JPS60119610A - Single magnetic pole type magnetic head for vertical recording - Google Patents

Single magnetic pole type magnetic head for vertical recording

Info

Publication number
JPS60119610A
JPS60119610A JP22815883A JP22815883A JPS60119610A JP S60119610 A JPS60119610 A JP S60119610A JP 22815883 A JP22815883 A JP 22815883A JP 22815883 A JP22815883 A JP 22815883A JP S60119610 A JPS60119610 A JP S60119610A
Authority
JP
Japan
Prior art keywords
magnetic
pole
main
magnetic pole
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22815883A
Other languages
Japanese (ja)
Inventor
Atsunori Hayakawa
早川 穆典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP22815883A priority Critical patent/JPS60119610A/en
Publication of JPS60119610A publication Critical patent/JPS60119610A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1278Structure or manufacture of heads, e.g. inductive specially adapted for magnetisations perpendicular to the surface of the record carrier

Abstract

PURPOSE:To lower winding impedance per the same winding and to improve recording and reproducing sensitivity by winding coils around a main magnetic pole and the first and second nonmagnetic bodies without providing an auxiliary magnetic pole. CONSTITUTION:The main magnetic pole 2 is held between base plates 4a and 5a of the main magnetic pole of nonmagnetic guard materials 4, 5. The end part 2a which is in contact with a magnetic recording medium of the main magnetic pole 2 is formed thinner than the thickness of winding 2b by specified thickness. For instance, the thickness of a part 5mum from the contact face of the magnetic recording medium of the main magnetic pole 2 is made to 0.3mum, and the thickness of a part behind it is made to 4mum. A pad material 15 is made of a nonmagnetic material, and a protecting film 16 is made of an insulating film of SiO2, etc. Desirably, the nonmagnetic material 17 is compact and hard having a coefficient of thermal expansion rear to the magnetic material part 6. A notched part 20 is provided to bring a winding 14 as close as possible to contact face side. Other parts are constituted similarly to a conventional single magnetic pole type magnetic head for vertical recording.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、垂直異方性を持った磁気記録媒体にかかる垂
直方向の磁界をかけて磁気記録するための垂直記録用単
磁極型磁気ヘッドに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a single-pole magnetic head for perpendicular recording, which performs magnetic recording by applying a perpendicular magnetic field to a magnetic recording medium having perpendicular anisotropy. It is.

背景技術とその問題点 最近、垂直異方性を持った磁気記録媒体にかかる垂直方
向の磁界をかけて高密度に磁気記録する、第1図に承す
ような垂直記録用単磁檎型磁気ヘッド111が提案され
ている。この第1図において、(2)は例えば厚さ0.
5〜3μ−のパーマロイ、センダスト、磁性アモルファ
ス等の軟質磁性材料11Mよりなる記録再生用主磁極を
示す。この記録再生用主磁極(2)の−側面側には保護
膜(3)が接合されている。この保NII! (31は
、5i02+ Si3N+ +^1203等より形成さ
れた、絶縁像Wi膜である。そして、これら主磁極(2
)及び保護膜(3)は、非磁性ガード材(41(61及
び磁性材部(6)(?)により両側から挟持されている
BACKGROUND TECHNOLOGY AND PROBLEMS Recently, single-magnetism for perpendicular recording, as shown in Figure 1, has been developed, which performs high-density magnetic recording by applying a perpendicular magnetic field to a magnetic recording medium with perpendicular anisotropy. A head 111 is proposed. In this FIG. 1, (2) has a thickness of, for example, 0.
The main magnetic pole for recording and reproducing is made of 11M of soft magnetic material such as permalloy, sendust, magnetic amorphous, etc. with a diameter of 5 to 3μ. A protective film (3) is bonded to the negative side surface of the main magnetic pole for recording and reproducing (2). Konoho NII! (31 is an insulating image Wi film formed from 5i02+ Si3N+ +^1203 etc.) And these main magnetic poles (2
) and the protective film (3) are sandwiched from both sides by the non-magnetic guard material (41 (61) and the magnetic material part (6) (?).

ここで、非磁性ガード材(4)及び(5)のなす曲面に
より磁気記録媒体対接面Sが形成されている。また、非
磁性ガード材(4)と磁性材部(6)との接合界面S1
、非磁性ガード材(5)と磁性材部(7)との接合界面
S2は、所定角W4斜させである。非磁性ガード材(4
)及び(5)は、非磁性フェライト、フォルステライト
、フォトセラム、結晶化ガラス、チタン酸バリウム、チ
タン酸カリウム、AhOi T監C糸のセラミックス等
により形成され′ζいる。また、磁性材部(6)及び(
7)はMn−Zn系、Ni−Zn系フェライト等により
、形成され、それぞれ主磁極(2)を補助する補助磁極
部(8)及び(9)、主磁極(2)の磁束のリターンパ
スとなるリターンバス部O1及び(11)、補助磁極部
(8)とリターンバス部aφとを分割する溝部(12a
 ) 、補助磁極部(9)とリターンバス部−(11)
とを分割する8部(t2b )を有している。ここで、
非磁性ガード材+41 +51と磁性材部(61(71
とはその熱膨張率が近似することがガラス融着により接
合する製造工程上望ましい。また、(13)は垂直異方
性を有する磁気記録媒体を示す。この磁気記録媒体(1
3)は熱可塑性樹脂例えばポリエチレンテレフタレート
よりなる支持体(13a)上に、高透磁率層(−13b
 )、垂直異方性をもつ垂直記録層(13c)の順に積
層されてなる。ここで、垂直記録層(13c)は、磁気
記録媒体(13)の厚さ方向即ち垂直方向の磁気異方性
をもつ。そして、前述した主磁極(2)よりの垂直方向
の磁界によりこの垂直記録層(13c)に垂直記録され
ることになる。また、コイル(14)が溝部(11)及
び(12)を通して、共に磁性材料で形成された主磁極
(2)及び補助磁極部17) (81の周囲に巻装され
る。このコイル(14)に流れる励磁電流に対応して垂
直磁界が変化して垂直記録なされることになる。
Here, a magnetic recording medium contacting surface S is formed by the curved surfaces formed by the nonmagnetic guard materials (4) and (5). Further, the bonding interface S1 between the non-magnetic guard material (4) and the magnetic material part (6)
, the bonding interface S2 between the non-magnetic guard material (5) and the magnetic material portion (7) is inclined at a predetermined angle W4. Non-magnetic guard material (4
) and (5) are made of non-magnetic ferrite, forsterite, photoceram, crystallized glass, barium titanate, potassium titanate, AhOi T-coated ceramics, etc. In addition, the magnetic material part (6) and (
7) are formed of Mn-Zn-based ferrite, Ni-Zn-based ferrite, etc., and serve as auxiliary magnetic pole parts (8) and (9) that assist the main magnetic pole (2), respectively, and a return path for the magnetic flux of the main magnetic pole (2). the return bus portions O1 and (11), the groove portion (12a) dividing the auxiliary magnetic pole portion (8) and the return bus portion aφ;
), auxiliary magnetic pole part (9) and return bus part - (11)
It has 8 parts (t2b) to divide it into. here,
Non-magnetic guard material +41 +51 and magnetic material part (61 (71
It is desirable for the coefficient of thermal expansion to be similar to that in the manufacturing process of joining by glass fusion. Further, (13) indicates a magnetic recording medium having perpendicular anisotropy. This magnetic recording medium (1
3) is a high magnetic permeability layer (-13b) on a support (13a) made of a thermoplastic resin such as polyethylene terephthalate.
) and a perpendicular recording layer (13c) having perpendicular anisotropy are laminated in this order. Here, the perpendicular recording layer (13c) has magnetic anisotropy in the thickness direction of the magnetic recording medium (13), that is, in the perpendicular direction. Then, perpendicular recording is performed on this perpendicular recording layer (13c) by the perpendicular magnetic field from the main magnetic pole (2) described above. Further, the coil (14) is wound through the grooves (11) and (12) around the main pole (2) and the auxiliary pole part 17 (81), both of which are made of magnetic material. Perpendicular recording is performed by changing the perpendicular magnetic field in response to the excitation current flowing through the magnetic field.

このように構成された垂直記録用単磁極型磁気ヘッドに
あっては、巻線(14)に流れる励磁電流に対応して主
磁極(2)の先端から垂直異方性を持った磁気記録媒体
(13)に対し垂直方向に磁界が発生し、垂直記録され
ることになる。また、−且記録された磁気記録媒体から
発生している垂直方向の磁界を主磁極(2)がひろって
、かかる主磁極を通る磁束の変化に対応した電流が巻線
(14)に流れて再生動作がなされることになる。
In the single-pole magnetic head for perpendicular recording configured in this way, a magnetic recording medium having perpendicular anisotropy is formed from the tip of the main pole (2) in response to the excitation current flowing through the winding (14). A magnetic field is generated in a direction perpendicular to (13), resulting in perpendicular recording. Furthermore, the main magnetic pole (2) picks up the vertical magnetic field generated from the recorded magnetic recording medium, and a current corresponding to the change in magnetic flux passing through the main magnetic pole flows through the winding (14). A regeneration operation will be performed.

このように構成された従来の垂直記録用単磁極型磁気ヘ
ッドは、垂直異方性をもつ磁気記録媒体(13)に対し
主磁極(2)よりの垂直方向の磁界をかけて磁気記録す
るようにしたので、磁気記録媒体に磁気ヘッドの方向と
の相対的移行方向に沿う方向の磁化によって記録するい
わゆる長手記録方法によるよりも、高密度に磁気記録で
きる。これは、長手記録方法によるよりも記録信号が短
波長になる程磁性層内の自己減磁界が小さくなる性質を
もつためと考えられている。また、長手記録方法によっ
ているリング型磁気ヘッドに比較して同等以−ヒの感度
を持っていることが実鉦されている。
The conventional single-pole magnetic head for perpendicular recording configured in this way performs magnetic recording by applying a perpendicular magnetic field from the main pole (2) to a magnetic recording medium (13) having perpendicular anisotropy. Therefore, magnetic recording can be performed at a higher density than by the so-called longitudinal recording method in which recording is performed on a magnetic recording medium by magnetization in a direction along the direction of relative transition with respect to the direction of the magnetic head. This is thought to be due to the fact that the self-demagnetizing field in the magnetic layer becomes smaller as the wavelength of the recording signal becomes shorter than in the case of the longitudinal recording method. Furthermore, it has been demonstrated that the sensitivity is equivalent to or greater than that of a ring-type magnetic head based on the longitudinal recording method.

ところで、この垂直記録用単磁極型磁気ヘッドTl)に
よる磁気記録媒体(13)への記録についてのトランク
の幅を狭くしていくことを考えた。再生電圧は主磁極(
2)に流入する磁束量に比例すると共に巻線の巻数にも
比例する。ところで、再生時には磁気記録媒体から主磁
極(2)に流入する磁束量はかかる記録トラックの幅に
比例するので主磁極を通る磁束は減少してしまう。また
、巻線の巻数は、装置に接続したときの共振周波数が使
用上限周波数より高い必要性から巻線のインピーダンス
が決まることから決定される。即ち巻数は、単位巻数当
りのインピーダンスに依存している。数式的には、トラ
ック幅がWlからW2に変わったときの同一インピーダ
ンス当りの再生電圧Eは同−巻数当りのインピーダンス
が21から22に変化したとすると、 になる。ここで、インピーダンスZ1.Z2は巻数の2
乗に比例するので、磁気ヘッドの再生感度を比較する場
合、同一巻線インピーダンス当りに換算して比較すれば
単磁極ヘッドの巻線インピーダンスは、トラック幅には
無関係に巻線の径と巻線内の磁性部材例えばフェライト
コアーの断面積で決まる。これに対し、リング型磁気ヘ
ッドの場合には巻線インピーダンスは略ギャップ部の磁
気記録媒体の抵抗で決まるためトランク幅にほぼ比例し
、同一インピーダンス当りの再生電圧はトラック幅の平
方根に比例する。そのため、垂直記録用単磁極型磁気ヘ
ッドの場合にはトランク幅を狭くすると同一インピーダ
ンスでの再生電圧はトラック幅に比例して減少するので
リング型磁気ヘッドの場合に比し狭トランクになると河
生電圧が大きく減少してしまう問題があった。
By the way, we considered narrowing the width of the trunk for recording on the magnetic recording medium (13) by this perpendicular recording single-pole magnetic head Tl). The reproduction voltage is the main magnetic pole (
2) It is proportional to the amount of magnetic flux flowing into the wire, and also proportional to the number of turns of the winding. By the way, during reproduction, the amount of magnetic flux flowing from the magnetic recording medium into the main magnetic pole (2) is proportional to the width of the recording track, so the magnetic flux passing through the main magnetic pole decreases. Further, the number of turns of the winding wire is determined because the impedance of the winding wire is determined by the necessity that the resonant frequency when connected to the device is higher than the upper limit frequency of use. That is, the number of turns depends on the impedance per unit number of turns. Mathematically, when the track width changes from Wl to W2, the reproduction voltage E per the same impedance is as follows, assuming that the impedance per number of turns changes from 21 to 22. Here, impedance Z1. Z2 is the number of turns 2
When comparing the reproduction sensitivity of magnetic heads, the winding impedance of a single magnetic pole head is proportional to the winding diameter and the winding, regardless of the track width. It is determined by the cross-sectional area of the magnetic member inside, for example, the ferrite core. On the other hand, in the case of a ring-type magnetic head, the winding impedance is determined approximately by the resistance of the magnetic recording medium in the gap portion and is therefore approximately proportional to the trunk width, and the reproduction voltage per same impedance is proportional to the square root of the track width. Therefore, in the case of a single-pole type magnetic head for perpendicular recording, when the trunk width is narrowed, the reproduction voltage at the same impedance decreases in proportion to the track width. There was a problem that the voltage decreased significantly.

この問題に対応して、狭トラツクにすると共に巻線イン
ピーダンスを下げるようにした第2図及び第3図に示す
ような垂直記録用単磁極型磁気ヘッドが提案されζいる
。これら第2図及び第3図において第1図に対応する部
分には同一符号を付しそれらの詳細な説明は省略する。
In response to this problem, a single-pole magnetic head for perpendicular recording has been proposed, as shown in FIGS. 2 and 3, which has a narrow track and lowers the winding impedance. In FIGS. 2 and 3, parts corresponding to those in FIG. 1 are given the same reference numerals, and detailed explanation thereof will be omitted.

この例は、前述第1図例の巻線(14)内の補助磁極部
T81 (91のトラック幅方向の長さをトラック幅程
度まで狭くしたものである。そして補助磁極部のトラン
ク幅方向の部分は強度を補うためのガラス(8a) (
9a)を充填したものである。これによって、巻線内の
補助磁極部(81(91の断面積を減らし、巻線インピ
ーダンスを下げることができる。しかし、機械加工でフ
ェライトの幅を狭くするので、補助磁極部+81 +9
1の強度の限界から補助磁極部+81 (91の幅を狭
く形成するには自ずと限界がある。また、巻線(14)
の径は変わらないので、補助磁極部(8)(9)の断面
積は小さくなって巻線の径が大きいままであるためイン
ピーダンスを下げるのに限界があった。
In this example, the length of the auxiliary magnetic pole part T81 (91) in the track width direction in the winding (14) in the example shown in FIG. The part is made of glass (8a) to supplement its strength (
9a). By doing this, the cross-sectional area of the auxiliary magnetic pole part (81 (91) in the winding can be reduced and the winding impedance can be lowered. However, since the width of the ferrite is narrowed by machining, the auxiliary magnetic pole part +81 (91) can be reduced.
There is naturally a limit to forming the auxiliary magnetic pole part +81 (91) narrowly due to the strength limit of the winding (14).
Since the diameter of the auxiliary magnetic pole parts (8) and (9) remains unchanged, the cross-sectional area of the auxiliary magnetic pole parts (8) and (9) becomes smaller, and the diameter of the winding remains large, so there is a limit to lowering the impedance.

また、第4図に示すように巻線部をトラック幅方向に括
れを設けてへこまし、巻線径を小さくするようにした垂
直記録用単磁極型磁気ヘッドが提案された。この例で(
15) (16)及び(17)はガラス材をポす。しか
し、この構成をとっても補助磁極部(81(9)の機械
的強度を所定値以上に保つ必要があることが巻線部を細
くする制約をもたらした。
Furthermore, as shown in FIG. 4, a single-pole magnetic head for perpendicular recording has been proposed in which the winding portion is constricted and concave in the track width direction to reduce the winding diameter. In this example (
15) (16) and (17) are glass materials. However, even with this configuration, the need to maintain the mechanical strength of the auxiliary magnetic pole section (81(9) above a predetermined value) imposes restrictions on making the winding section thinner.

発明の目的 本発明は上述の欠点を解決し、同−巻数当りの巻線イン
ピーダンスを下げ、記録再生感度を上げられる垂直記録
用単磁極型磁気ヘッドを提mすることを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to solve the above-mentioned drawbacks, to provide a single-pole magnetic head for perpendicular recording, which can lower the winding impedance per number of turns and increase the recording and reproducing sensitivity.

発明の概要 本発明垂直記録用単磁極型磁気ヘッドは、磁気記録媒体
に対接する一端を巻線部の厚ざより薄く形成した主磁極
と、主磁極の両側から主磁極を保持する第1及び第2の
非磁性体と、主磁極と第1及び第2の非磁性体との周囲
に巻回された巻線とを有するもので、同−巻数当りの巻
線インピーダンスを下げ、記録再生感度を上げたもので
ある。
Summary of the Invention The single-pole magnetic head for perpendicular recording of the present invention has a main magnetic pole whose one end facing the magnetic recording medium is formed thinner than the thickness of the winding, and first and second magnetic poles that hold the main magnetic pole from both sides of the main magnetic pole. It has a second non-magnetic material and a winding wound around the main pole and the first and second non-magnetic materials, which lowers the winding impedance per number of turns and improves recording and reproducing sensitivity. It is the one that raised the.

実施例 以下、第5図及び第6図を参照し°ζ本発明垂直記録用
単磁極型磁気ヘッドの一実゛施例について説明する。こ
れら第5図及び第6図において、第1図、第2図、第3
図及び第4図に対応する部分には同一符号を付し、それ
らの詳細な説明は省略する。
Embodiment Hereinafter, an embodiment of the single-pole magnetic head for perpendicular recording of the present invention will be described with reference to FIGS. 5 and 6. In these figures 5 and 6, figures 1, 2, 3
Portions corresponding to those in the figures and FIG. 4 are designated by the same reference numerals, and detailed explanation thereof will be omitted.

$5図において、(48)及び(5a)は非磁性ガード
材(4)及び(5)の主磁極基板部を示し、この主磁極
基板部(4a)及び(5a)により主磁極(2)を挟持
するようにする。主磁極(2)は第6図に示すように、
主磁極(2)の磁気記録媒体に対接する端部(28)を
巻線部(2b)の厚さより所定厚薄く形成する。例えば
主磁極(2)の磁気記録媒体対接面側から5μ霧までの
部分の厚さを0.3μ楯、それより後方の部分の厚さを
4μmとする。(15)は非磁性材よりなる枕材を示す
。また、(16)は5i02等の絶縁膜よりなる保護賎
を示す、また、(17)は非磁性部材部を示す。この非
磁性材部(17)は緻密で硬いことが望ましく熱膨張率
が磁性材部(6)に近いことが望ましい。また(20)
は巻線(14)を少しでも対接面側に近づけるための切
り込み部である。また、他の部分は従来の垂直記録用単
磁極型磁気ヘッドと同様に構成するものとする。
In Figure 5, (48) and (5a) indicate the main magnetic pole substrate portions of the non-magnetic guard materials (4) and (5), and the main magnetic pole substrate portions (4a) and (5a) form the main magnetic pole (2). so that it is held between the two. The main magnetic pole (2) is as shown in Figure 6.
The end portion (28) of the main pole (2) that faces the magnetic recording medium is formed to be thinner by a predetermined thickness than the thickness of the winding portion (2b). For example, the thickness of the portion of the main pole (2) from the surface facing the magnetic recording medium to the 5 μm fog is 0.3 μm, and the thickness of the portion behind it is 4 μm. (15) indicates a pillow material made of a non-magnetic material. Further, (16) indicates a protective plate made of an insulating film such as 5i02, and (17) indicates a non-magnetic member portion. This non-magnetic material portion (17) is preferably dense and hard, and desirably has a coefficient of thermal expansion close to that of the magnetic material portion (6). Also (20)
is a notch for bringing the winding (14) as close to the facing surface as possible. In addition, other parts are constructed in the same manner as a conventional single-pole magnetic head for perpendicular recording.

次に、第7図、第8図、第9図、第10図、第11図及
び第12図を参照して、この実施例の製造工程の例につ
いて説明しよう。
Next, an example of the manufacturing process of this embodiment will be explained with reference to FIGS. 7, 8, 9, 10, 11, and 12.

第7図に示すように第1の非磁性ブロック(18)を用
意する。この1@1の非磁性ブロック(18)は、非磁
性フェライト、Znフェライト、フォルステライト、フ
ォトセラム、結晶化ガラス、チタン酸バリウム、チタン
酸カリウム、Al2O3TiC糸のセラミックス等より
構成し得る。また、この第1の非磁性ブロック(18)
には、所定間隔で柱状の突部(18a) (IBb) 
(18c) (18d) ・・・の列を形成する。この
突部(18a ) (18b ) (18c )(18
d) ・・・の形状は、例えば第7図の突部の列の前後
方向の幅W3を主磁極(2)幅量上で略トランク幅に等
しい幅とする。また、(19)は第2の非磁性ブロック
を示し、この第2の非磁性ブロック(19)の−面に所
定間隔で溝(19a)を形成する。これら第1及び第2
の非磁性ブロック(18)及び(19)のうち、接合に
供する面を鏡面研磨し滑らかにし接着層を薄くするよう
にする。次に第8図に示す如く巻線部分を対接面側に近
づけるための切り込み分(20)を第1の非磁性ブロッ
クに形成した上で、第1の非磁性ブロック(18)と第
2の非磁性ブロック(19)とを接合する。この接合に
は、エポキシ樹脂等の有機接着剤、水ガラス等の無機接
着剤を用いることができる。この接合の信頼性の点から
はガラス融着が望ましい。次に、第8図に示す平面mに
より切断し第9図の基礎ブロック(21)を得る。この
基礎ブロック(21)のへ切断面を鏡面研磨する。この
鏡面研磨を行うとき、完成時に主磁極基板部(4a) 
(5a)となる部分の厚さtの調節も兼ね機械的強度が
許す限り主磁極基板部(4a) (5a)を薄めに形成
する。コイル(14)の巻線径をできるだけ小さくする
ためである。この場合基板(4a) (5a)が非磁性
材料によって形成されているので、磁性材料によるより
も主磁極基板部(4a) (5a)が強度上優れ、この
主磁極基板部(4a) (5a)を薄くでき、加工も用
意である。ここで、切断面に見える穴は巻線部をくびれ
させるためのもので幅は第1の非磁性ガード材に形成し
た突部の幅w3に対応するものである。
A first non-magnetic block (18) is prepared as shown in FIG. This 1@1 non-magnetic block (18) can be made of non-magnetic ferrite, Zn ferrite, forsterite, photoceram, crystallized glass, barium titanate, potassium titanate, ceramics such as Al2O3TiC threads, and the like. Moreover, this first non-magnetic block (18)
There are columnar protrusions (18a) (IBb) at predetermined intervals.
(18c) (18d) . . . form a column. These protrusions (18a) (18b) (18c) (18
d) For example, the width W3 in the front-rear direction of the row of protrusions in FIG. 7 is approximately equal to the trunk width on the width of the main pole (2). Further, (19) indicates a second non-magnetic block, and grooves (19a) are formed at predetermined intervals on the negative surface of this second non-magnetic block (19). These first and second
The surfaces of the non-magnetic blocks (18) and (19) to be bonded are polished to a smooth surface and the adhesive layer is made thin. Next, as shown in FIG. 8, after forming a cut (20) in the first non-magnetic block to bring the winding portion closer to the contact surface side, the first non-magnetic block (18) and the second and the non-magnetic block (19). For this bonding, an organic adhesive such as epoxy resin or an inorganic adhesive such as water glass can be used. Glass fusion bonding is desirable from the viewpoint of reliability of this bonding. Next, the base block (21) shown in FIG. 9 is obtained by cutting along the plane m shown in FIG. The cut surface of this basic block (21) is mirror polished. When performing this mirror polishing, the main pole substrate part (4a)
The main magnetic pole substrate portions (4a) and (5a) are formed as thin as mechanical strength allows, also in order to adjust the thickness t of the portion (5a). This is to make the winding diameter of the coil (14) as small as possible. In this case, since the substrates (4a) (5a) are made of a non-magnetic material, the main magnetic pole substrate parts (4a) (5a) are superior in strength to those made of magnetic materials. ) can be made thinner and can be easily processed. Here, the hole visible in the cut surface is for constricting the winding portion, and its width corresponds to the width w3 of the protrusion formed in the first non-magnetic guard material.

次に、この研磨面(21a)−ヒに図示せずも絶縁保護
膜を厚さ0.1〜0.5μ−程度付ける。この絶縁保護
膜は、51021 Si3N4+ Al2O3+ Zr
(h等より形成され、この上に付ける軟質磁性薄膜の磁
気特性を向上させるためのものである。次に、第10図
にポすようにこの鏡面研磨面(21a)所定の位置に磁
気記録媒体対接面まで達している第1の主磁極(22)
を付ける。この第1の主磁極(22)は、飽和磁束密度
BSが高く、透磁率μも高いが特に飽和磁束密度BSの
商さを重視した軟質磁性薄膜により形成する。この種の
軟質磁性薄膜としては、センダスト、Co −Zr、 
Co −(NbZr)等のアモルファス磁性膜、パーマ
ロイ等が考えられる。この形成方法はホトエツチング法
で所定のトラック幅のストライプ状になるよう形成する
。また、ホトエツチング法によらずリフトオフ法によっ
てもよい。
Next, an insulating protective film (not shown) is applied to the polished surface (21a) to a thickness of about 0.1 to 0.5 .mu.m. This insulating protective film is made of 51021 Si3N4+ Al2O3+ Zr
(H, etc.) to improve the magnetic properties of the soft magnetic thin film attached thereon.Next, as shown in Fig. The first main magnetic pole (22) reaches the medium contact surface
Add. The first main magnetic pole (22) has a high saturation magnetic flux density BS and a high magnetic permeability μ, and is formed of a soft magnetic thin film with particular emphasis on the quotient of the saturation magnetic flux density BS. Examples of this type of soft magnetic thin film include Sendust, Co-Zr,
Possible materials include an amorphous magnetic film such as Co-(NbZr), permalloy, and the like. This formation method uses a photoetching method to form stripes of a predetermined track width. Alternatively, a lift-off method may be used instead of the photo-etching method.

ここで、第1の主磁極(22)の厚さは、必要とする分
解能に依存し、0.05〜2 p ta 、主ニ、 0
.1−0.5μ−が用いられる。次に、磁気記録媒体(
13)の対接面を完成時に形成する位置より数μ蒙〜l
Oμ−後退した位置より後部の第1の主磁極(22)上
に第2の主磁極(23)を例えばリフトオフ法等で付け
る。この第2の主磁極(23)は、飽和磁束密度Bs及
び透磁率μの大きく特に透磁率pの高い材料を用いる。
Here, the thickness of the first main magnetic pole (22) depends on the required resolution, and is 0.05 to 2 pta, main magnetic pole, 0.
.. 1-0.5μ- is used. Next, the magnetic recording medium (
13) From the position where the contact surface will be formed at the time of completion, a few μm ~ l
Oμ - A second main magnetic pole (23) is attached on the first main magnetic pole (22) rearward from the retreated position, for example, by a lift-off method. This second main magnetic pole (23) is made of a material with a large saturation magnetic flux density Bs and a high magnetic permeability μ, particularly a high magnetic permeability p.

また、第2の主磁極(23)の幅は第1の主磁極(22
)より少し広くすると記録再生感度の向上に好適である
。第2の主磁極(23)の厚さは2〜10μ謡程度にす
る。磁性膜はどちらもトラック幅方向に磁気異方性を付
け、磁化容易軸をトラック幅方向にする0例えば、磁場
中アニール、磁場中スパッタ、蒸着等により形成する。
Further, the width of the second main magnetic pole (23) is the same as that of the first main magnetic pole (22).
) is suitable for improving recording and reproducing sensitivity. The thickness of the second main pole (23) is approximately 2 to 10 μm. Both magnetic films have magnetic anisotropy in the track width direction and are formed by, for example, annealing in a magnetic field, sputtering in a magnetic field, vapor deposition, etc. so that the axis of easy magnetization is in the track width direction.

これは、磁化困難軸を磁束の通る方向にすると、再生時
のバルクハウゼンノイズを防げ、透磁率μの周波数特性
を良好にできるためである。磁化困難軸方向が磁束の通
る方向であれば良いので、厚み方向に磁化容易軸を向け
ても良い。両側にリターンバスを持つ構造にしても良い
が主磁極膜を付ける基板(4a)あるいは(5a)とな
る部分(24)を非磁性材で構成しているので磁場中ス
パッタ、蒸着、イオンブレーティング、メッキ等が容昌
にできる。
This is because if the axis of difficult magnetization is set in the direction in which the magnetic flux passes, Barkhausen noise during reproduction can be prevented and the frequency characteristics of the magnetic permeability μ can be improved. Since it is sufficient that the direction of the axis of difficult magnetization is the direction in which magnetic flux passes, the axis of easy magnetization may be oriented in the thickness direction. A structure with return buses on both sides may be used, but since the part (24) that becomes the substrate (4a) or (5a) on which the main pole film is attached is made of a non-magnetic material, sputtering, vapor deposition, and ion blating in a magnetic field are possible. , plating, etc. can be done easily.

また、非磁性材により形成したので磁界の乱れが生じて
悪影響が生じる恐れがない。次に、枕材(2a)兼保護
膜(16)となる薄膜(25)として、5i021黄、
 Si3N4g1n Al2O31Q!l ZrO2膜
等を付は表面を平坦化する0次に反対側の基礎ブロック
は第7図の非磁性材ブロック(19)を磁性材ブロック
(19’)により形成したブロックとして第9図と対応
する部分まで同様に形成する。そし”ζ、第11図のよ
うに形成したブロックと括れの部分を一致させるように
して第12図に示すように接合し、摺動面Sを円筒研磨
により形成し、各ヘッドに切断面nにて切断し、巻線(
14)を施して第5図の垂直記録用単磁極型磁気ヘッド
を得る。
Furthermore, since it is made of a non-magnetic material, there is no possibility that disturbance of the magnetic field will cause an adverse effect. Next, 5i021 yellow,
Si3N4g1n Al2O31Q! l ZrO2 film, etc. is attached to flatten the surface.The foundation block on the opposite side corresponds to Fig. 9, with the non-magnetic material block (19) in Fig. 7 being formed from a magnetic material block (19'). Form in the same way up to the part to be removed. Then, the block formed as shown in Fig. 11 and the constricted part are aligned and joined as shown in Fig. 12, the sliding surface S is formed by cylindrical polishing, and the cut surface n is formed on each head. Cut the wire at
14) to obtain the single-pole magnetic head for perpendicular recording shown in FIG.

次に、第13図及び第14図を参照してこの実施例の垂
直記録用単磁極型磁気ヘッドの記録再生の性能について
検討する。第13図は主磁極(2)中の磁束密度を計算
した例であり、主磁極(2)の先端部に5000ガウス
の磁束密度を出した場合の主磁極(2)各部の磁束密度
である。記録に必要な磁界は、磁気記録媒体の保磁力を
Hc、飽和磁化をMsとしたとき略Hc+ 4x M5
と考えられ、少なくとも5000〜60000e必要で
ある。この第13図において、グラフ(26)(27)
 (2B)及び(29)はそれぞれ主磁極(2)先端5
μ顛までの部分の厚さを0.3μ−とし、それより後方
の部分の厚さを順番に0.3μm、1μm、2μ蒙及び
4μ蒙としたものである。太くなっている部分の磁束密
度は小さくなっている。この第13図かられかるように
主磁極(2)の厚さが一定で0.3μmの場合にはコイ
ルの部分に近い捏上磁極(2)中の磁束密度が高く、最
大で約20000ガウスになっている。この1算では線
形で1算しているので磁気飽和は生じていないが、実際
には現在得られている高透磁率膜の飽和磁束は大きくて
15000ガウス程度であるので、コイル(14)に近
い■S分では完全に磁気飽和することになる。また一方
、主磁極(2)の後部を厚くすると例えば主磁極(2)
先端部の約3倍の1μmにすると磁束密度は5700ガ
ウス程度に下がる。この場合、グラフのように最も磁束
密度の大きい場所は主磁極(2)が太くなる寸前の部分
である。このように磁気記録のためにはかかる主磁極後
部の厚さを先端部の3倍にすればよいことが確認できる
。また、更に厚くすると、記録感度は向上する。
Next, with reference to FIGS. 13 and 14, the recording and reproducing performance of the perpendicular recording single pole magnetic head of this embodiment will be discussed. Figure 13 is an example of calculating the magnetic flux density in the main magnetic pole (2), and shows the magnetic flux density at each part of the main magnetic pole (2) when a magnetic flux density of 5000 Gauss is generated at the tip of the main magnetic pole (2). . The magnetic field required for recording is approximately Hc + 4x M5, where the coercive force of the magnetic recording medium is Hc and the saturation magnetization is Ms.
Therefore, at least 5000 to 60000e is required. In this Figure 13, graphs (26) (27)
(2B) and (29) are the main pole (2) tip 5, respectively.
The thickness of the part up to the μm is 0.3 μm, and the thicknesses of the parts behind it are sequentially 0.3 μm, 1 μm, 2 μm, and 4 μm. The magnetic flux density in the thicker part is smaller. As can be seen from Fig. 13, when the thickness of the main magnetic pole (2) is constant and 0.3 μm, the magnetic flux density in the rolled magnetic pole (2) near the coil is high, reaching a maximum of about 20,000 Gauss. It has become. In this calculation, magnetic saturation does not occur because the calculation is linear, but in reality, the saturation magnetic flux of currently available high magnetic permeability films is about 15,000 Gauss at most, so the coil (14) At close to ■S minutes, magnetic saturation will be complete. On the other hand, if the rear part of the main magnetic pole (2) is made thicker, for example, the main magnetic pole (2)
If the diameter is 1 μm, which is about three times that of the tip, the magnetic flux density will drop to about 5,700 Gauss. In this case, as shown in the graph, the location where the magnetic flux density is highest is the part where the main magnetic pole (2) is just about to become thicker. Thus, it can be confirmed that for magnetic recording, it is sufficient to make the thickness of the rear part of the main pole three times that of the tip part. Further, when the thickness is further increased, the recording sensitivity is improved.

次に第14図を参照して、垂直記録用単磁極型磁気ヘッ
ドで高感度に再生するための主磁極厚さについて検討す
る。軟質磁性S′腺の透磁率はM Hz帯で大きくて数
1000程度である。そこで、透磁率μ=2000.5
000の両者につき後部主磁極膜の厚さと再生効率の関
係を調べる。ここで、再生効率としては主磁極先端より
流入した磁束のうち巻線(14)にリンクする磁束の割
合をとる。第15図において、横軸は主磁極(2)後方
の厚さ、縦軸は主磁極(2)の再生効率をとった。(3
0)は主磁極(2)の透磁率μ−5000についてのグ
ラフ、(31)は主磁極の透磁率2000についてのグ
ラフを示す。この両グラフ(3o)及び(31)共生磁
極(2)の先端5μ−の部分の厚さを0.3μ霞として
いる。このグラフより高感度に再生するには3〜4μ輪
程度の主磁極後部の厚さがあることが好ましいことがわ
かる。
Next, with reference to FIG. 14, the thickness of the main pole for highly sensitive reproduction with a single pole type magnetic head for perpendicular recording will be discussed. The magnetic permeability of the soft magnetic S' gland is approximately several thousand at most in the MHz band. Therefore, magnetic permeability μ=2000.5
000, the relationship between the thickness of the rear main pole film and the reproduction efficiency will be investigated. Here, the regeneration efficiency is taken as the ratio of the magnetic flux linked to the winding (14) out of the magnetic flux flowing in from the tip of the main pole. In FIG. 15, the horizontal axis represents the thickness behind the main magnetic pole (2), and the vertical axis represents the regeneration efficiency of the main magnetic pole (2). (3
0) shows a graph for the magnetic permeability μ-5000 of the main magnetic pole (2), and (31) shows a graph for the magnetic permeability 2000 of the main magnetic pole. In both graphs (3o) and (31), the thickness of the tip 5μ of the symbiotic magnetic pole (2) is 0.3μ. It can be seen from this graph that in order to reproduce with high sensitivity, it is preferable that the thickness of the rear part of the main magnetic pole be approximately 3 to 4 microns.

このように、本実施例の垂直記録用単磁極型磁気ヘッド
は巻線(14)内の磁極部分を軟質磁性薄膜のみで構成
したので、従来の例えば磁性フェライトより形成される
補助磁極部(81(91を有する垂直記録用単磁極磁気
ヘッドに比較して次なる効果がある。
In this way, in the perpendicular recording single-pole magnetic head of this embodiment, the magnetic pole part in the winding (14) is made of only a soft magnetic thin film, so it is different from the conventional auxiliary magnetic pole part (81) made of magnetic ferrite, for example. (Compared to the single-pole magnetic head for perpendicular recording having 91, it has the following effects.

■ 磁極部分の断面積が小さくても記録再生の感度の高
い垂直記録用単磁極型磁気ヘッドとできる利益がある。
(2) Even if the cross-sectional area of the magnetic pole portion is small, there is an advantage that it can be made into a single-pole magnetic head for perpendicular recording with high recording and reproducing sensitivity.

これは、従来補助磁極部+81 (91を形成していた
磁性フェライトでは飽和磁束密度Bs=5000ガウス
、透磁率u −1000(5MHz)以下であるのに対
し、軟質磁性薄膜では飽和磁束密度B s = 150
00ガウス、透磁率p = 3000〜5000(5M
l1z )の材料も存在することによる。
This is because the magnetic ferrite that conventionally formed the auxiliary magnetic pole part +81 (91) has a saturation magnetic flux density Bs = 5000 Gauss and a magnetic permeability u -1000 (5 MHz) or less, whereas a soft magnetic thin film has a saturation magnetic flux density B s = 150
00 Gauss, permeability p = 3000~5000 (5M
This is due to the presence of materials such as l1z).

■ 高精度に狭トラツク幅で記録再生できる垂直記録用
単磁極型磁気へ・ノドが得られる。従来のように磁性フ
ェライトによる補助磁極部があるとその機械的加工を伴
うため加工精度、機械的強度の点で巻線断面積を小さく
するのに限界があった0本実施例では、スパッタ等の薄
膜作製プロセスとホトエツチングによる形成プロセスで
主磁極のみの磁性部分を形成できるので、厚さ及び幅の
コントロールが容易にA1精度にできるので、良好に狭
トラツク幅での磁気記録再生ができる。ただこの軟質磁
性薄膜は第6図にボしたように磁気記録媒体対接面より
少し後退した位置で厚くする構成とした。これにより、
一様な膜厚で特に再生分解能を上げて膜を薄くした場合
と異なり磁気飽和が起こらず良好に垂直記録再生を行う
ことができる。
■ A single magnetic pole type magnetic throat for perpendicular recording that can record and reproduce with high accuracy and narrow track width is obtained. If there is an auxiliary pole part made of magnetic ferrite as in the past, it requires mechanical processing, so there is a limit to reducing the cross-sectional area of the winding in terms of processing accuracy and mechanical strength.In this embodiment, spatter etc. Since the magnetic portion of only the main pole can be formed using the thin film fabrication process and the photoetching process, the thickness and width can be easily controlled to A1 accuracy, allowing excellent magnetic recording and reproduction with a narrow track width. However, this soft magnetic thin film is made thicker at a position slightly set back from the surface facing the magnetic recording medium, as shown in FIG. 6. This results in
With a uniform film thickness, perpendicular recording and reproducing can be performed satisfactorily without causing magnetic saturation, unlike when the film is made thinner by increasing the reproducing resolution.

■ 巻線(14)内部の主磁極基板部(4a) (5a
)を非磁性材により形成したので、磁性材より機械的強
度及び加工性に優れ、主磁極基板部(4a)(5a)を
小さい断面積に形成できることから、巻線(14)の径
を小さくすることができ、この点からも巻線インピーダ
ンスを下げられる。
■ Main pole board part (4a) (5a) inside winding (14)
) is made of a non-magnetic material, which has better mechanical strength and workability than magnetic materials, and the main pole substrate parts (4a) and (5a) can be formed with a small cross-sectional area, making it possible to reduce the diameter of the winding (14). This also allows the winding impedance to be lowered.

このように、巻線インピーダンスを下げられる点、狭ト
ラツクの加工が容易な点から特に巻線インピーダンスを
下げることが非常に重要である狭トラツク用の垂直記録
用単磁極型磁気ヘッドに特に有用である。
In this way, it is particularly useful for perpendicular recording single-pole magnetic heads for narrow tracks, where it is very important to reduce the winding impedance and to facilitate the processing of narrow tracks. be.

また、第15図は本発明の他の実施例を示す。この第1
5図において、第1図、第5図及び第6図に対応する部
分には同一符号を付しそれらの詳細な説明は省略する。
Further, FIG. 15 shows another embodiment of the present invention. This first
In FIG. 5, parts corresponding to those in FIGS. 1, 5, and 6 are designated by the same reference numerals, and detailed explanation thereof will be omitted.

この例は、非磁性ガード材(4)及び(5)と磁性材部
(6′)及び非磁性材部(17)との接合界面S1゜S
2を主磁極と主磁極先端部で直交する平面より磁気記録
媒体対接面から離れる側に後退するようにしたものであ
る。他の部分は、上述実施例同様に形成する。記録再生
効率の見地から巻線(14)は可能な限り先端に巻くが
良い。そして、巻線(14)を先端に持ってくるために
は、巻線用溝部(12a ) (12b )の上部にあ
る非磁性ガード材(4)(5)の厚さを薄くすることに
なる。この場合、磁気記録媒体対接面Sは、略円筒状に
形成するので接合面S□+32を傾斜さセて巻線溝外側
の部分の非磁性材の機械的強度の不足を防止したもので
ある。このように、接合面31.32を側斜させて、上
部の厚さを略一様かまたは両側端が厚くなる程度にする
ことにより全体としてこの非磁性ガード材(4) (5
)を薄くでき巻線(14)を先端にもっていけるように
なり記録再生感度が向上できる。なお、この例の製造は
例えば第16図のように突部(18a )(18b) 
・・・溝部(19a)を所定角1頃斜さゼて形成した後
、第17図のように接着し、所定間隔で切断面m1で傾
斜させて切断する工程に一部変更するようにする。この
例によれば、上述実施例同様の作用効果が得られると共
に主磁極先端部Lmが短くでき記録再生効率が向上する
利益がある。
In this example, the bonding interface S1°S between the non-magnetic guard materials (4) and (5), the magnetic material part (6') and the non-magnetic material part (17)
2 is set back from a plane perpendicular to the main pole and the tip of the main pole to the side away from the surface facing the magnetic recording medium. The other parts are formed in the same manner as in the above embodiment. From the standpoint of recording and reproducing efficiency, it is preferable to wind the winding (14) as close to the tip as possible. In order to bring the winding (14) to the tip, the thickness of the non-magnetic guard material (4) (5) at the top of the winding groove (12a) (12b) must be made thinner. . In this case, since the magnetic recording medium contacting surface S is formed in a substantially cylindrical shape, the joining surface S be. In this way, by slanting the joining surfaces 31 and 32 and making the thickness of the upper part approximately uniform or thicker at both ends, the non-magnetic guard material (4) (5) is made as a whole.
) can be made thinner and the winding (14) can be placed at the tip, improving recording and reproducing sensitivity. In addition, in the manufacturing of this example, the protrusions (18a) (18b) are
... After forming the groove (19a) at a predetermined angle of about 1, it is glued as shown in Fig. 17, and the process is partially changed to the step of cutting at a predetermined interval at a slope at the cutting surface m1. . According to this example, the same effects as those of the above embodiment can be obtained, and there is an advantage that the main pole tip Lm can be shortened and the recording and reproducing efficiency can be improved.

また、第5図に示した本発明の一実施例の主磁極(2)
の形成につき、第10図と異なり第18図のように第1
の主磁極(22)を非磁性ブロック(19)上所定位置
に、第2の主磁極(23)を磁性ブロック(19′)上
の所定位置に付着するようにすることもできる。このよ
うにすると、第1の主磁極(22)を非磁性材上ゆえ磁
場中スパッタにより良好に付着することができる。磁場
中スパッタにより主磁極(22)を付着すると、0.5
μm以下のs験であってもバルクハウゼンノイズが出な
い主磁極にすることができる利益がある。また、第2の
主磁極(23)は第19図に示すように熱処理により磁
性ブロック(19)上に付着する。なおバルクハウゼン
ノイズを防げる程度に膜厚があるので、第2の主磁極(
23)については特に′磁場中スパッタを必要としない
。ここで、主磁極1*(22)はトランク幅W1に等し
いストライプ状にし、先端より少し後退した位置で幅広
にしても良いが、厚い主磁極膜(23)があるので特に
幅広にする必要は無い、また、主磁極(23)の幅W2
はWlと同じか、少し広くすることが望ましい。巻線部
より下の部分は図に示すように全面に付いた構造でも良
い、ただ、一般に厚い金属膜は接着力が弱い傾向がある
ので、個々のヘッドに切断したとき端の位置になる部分
をエツチングで除いて、非磁性枕材(金属酸化物、窒化
物等)で接着強度を上げる方法もある0図示せずも、保
護膜を付は平坦化した後熱処理を行い両者を接合してヘ
ッド化する方法もある。このようにすると熱処理条件の
異なる材料を用いて2層にした主磁極を持ったヘッドを
作ることができる。
Moreover, the main magnetic pole (2) of one embodiment of the present invention shown in FIG.
Regarding the formation of
It is also possible to attach the main magnetic pole (22) at a predetermined position on the non-magnetic block (19) and the second main magnetic pole (23) at a predetermined position on the magnetic block (19'). In this way, since the first main pole (22) is on the non-magnetic material, it can be well attached by sputtering in a magnetic field. When the main pole (22) is attached by sputtering in a magnetic field, the
There is an advantage that the main magnetic pole can be made without Barkhausen noise even when the S test is less than μm. Further, the second main magnetic pole (23) is attached onto the magnetic block (19) by heat treatment, as shown in FIG. Note that the film is thick enough to prevent Barkhausen noise, so the second main pole (
23) does not particularly require sputtering in a magnetic field. Here, the main magnetic pole 1* (22) may be formed into a stripe shape equal to the trunk width W1, and may be widened at a position slightly set back from the tip, but since there is a thick main magnetic pole film (23), it is not necessary to make it particularly wide. No, and the width W2 of the main pole (23)
It is desirable that Wl be equal to or slightly wider than Wl. The part below the winding part may be attached to the entire surface as shown in the figure, but since thick metal films generally tend to have weak adhesive strength, the part that will be at the end when cut into individual heads is fine. There is also a method of removing it by etching and increasing the adhesive strength with a non-magnetic pillow material (metal oxide, nitride, etc.).Although not shown, a protective film is attached, and after flattening, heat treatment is performed to bond the two. There is also a way to make it into a head. In this way, a head having a two-layered main magnetic pole can be manufactured using materials subjected to different heat treatment conditions.

第20図は本発明の他の実施例をボす。この例は、垂直
記録用単磁極型磁気ヘッドを3つ複合していわゆるトン
ネルイレーズ型の磁気ヘッドとしたものである。
FIG. 20 depicts another embodiment of the invention. In this example, three single-pole magnetic heads for perpendicular recording are combined to form a so-called tunnel erase type magnetic head.

第21図に示すように磁性フェライトよりなる磁性材部
(6)と非磁性体複合基板(4a)上に主磁極膜(2)
を所定のトラック幅と間隔を持つようにして付け、更に
保護膜を付ける。巻線スペースとなる溝を付けた後にチ
ャンネル間スペーサ(32)となる非磁性ブロック(3
3)を接合し、切断面m2で切断してスペーサ付のブロ
ックを作る。同様の方法で複合基板上に主磁極膜、保!
!膜を付けたブロックを作り主磁極の位置が所定の位置
になるように接合し対接面の研磨、個々のヘッドへの切
断を行い、巻線すると出来上る。なお、このヘッドは巻
線部が向かいあっておらず互い違いになるので記録側と
トンネルイレーズ側との主磁極の間隔W3を狭くしても
巻線が可能である。第22図は本発明の他の実施例を示
す。磁気記録媒体対接面の主磁極近傍の非磁性材をその
外側のものより硬いものを用い主磁極近傍だけわずかに
突出した対接面形状にし当り特性を改善したものである
。その製造工程は第23図に示すように溝(32)を付
けその対向面を鏡面にした非磁性ブロック(18)及び
角棒状の非磁性体(33)を用意し、非磁性体(33)
を1(32)の中に接合する、このとき非磁性体(33
)は非磁性ブロック(18)より硬く摩耗しに((、s
ものを選ぶ。非磁性体(33)の面(33a )を鏡面
にし、後の工程は例えば第5図例のそれと全く同様とす
る。そして、庄磁極近傍が硬く、外側はそれより軟らか
くなっているため対接面を研磨すると主磁極近傍のみが
わずかに突出した第22図の形状になり記録媒体の当り
が改善できる。このとき、主磁極の保護膜も非磁性基板
(4’)(5’)と同様に硬いものを用いる必要がある
。ここで、主磁極は金属であるから摩耗しやすいが、実
際には非常に薄いため摩耗して主磁極部分がへこむこと
は無い。この例では磁気記録媒体のへ・ノドへの当りを
改善できる利益もある。
As shown in Fig. 21, a main pole film (2) is formed on a magnetic material part (6) made of magnetic ferrite and a non-magnetic composite substrate (4a).
A protective film is applied to the track so that it has a predetermined track width and spacing, and then a protective film is applied. After forming grooves that will become the winding space, a non-magnetic block (3) that will become the inter-channel spacer (32) is
3) are joined and cut at the cutting surface m2 to make a block with a spacer. The main magnetic pole film is placed on the composite substrate in the same way!
! A block with a film attached is made, the main pole is placed in a predetermined position, the blocks are joined together, the opposing surfaces are polished, the heads are cut into individual heads, and the blocks are wound. Note that in this head, since the winding portions do not face each other but alternate, winding is possible even if the distance W3 between the main poles on the recording side and the tunnel erase side is narrowed. FIG. 22 shows another embodiment of the invention. The non-magnetic material near the main pole of the surface facing the magnetic recording medium is made of a harder material than the material on the outside, and the shape of the contact surface is slightly protruded only near the main pole to improve contact characteristics. As shown in Fig. 23, the manufacturing process involves preparing a non-magnetic block (18) with grooves (32) and mirror-finished opposing surfaces, and a rectangular bar-shaped non-magnetic material (33).
1 (32). At this time, the non-magnetic material (33
) is harder than the non-magnetic block (18) and wears out ((,s
choose something. The surface (33a) of the non-magnetic material (33) is made into a mirror surface, and the subsequent steps are exactly the same as those in the example shown in FIG. 5, for example. Since the area near the main magnetic pole is hard and the outer side is softer, when the opposing surfaces are polished, only the area near the main magnetic pole protrudes slightly into the shape shown in FIG. 22, which improves the contact with the recording medium. At this time, it is necessary to use a hard protective film for the main pole as well as the nonmagnetic substrates (4') and (5'). Since the main pole is made of metal, it is easily worn out, but since it is actually very thin, the main pole part will not be dented due to wear. In this example, there is also the advantage that the contact between the head and throat of the magnetic recording medium can be improved.

第24図は本発明の他の実施例を示す。この実施例は磁
性材部(6)側において磁性フェライトが巻線(14)
に近接していると巻線インピーダンスを上昇させるので
ガラス等の非磁性体(34)を溝部(12a)の底部に
配して磁束を遮断し、かかる巻線インピーダンスの上昇
をおさえたものである。
FIG. 24 shows another embodiment of the invention. In this embodiment, the magnetic ferrite is wound around the wire (14) on the magnetic material part (6) side.
Since the winding impedance increases when the winding impedance is close to the magnetic flux, a non-magnetic material (34) such as glass is placed at the bottom of the groove (12a) to block the magnetic flux and suppress the increase in the winding impedance. .

他の部分は上述実施例同様に形成するものである。The other parts are formed in the same manner as in the above embodiment.

この非磁性体(34)を設けるため、非磁性ガード材(
18)と磁性材部(19’)をガラス融着等で接着する
前あるいはかかるガラス融着と同時に第25図に示すよ
うに磁性材部(19’)に形成した溝(19a′)にガ
ラス層を形成する工程を上述実施例の製造工程中に付加
する。この例によっても上述実施例同様に巻線(14)
のインピーダンスを下げ、記録再生の効率を上げられる
ことは容易に理解できよう。
In order to provide this non-magnetic material (34), the non-magnetic guard material (
18) and the magnetic material part (19') by glass fusing or the like, or at the same time as the glass fusing, as shown in FIG. A step of forming a layer is added to the manufacturing process of the above embodiment. In this example as well, the winding (14)
It is easy to understand that recording and reproducing efficiency can be improved by lowering the impedance.

また、この非磁性材部を第26図に示すように巻線(1
4)と磁性材部(6)との面する部分全体にわたるよう
に断面り字状の非磁性材部(36)とすることも可能で
ある。
Moreover, this non-magnetic material part is wound as shown in FIG.
It is also possible to form the non-magnetic material portion (36) with an angular cross-section so as to cover the entire portion where the magnetic material portion 4) and the magnetic material portion (6) face each other.

なお、本発明は上述実施例に限らず本発明の要旨を逸脱
することなく、その他種々の構成が取り得ることは勿論
である。
Note that the present invention is not limited to the above-described embodiments, and it goes without saying that various other configurations may be adopted without departing from the gist of the present invention.

発明の効果 本発明に依れば、磁気記録媒体に対接する一端を巻線部
の厚さより薄く形成した主磁極と、主磁極の両側から主
磁極を保持する第1及び第2の非磁性体とを有し、補助
磁極部を設けずに主磁極と第1及び第2の非磁性体との
周囲にコイルを巻回−4゛るようにしたので、垂直記録
用単磁極型磁気ヘッドにおいて同−巻線当りの巻線イン
ピーダンスを下げ、記録再生感度を向上できる利益があ
る。
Effects of the Invention According to the present invention, there is provided a main magnetic pole whose one end facing the magnetic recording medium is formed to be thinner than the thickness of the winding portion, and first and second non-magnetic materials that hold the main magnetic pole from both sides of the main magnetic pole. Since the coil is wound around the main pole and the first and second non-magnetic materials by -4° without providing an auxiliary magnetic pole part, it can be used in a single-pole magnetic head for perpendicular recording. This has the advantage of lowering the winding impedance per winding and improving recording and reproducing sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の垂直記録用単磁極型磁気ヘッドの例を示
す断面図、第2図は従来の垂直記録用単磁極型磁気ヘッ
ドの他の例を示す断面図、第3図は第2図に示す例の要
部の説明に供する線図、第4図は従来の垂直記録用単磁
極型磁気ヘッドの例を示す線図、第5図は本発明垂直記
録用単磁極型磁気ヘッドの一実施例を示す斜視図、wA
6図は第5図に示す例の断面図、第7図、第8図、第9
図、第10図、第11図及び第12図は第5図に示す例
の製造工程の例を示す線図、第13図及び第14図は第
5図に示す例の説明に供する線図、第15図は本発明垂
直記録用単磁極型磁気ヘッドの他の実施例を丞す斜視図
、第16図及び第17図は第15図に示す例の製造工程
の例を丞ず線図、第18図及び第19図は本発明の他の
製造工程の例を示す線図、第20図、第22図、第24
図及び第26図はそれぞれ本発明の他の実施例を示す線
図、第21図、第2311、第25図はそれぞれ第20
図に示す例、第22図に示す例、第24図に示す例の製
造工程の要部の例を示す線し1である。 (2)は主磁極、(2a)は主磁極の端部、(2b)は
主磁極の巻線部、(4)及びり5)は非磁性ガート材、
(4a)及び(5a)は非磁性ガード材の主磁極基板部
、(14)は巻線である。 第14図 tx賜イを方6厚寺 (几m) 第15図 第16図 第17図 第20図 第21図 第22図 第24図 第25図
FIG. 1 is a cross-sectional view showing an example of a conventional single-pole magnetic head for perpendicular recording, FIG. 2 is a cross-sectional view showing another example of a conventional single-pole magnetic head for perpendicular recording, and FIG. FIG. 4 is a diagram showing an example of a conventional single-pole magnetic head for perpendicular recording, and FIG. 5 is a diagram for explaining the main parts of the example shown in the figure. A perspective view showing one embodiment, wA
Figure 6 is a sectional view of the example shown in Figure 5, Figures 7, 8, and 9.
Figures 10, 11, and 12 are diagrams showing an example of the manufacturing process of the example shown in Figure 5, and Figures 13 and 14 are diagrams explaining the example shown in Figure 5. , FIG. 15 is a perspective view of another embodiment of the single-pole magnetic head for perpendicular recording of the present invention, and FIGS. 16 and 17 are diagrammatic views of an example of the manufacturing process of the example shown in FIG. 15. , FIGS. 18 and 19 are diagrams showing examples of other manufacturing processes of the present invention, FIGS. 20, 22, and 24.
26 and 26 are diagrams showing other embodiments of the present invention, respectively, and FIGS. 21, 2311, and 25 are diagrams 20
2 is a line 1 showing an example of a main part of the manufacturing process of the example shown in the figure, the example shown in FIG. 22, and the example shown in FIG. 24. (2) is the main pole, (2a) is the end of the main pole, (2b) is the winding part of the main pole, (4) and 5) are non-magnetic guard materials,
(4a) and (5a) are main pole substrate portions made of non-magnetic guard material, and (14) is a winding. Fig.14

Claims (1)

【特許請求の範囲】[Claims] 磁気記録媒体に対接する一端を巻線部の厚さより薄く形
成した主磁極と、該主磁極の両側から主磁極を・保持す
る第1及び第2の非磁性体と、上記主磁極と上記第1及
び第2の非磁性体との周囲に巻回された巻線とを有する
ことを特徴とする垂直記録用単磁極型磁気ヘッド。
a main magnetic pole whose one end facing the magnetic recording medium is formed to be thinner than the thickness of the winding portion; first and second non-magnetic materials that hold the main magnetic pole from both sides of the main magnetic pole; 1. A single-pole magnetic head for perpendicular recording, comprising a first and a second non-magnetic material and a winding wound around the first and second non-magnetic materials.
JP22815883A 1983-12-02 1983-12-02 Single magnetic pole type magnetic head for vertical recording Pending JPS60119610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22815883A JPS60119610A (en) 1983-12-02 1983-12-02 Single magnetic pole type magnetic head for vertical recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22815883A JPS60119610A (en) 1983-12-02 1983-12-02 Single magnetic pole type magnetic head for vertical recording

Publications (1)

Publication Number Publication Date
JPS60119610A true JPS60119610A (en) 1985-06-27

Family

ID=16872134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22815883A Pending JPS60119610A (en) 1983-12-02 1983-12-02 Single magnetic pole type magnetic head for vertical recording

Country Status (1)

Country Link
JP (1) JPS60119610A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383204A (en) * 1989-08-24 1991-04-09 Tokin Corp Head for perpendicular magnetic recording head and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383204A (en) * 1989-08-24 1991-04-09 Tokin Corp Head for perpendicular magnetic recording head and its manufacture

Similar Documents

Publication Publication Date Title
US5920449A (en) Recording head for single layer magnetic film perpendicular magnetization medium
JPH028365B2 (en)
JPS6341127B2 (en)
KR930002393B1 (en) Magnetic transducer head
JPS60119610A (en) Single magnetic pole type magnetic head for vertical recording
US4731299A (en) Composite magnetic material
JPH0475564B2 (en)
JP2887204B2 (en) Method of manufacturing narrow track magnetic head
JPH05282619A (en) Magnetic head
KR940004485B1 (en) Magnetic head and manufacturing method thereof
JP2952459B2 (en) Floating magnetic head
JP2549150B2 (en) Perpendicular magnetic head
JPS59201209A (en) Composite magnetic head
JPH0157411B2 (en)
JPS60185214A (en) Magnetic head
JPS60256904A (en) Magnetic head
JPS5860419A (en) Magnetic head
JPS60111309A (en) Single magnetic pole type magnetic head for vertical recording
JPS60201508A (en) Manufacture of magnetic head for vertical recording and reproduction
JPS5835715A (en) Magnetic head for vertical magnetization recording
JPS6139907A (en) Magnetic head
JPS6251009A (en) Magnetic core and its production
JPH0817010A (en) Magnetic head and head device for hard disk equipped with that magnetic head
JPS6299903A (en) Magnetic head for vertical recording
JPS62185220A (en) Vertical magnetic head