic wave 9 generated from the comb-shaped electrode 6, and is output from the diffraction grating type optical coupler 22. Emits light. On the other hand, the directly coupled semiconductor laser 23
The guided light for external irradiation is propagated within the optical waveguide 2 at a horizontal angle that is similar to the divergence angle of the laser, as shown by reference numeral 24 in FIG. Similar to the first embodiment, an optical damage measurement experiment was conducted, and it was found that when the external irradiation laser beam was not added, an optical damage phenomenon occurred when the output power of the deflected or modulated laser beam 11 exceeded 1 mW/gin. On the other hand, when the external irradiation waveguide light 24 is irradiated,
Even when the output power of the laser beam 11 was 10 mW/IBm, no optical damage phenomenon occurred. In order to investigate the relationship between the wavelengths of the external irradiation light and the modulating laser light, we set the wavelength of the modulating laser light to 780 nm, which is the same as that of the external irradiation light.
nm, and optical damage experiments were conducted, but similar to the above results, no optical damage phenomenon was found even when the output power was 10 mW/xi. In addition, the wavelength of the modulating laser light is 632.8 nm, which is shorter than that of the external illumination light (λ-780 nm).
When conducting an experiment with m, optical damage occurs when the output power of the laser beam 11 exceeds 0.2 mW/mm.
It has been found that this method is effective when the wavelength of the guided light for external irradiation is the same as or less than the wavelength of the modulating radar light. It was also found that there is no particular difference between the case where the guided light for external irradiation is propagated in two axial directions and the case where it is propagated in the -Z axis direction. As explained above, the optical waveguide of the third embodiment, like the first and second embodiments, does not require less power consumption for the irradiation light, and the end face of the optical waveguide is Simply couple the semiconductor laser directly to the
It has a simple structure and is compact, which is effective.

次に本発明の第4実施例にょる光導波路について、第4
図を用いて説明する。第4図において、1はX板LiN
b0.結晶基板、2はTIを拡散した光導波路層25は
電気光生動実用くし型電極、23は(9) 半導体レーザー、21.22は回折格子型光結合器、1
6は反射板である。波長830 nmのレーザー光7は
、結晶基板のy方向に、回折格子型光結合器21によシ
、光導波路内に入力され、上記入射導波光8は、電気光
生動実用くし型電極25によシ回折され、回折格子型光
結合器22から出射する。一方、結晶の2面に直接結合
された半導体レーザー23から導波路2内へ外部照射用
導波光24が入射される。第3実施例と同様、上記導波
光24は発散光である。本第4実施例では、半導体レー
ザーを設けた端面と反対側の端面26を、上記導波光2
4が正反射するように曲率をっけ、上記端面26に反射
コーティングをほどこすことによシ、外部照射用導波光
のエネルギー密度を高めることが可能になった。本第4
実施例の構成を用いることによシ、外部照射用レーザー
23の必要とされるパワーは、第3実施例の場合に比べ
て少なくて済むことが確かめられた。
Next, regarding the optical waveguide according to the fourth embodiment of the present invention,
This will be explained using figures. In Fig. 4, 1 is an X-plate LiN
b0. 2 is a crystal substrate, 2 is an optical waveguide layer in which TI is diffused, 25 is an electro-optic practical comb-shaped electrode, 23 is (9) a semiconductor laser, 21.22 is a diffraction grating type optical coupler, 1
6 is a reflecting plate. Laser light 7 with a wavelength of 830 nm is input into the optical waveguide through a diffraction grating type optical coupler 21 in the y direction of the crystal substrate, and the incident guided wave light 8 is input into the electro-optic practical comb-shaped electrode 25. The light is diffracted and output from the diffraction grating type optical coupler 22. On the other hand, guided light 24 for external irradiation enters into the waveguide 2 from a semiconductor laser 23 directly coupled to two surfaces of the crystal. Similar to the third embodiment, the guided light 24 is a diverging light. In the fourth embodiment, the end face 26 on the opposite side to the end face where the semiconductor laser is provided is connected to the waveguide light 26.
By setting the curvature so that 4 is specularly reflected and applying a reflective coating to the end face 26, it has become possible to increase the energy density of the guided light for external irradiation. Book 4
It has been confirmed that by using the configuration of the embodiment, the power required for the external irradiation laser 23 is smaller than that of the third embodiment.

次に本発明の第5実施例の光導波路について第5図を用
いて説明する。第5図において、lはyt1^八 板LiNb0.結晶基板、2はT1拡散光導波路層、6
はくし型電極、21.22は回折格子型光結合器、23
は半導体レーザー、30は光導波路レンズ、である30
の光導波路レンズとしては、ルネブルグレンズ、ジオデ
i、クレンズ、グレーティングレンズのどれでも良いが
、本実験においては五酸化ニオブ(Nb205)をレン
ズ材料とするルネブルグレンズを使用した。第3および
第4実施例の場合、外部照射用導波光が発散光であるた
め、光導波路内での上記外部照射用導波光のエネルギー
密度が空間的に異なるという欠点をもっている。本第5
実施例においては、上記問題点を解決するために、直接
結合した半導体レーザー23からの発散導波光24を光
導波路レンズ30を用いて平行な導波光31に変換し、
光導波路2を照射するため、照射光のエネルギー密度は
均一になるという効果をもつ。
Next, an optical waveguide according to a fifth embodiment of the present invention will be explained using FIG. In FIG. 5, l is yt1^8-plate LiNb0. a crystal substrate, 2 a T1 diffused optical waveguide layer, 6
Comb-shaped electrode, 21.22 is a diffraction grating type optical coupler, 23
30 is a semiconductor laser, and 30 is an optical waveguide lens.
As the optical waveguide lens, any one of a Lunebul lens, a geode i, a cleansing lens, and a grating lens may be used, but in this experiment, a Luneble lens made of niobium pentoxide (Nb205) was used. In the case of the third and fourth embodiments, since the guided light for external irradiation is diverging light, there is a drawback that the energy density of the guided light for external irradiation within the optical waveguide is spatially different. Book 5
In the embodiment, in order to solve the above problem, the divergent waveguide light 24 from the directly coupled semiconductor laser 23 is converted into parallel waveguide light 31 using an optical waveguide lens 30,
Since the optical waveguide 2 is irradiated, the energy density of the irradiated light becomes uniform.

次に本発明の第6実施例の先導波路について第6図を用
いて説明する。第6図において、1はy板LiNb0.
結晶基板、2はTi拡散光導波路、3,5はプリズム光
結合器、6はくし型電極である。第1〜第5実施例にお
いては、偏向もしくは変調を行なうレーザー光7の伝搬
方向に対して、外部照射用導波光の伝搬方向は直交して
いたが、本第6実施例に示す如く、上記レーザー光7の
伝搬方向と外部照射用導波光の伝搬方向は同一であって
もさしつかえない。第6図に示す如く、偏向を行なう波
長780 nmのレーザー光7および外部照射用波長6
32.8nmのレーザー光35は同一の入射プリズム光
結合器3によ〕、光導波路2内に導びかれる。この場合
、レーザー光7と外部照射用レーザー光350波長は違
うのでプリズム光結合器3へ入射する角度は異なる。レ
ーザー光7の導波光8は、くシ型電極6から発生した弾
性表面波9に対してブラック角で入射するため、回折さ
れ、プリズム光結合器5から出射する。一方外部照射用
レーザー光35の導波光36は、導波光8の伝搬路全面
にわたシ導波し、同様にプリズム光結合器5から出射す
る。上記導波光36も一部は弾性表面波9によシ回折さ
れるが、導波光8と導波光36のプリズム光結合器5か
ら出射角は異なるため、偏向もしくは変調された出射レ
ーザー光11には影譬しない。
Next, a leading waveguide according to a sixth embodiment of the present invention will be explained using FIG. 6. In FIG. 6, 1 is a y-plate LiNb0.
A crystal substrate, 2 a Ti diffused optical waveguide, 3 and 5 a prism optical coupler, and 6 a comb-shaped electrode. In the first to fifth embodiments, the propagation direction of the guided light for external irradiation was perpendicular to the propagation direction of the laser beam 7 to be deflected or modulated, but as shown in the sixth embodiment, the above-mentioned The propagation direction of the laser beam 7 and the propagation direction of the guided light for external irradiation may be the same. As shown in FIG. 6, a laser beam 7 with a wavelength of 780 nm for deflection and a wavelength 6 for external irradiation are used.
The 32.8 nm laser beam 35 is guided into the optical waveguide 2 by the same input prism optical coupler 3. In this case, since the laser beam 7 and the external irradiation laser beam 350 have different wavelengths, the angles at which they enter the prism optical coupler 3 are different. The guided light 8 of the laser light 7 is incident on the surface acoustic wave 9 generated from the comb-shaped electrode 6 at the Black angle, so that it is diffracted and output from the prism optical coupler 5 . On the other hand, the guided light 36 of the laser light 35 for external irradiation is guided across the entire propagation path of the guided light 8, and similarly exits from the prism optical coupler 5. A portion of the guided light 36 is also diffracted by the surface acoustic wave 9, but since the guided light 8 and the guided light 36 are emitted from the prism optical coupler 5 at different angles, the emitted laser light 11 is deflected or modulated. does not imply.

本第6実施例の場合は、入出力光結合器以外に別の光結
合器もしくは光導波路レンズを必要としないため、もっ
とも簡単な構成で済むという利点をもっている。
The sixth embodiment has the advantage that it requires the simplest configuration because it does not require any other optical coupler or optical waveguide lens in addition to the input/output optical coupler.

〔本発明の効果〕[Effects of the present invention]

以上の如き本発明の光導波路においては、簡単且つコン
パクトな素子構造で、しかも外部からの光照射用の電力
が極めて少ない状態で光学損傷を低減させることができ
る。
In the optical waveguide of the present invention as described above, optical damage can be reduced with a simple and compact element structure and with extremely low power for external light irradiation.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜6図はいづれも本発明による光導波路の実施例を
示す概略図である。 各図において、lは基板、2は光導波路、3゜4.5は
プリズム光結合器、6はくし型電極、7は入射レーザー
光、8は導波光、9は弾性表面波、10は外部照射用レ
ーザー光、11は出射レーザー光、12は導波光、15
,21.22は回折格(13) 子型光結合器、16は反射板、23は半導体レーザー、
30は光導波路レンズである。 (IA’+ 第 1 図 1i 2 図 箪 3 図 1 II4図
1 to 6 are all schematic diagrams showing embodiments of the optical waveguide according to the present invention. In each figure, l is the substrate, 2 is the optical waveguide, 3°4.5 is the prism optical coupler, 6 is the comb-shaped electrode, 7 is the incident laser beam, 8 is the guided light, 9 is the surface acoustic wave, and 10 is external illumination. 11 is the output laser beam, 12 is the guided light, 15
, 21 and 22 are diffraction gratings (13) and optical couplers, 16 is a reflection plate, 23 is a semiconductor laser,
30 is an optical waveguide lens. (IA'+ 1st Figure 1i 2 Figure 3 Figure 1 Figure II4

Claims (1)

【特許請求の範囲】 (1)電気光学効果もしくは音響光学効果を有する光導
波路において、前記効果を利用する第1の導波光とは別
の第2の導波光を前記第1の導波光の光路上に伝搬させ
ることを特徴とする、先導波路0 (2)第1導波光の光路全体に第2導波光を照射する、
第1項の光導波路。 (3)第1導波光の波長が第2導波光の波長よ如も長い
か又は等しい、第1項の先導波路。 (4)第1導波光の伝搬方向と第2導波光の伝搬方向を
異ならせ、第2導波光が正反射する様になっている端面
構造を有するとともに、咳端面が反射コーティングされ
ている、第1項の光導波路。 (5)第2導波光の光源として半導体レーザーを用い、
該半導体レーザーを該光導波路の端面に設けた、第1項
の光導波路。 (1) (6) 半導体レーザーの発散光を平行光にするととの
できる位置に光導波路レンズを設けた、第5項の光導波
路。 (7)第1導波光と第2導波光とを共に同一光結合器に
よシ入出力する、第1項の光導波路。
Scope of Claims: (1) In an optical waveguide having an electro-optic effect or an acousto-optic effect, a second guided light different from the first guided light that utilizes the effect is transmitted to the first guided light. (2) irradiating the entire optical path of the first guided wave with the second guided wave;
Optical waveguide in the first term. (3) The guiding waveguide according to item 1, wherein the wavelength of the first guided light is longer than or equal to the wavelength of the second guided light. (4) It has an end face structure in which the propagation direction of the first guided light and the propagation direction of the second guided light are different, and the second guided light is specularly reflected, and the end face is coated with a reflective coating. Optical waveguide in the first term. (5) Using a semiconductor laser as a light source of the second waveguide light,
2. The optical waveguide according to item 1, wherein the semiconductor laser is provided on an end face of the optical waveguide. (1) (6) The optical waveguide according to item 5, wherein an optical waveguide lens is provided at a position where the diverging light of the semiconductor laser can be converted into parallel light. (7) The optical waveguide according to item 1, in which both the first guided light and the second guided light are input and output through the same optical coupler.
JP58228470A 1983-12-05 1983-12-05 Optical waveguide Pending JPS60120318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58228470A JPS60120318A (en) 1983-12-05 1983-12-05 Optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58228470A JPS60120318A (en) 1983-12-05 1983-12-05 Optical waveguide

Publications (1)

Publication Number Publication Date
JPS60120318A true JPS60120318A (en) 1985-06-27

Family

ID=16876978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58228470A Pending JPS60120318A (en) 1983-12-05 1983-12-05 Optical waveguide

Country Status (1)

Country Link
JP (1) JPS60120318A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061454A (en) * 2011-09-13 2013-04-04 Ricoh Co Ltd Light beam scanner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061454A (en) * 2011-09-13 2013-04-04 Ricoh Co Ltd Light beam scanner

Similar Documents

Publication Publication Date Title
US4583817A (en) Non-linear integrated optical coupler and parametric oscillator incorporating such a coupler
JP2001526413A (en) Double ray generator
EP0515682A4 (en) Thin film of lithium niobate single crystal
EP0377988B1 (en) Wavelength converting optical device
US5007694A (en) Light wavelength converter
JPS6118934A (en) Device for changing wavelength of light
US4953931A (en) Second harmonic wave generating device
US4953943A (en) Second harmonic wave generating device
JPH03150509A (en) Method for connecting between waveguide substrate and optical fiber, and reflection preventive film with ultraviolet-ray cutting-off function used for the method
US4973118A (en) Second harmonic wave generating device
JPS60120318A (en) Optical waveguide
US5168388A (en) Optical waveguide device and optical second harmonic generator using the same
JP2658381B2 (en) Waveguide type wavelength conversion element
US5018810A (en) Method for producing a second harmonic wave generating device
JPH05323404A (en) Optical wavelength conversion element
JP3883613B2 (en) Electro-optic element
JPH05204008A (en) Wavelength conversion element
JP2692551B2 (en) Optical waveguide substrate for displacement sensor
JPH0375729A (en) Optical deflector
JPH0570128B2 (en)
JPH04245232A (en) Secondary higher harmonic generating element
JPS60125809A (en) Optical waveguide
JPH049013A (en) Second higher harmonic generating element
JPH0336530A (en) Optical shaping device
JPH03213809A (en) Diffraction grating optical coupler