JPS60119428A - Wavelength scanning type semiconductor laser interferometer - Google Patents

Wavelength scanning type semiconductor laser interferometer

Info

Publication number
JPS60119428A
JPS60119428A JP22685083A JP22685083A JPS60119428A JP S60119428 A JPS60119428 A JP S60119428A JP 22685083 A JP22685083 A JP 22685083A JP 22685083 A JP22685083 A JP 22685083A JP S60119428 A JPS60119428 A JP S60119428A
Authority
JP
Japan
Prior art keywords
semiconductor laser
luminous flux
wavelength
beam splitter
interferometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22685083A
Other languages
Japanese (ja)
Other versions
JPH0444939B2 (en
Inventor
Kimio Tateno
立野 公男
Keiji Kataoka
慶二 片岡
Seiji Yonezawa
米沢 成二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22685083A priority Critical patent/JPS60119428A/en
Publication of JPS60119428A publication Critical patent/JPS60119428A/en
Publication of JPH0444939B2 publication Critical patent/JPH0444939B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To scan an interference fringe in a field of view, and to raise the read accuracy of the interference fringe by using a semiconductor laser for a light source, modulating its driving current, and scanning a wavelength of the semiconductor laser. CONSTITUTION:For instance, in case of a Mach-Zehnder interferometer, a semiconductor laser 1 is used, and a luminous flux from this semiconductor laser becomes parallel light by a condenser lens 2, and it is divided into two luminous fluxes by a beam splitter 3-1. One luminous flux is used for an inspecting luminous flux, and in this luminous flux, a transmitting object 10 to be measured is placed, and this luminous flux passes through the second beam splitter 3-2 by a reflecting mirror 4-2 and forms an interference fringe on a photodetector 6 together with the other luminous flux (reference luminous flux) from a reflecting mirror 4-1. An optical path difference between both the luminous fluxes can be adjusted by rotating the beam splitter 3-1 and moving the reflecting mirror 4-1.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、光学的干渉計に関し、特に、干渉縞の読み取
りに高精度が要求される光学部品の検査などに用いて好
適な波長走査型半導体レーザ干渉計に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an optical interferometer, and in particular to a wavelength scanning semiconductor suitable for use in inspection of optical components that require high accuracy in reading interference fringes. This relates to laser interferometers.

〔発明の背景〕[Background of the invention]

従来の光学的干渉計では、光源の波長は固定しており、
干渉縞の読み取り精度を上げるために、例えば、光束の
一方に、周波数シフターを設けたり、あるいは、ピエゾ
振動子により光の位相を変調するなどの方法がとられて
いだが、いずれの素子も、高価であるうえ、調整箇所も
多く、シかも高電圧の駆動電源が必要などの欠点があっ
た。
In conventional optical interferometers, the wavelength of the light source is fixed;
In order to improve the accuracy of reading interference fringes, methods such as installing a frequency shifter on one side of the light beam or modulating the phase of the light with a piezoelectric vibrator have been used, but these devices are expensive. In addition, there were drawbacks such as the need for many adjustment points and the need for a high-voltage drive power source.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、以上の欠点を解消し、安価かつ簡素で
、しかも操作容易であり、高い精度で干渉縞を電気的に
読み取ることのできる半導体レーザ干渉計を提供するこ
とにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a semiconductor laser interferometer that eliminates the above-mentioned drawbacks, is inexpensive, simple, and easy to operate, and is capable of electrically reading interference fringes with high accuracy.

〔発明の概要〕[Summary of the invention]

すなわち、本発明は、トワイマングリン干渉計や、マツ
ハツエンダ−干渉計などの光源に半導体レーザな用い、
その駆動電流を変調し、半導体レーザの波長を走査する
ことにより、干渉縞を視野内で走査して、干渉縞の読み
取り精度を向上せんとするものである。
That is, the present invention uses a semiconductor laser as a light source for a Twyman Grin interferometer, a Matsuhatsu-ender interferometer, etc.
By modulating the drive current and scanning the wavelength of the semiconductor laser, the interference fringes are scanned within the field of view, thereby improving the accuracy of reading the interference fringes.

〔発明の実施例〕[Embodiments of the invention]

まず、本発明の詳細な説明する。 First, the present invention will be explained in detail.

一般に半導体レーザでは、駆動電流をΔI(mA)だけ
変化させると、改良がシフトする。例えば、みそ付基盤
型半導体レーザを例にとれば、波長のシフト量Δλは、 Δλ=0.006・ΔI (nm) ・・・・・・・・
・・・・(1)で与えられる。
Generally, in a semiconductor laser, when the drive current is changed by ΔI (mA), the improvement shifts. For example, if we take a base-type semiconductor laser as an example, the wavelength shift amount Δλ is Δλ=0.006・ΔI (nm) ・・・・・・・・・・・・
...It is given by (1).

一方、干渉バタン上の任意の点(x、y)での光の複素
振幅は、時間平均をとって、 V(x、 y) =uo(x、 y) exp(1k−
r(、(x、 y) )十ur (x+ y)exp(
ik−r、(x、 y)1で与えられる。ここにuo、
u、はそれぞれ物体光、参照光の振巾、ro、r、は物
体光、参照光の基準面からの光路長、kは波数で で与えられる。これから強度分布は I (x、 y)=lVlx、 y) 12=uo2(
X、y)十u、2(X、y)従って、 を満す点(x、y)で最大強度、 を満す点で最小強度となるような干渉バタンか得られる
On the other hand, the complex amplitude of light at any point (x, y) on the interference batten is time-averaged and becomes: V(x, y) = uo(x, y) exp(1k-
r(, (x, y)) ur (x+ y)exp(
ik-r, (x, y) given by 1. Here uo,
u is the amplitude of the object light and reference light, ro and r are the optical path lengths of the object light and reference light from the reference plane, and k is the wave number. From this, the intensity distribution is I (x, y) = lVlx, y) 12 = uo2(
X, y) 10 u, 2 (X, y) Therefore, an interference batt is obtained that has the maximum intensity at the point (x, y) that satisfies the following, and the minimum intensity at the point that satisfies the following.

今、干渉バタンを1波長(2π位相)分だけ走査するこ
とを考える。すなわち三光束の光路差t= rQ (X
r y) rr(x+ y)内にn箇の波があるとする
と n・λ=t ・・・・・・・旧・団・(2)が成立する
。次に、式(1)に従って半導体レーザの駆動電流Iを
増化させ、波長を長波長方向にΔλだけシフトさせると
、光路差を内にはn −1箇の波が存在するから (n−1)(λ+Δλ)−4・旧川・・・・・(3)が
成立する。式(2) 、 (3)よりnを消去するとλ
2 t= −、旧・・・・・・利用・・(4)Δλ が得られる。
Now, consider scanning the interference batten by one wavelength (2π phase). In other words, the optical path difference between the three beams t= rQ (X
r y) If there are n waves in rr(x+y), then n・λ=t...Old・Gan・(2) holds true. Next, according to equation (1), if the driving current I of the semiconductor laser is increased and the wavelength is shifted by Δλ in the long wavelength direction, there are n −1 waves within the optical path difference (n − 1) (λ+Δλ)-4・Old River...(3) holds true. If n is eliminated from equations (2) and (3), λ
2 t=-, old...Use...(4) Δλ is obtained.

式(1) 、 (4)より ΔI=10/4(mA) ・・−・−・・・−(5)式
(5)は光路差tの干渉計において、干渉バタンを1波
長分シフトするだめの電流の変化Δ工を与えるものであ
る。第1図はこの関係をグラフ化したものであり、例え
ば、光路差が10mある時、ΔI=1mAとなり、通常
、半導体レーザの動作中央値が、第2図に示すように6
0〜100mAであることから、極く僅かの電流変調で
波長走査が可能であることがわかる。捷だこのような電
流変化に対して、光出力の変化は極〈僅かである。
From equations (1) and (4), ΔI = 10/4 (mA)...--(5) Equation (5) shifts the interference wave by one wavelength in an interferometer with an optical path difference t. This gives the change in current ∆factor. Figure 1 is a graph of this relationship. For example, when the optical path difference is 10 m, ΔI = 1 mA, and normally the median operating value of the semiconductor laser is 6 mA as shown in Figure 2.
Since it is 0 to 100 mA, it can be seen that wavelength scanning is possible with extremely small current modulation. In contrast to such a large current change, the change in optical output is extremely small.

第3図は本発明の一実施例を示す構成図であり、マツハ
ツエンダ−型干渉計の場合を示すものである。この干渉
計は、半導体レーザ1を光源とし、この半導体レーザか
らの光束を集光レンズ2により平行光とし、ビームスプ
リッタ3−1により2つの光束に分け、一方の光束を検
査用光束とし、この光束中に測定されるべき透過物体1
0をおき、反射ミラー4−2により、第2のビームスプ
リッタ−3−2を経て、反射ミラー4−1からの他方の
光束(参照光束)と共に光検知器6上で干渉縞を形成す
るものである。これら三光束の光路差は、ビームスプリ
ッタ−3−1の回転、および反射ミラー4−1を移動す
ることにより、両光束間の光路差を調整することができ
る。
FIG. 3 is a block diagram showing one embodiment of the present invention, and shows the case of a Matsuhatsu Ender type interferometer. This interferometer uses a semiconductor laser 1 as a light source, converts the light beam from the semiconductor laser into parallel light using a condenser lens 2, splits it into two light beams using a beam splitter 3-1, uses one of the light beams as a light beam for inspection, and Transparent object 1 to be measured in the beam of light
0 and forms interference fringes on the photodetector 6 with the other beam (reference beam) from the reflecting mirror 4-1 through the second beam splitter 3-2 by the reflecting mirror 4-2. It is. The optical path difference between these three beams can be adjusted by rotating the beam splitter 3-1 and moving the reflecting mirror 4-1.

第4図はこの干渉計から得られる干渉バタンの一例を示
す図である。第4図において、干渉縞り、(実線で示す
。)、L2(点線で示す。)の間隔は1波長分の波面の
ずれに相当する。半導体レーザ1の波長をλ1からλ2
まで変化させると、波長が2里のとき、干渉縞Ltが生
じ、波長がλ2のとき、干渉縞L2が生じ、干渉縞が移
動する。半導体レーザ1の電流を周波数ω、振幅Δ■で
変調し、光電検知器6で光電変換してデータを取り込む
時、周波数ωのフィルターを通すことにより、その周波
数成分だけをとり出すことができ、高いS/Nの信号と
なる。すなわち、干渉計の外乱による振動成分や、温度
などの影響を除去することができ、測定を多数回、不規
則に繰り返して平均をとることにより、読み取り精度を
向上することができる。さらに、干渉計自体の誤差、傾
き、焦点合わせの誤差なとを引き算した後の位相分布を
等高線図などで表示することが可能となる。
FIG. 4 is a diagram showing an example of an interference pattern obtained from this interferometer. In FIG. 4, the interval between interference fringes L2 (indicated by a solid line) and L2 (indicated by a dotted line) corresponds to a wavefront shift of one wavelength. Change the wavelength of semiconductor laser 1 from λ1 to λ2
When the wavelength is 2 ri, interference fringes Lt are generated, and when the wavelength is λ2, interference fringes L2 are generated, and the interference fringes move. When the current of the semiconductor laser 1 is modulated with a frequency ω and an amplitude Δ■, and data is acquired through photoelectric conversion by the photoelectric detector 6, only that frequency component can be extracted by passing it through a filter with a frequency ω. This results in a high S/N signal. In other words, it is possible to eliminate vibration components caused by disturbances to the interferometer and the influence of temperature, etc., and reading accuracy can be improved by irregularly repeating measurements many times and taking the average. Furthermore, it is possible to display the phase distribution after subtracting errors of the interferometer itself, inclination, focusing errors, etc. in a contour diagram or the like.

第5図に、本発明の他の実施例を示す(h成因であり、
本発明をトワイマングリーン干渉計に応用したものであ
る。半導体レーザ1からなる光源からのビームを集光レ
ンズ2で半行光とし、ビームスプリッタ−3により2つ
の光束に分け、参照光束となる一方の光束は反射ミラー
4によって反射され、ビームスプリッタ−3を透過して
光検知器6に照射される。ビームスプリッタ−3を透過
したビームは検査光束として用いられ、この光束は被検
査物体10により反射され、さらにビームスプリッタ−
3で反射され、光検知器6上で参照光束とともに干渉縞
を形成する。この時、三光束の光路差は、反射ミラー4
を光軸方向に移動することにより調整することができる
FIG. 5 shows another embodiment of the present invention (h factor,
This invention is applied to a Twyman Green interferometer. A beam from a light source consisting of a semiconductor laser 1 is turned into a semi-linear beam by a condenser lens 2, and divided into two beams by a beam splitter 3. One beam, which becomes a reference beam, is reflected by a reflection mirror 4, The light passes through and is irradiated onto the photodetector 6. The beam transmitted through the beam splitter 3 is used as an inspection light flux, and this light flux is reflected by the object to be inspected 10 and further passed through the beam splitter.
3 and forms interference fringes on the photodetector 6 together with the reference beam. At this time, the optical path difference of the three beams is
can be adjusted by moving in the optical axis direction.

第6図(a)は、本発明で用いられる半導体レーザ駆動
回路の一実施例を示す回路図であり、第6図(b)はそ
の信号波形図である。
FIG. 6(a) is a circuit diagram showing an embodiment of the semiconductor laser drive circuit used in the present invention, and FIG. 6(b) is a signal waveform diagram thereof.

この回路は、半導体レーザLDをバイアス電流Ioを中
心値として、振幅ΔIで変調するためのものである。今
、図中A点に−VEボルトの電圧を加え、ボリュームR
1により、B点(トランジスタQのベース)での電位を
−■Bボルトに設定すれば、半導体レーザLDの両端に
は、V=(VB 0.7) (Via) の電圧がかかる。このため、半導体レーザの抵抗をrと
すれば、直流抵抗R3を介して、l0=V/(Rs+r
)の電流を流すことができ、半導体レーザLDが発振す
る。この値をバイアス電流とする。
This circuit is for modulating the semiconductor laser LD with the amplitude ΔI with the bias current Io as the center value. Now, apply a voltage of -VE volts to point A in the diagram, and adjust the volume R.
1, if the potential at point B (base of transistor Q) is set to -■B volts, a voltage of V=(VB 0.7) (Via) will be applied across the semiconductor laser LD. Therefore, if the resistance of the semiconductor laser is r, then l0=V/(Rs+r
) can flow, and the semiconductor laser LD oscillates. This value is defined as the bias current.

ΔIoを振巾とする電流変調は、図中C点に外部より、
第6図(b)に示すような周波数ωの正弦波、あるいは
矩形波を入力し、半導体レーザをI ” I o十ΔI
 6 sinωtなる変調電流によって駆動するもので
ある。
Current modulation with an amplitude of ΔIo is applied externally to point C in the figure.
Input a sine wave or a rectangular wave with a frequency ω as shown in FIG. 6(b), and drive the semiconductor laser to
It is driven by a modulation current of 6 sin ωt.

〔発明の効果〕〔Effect of the invention〕

以上のようVC,本発明によれば、半導体レーザ光源の
駆動電流を僅かに変調するだけで、高精度の干渉縞読み
取りが可能となる。
As described above, according to the VC and the present invention, it is possible to read interference fringes with high precision just by slightly modulating the driving current of the semiconductor laser light source.

さらに、光ディスクの記録や再生に用すられる光ヘッド
のスポットの取面計測や、半導体レーザ自身が固有に持
っている収差測定も、高精度で行なうことが可能となる
Furthermore, it is also possible to measure the surface of the spot of an optical head used for recording and reproducing an optical disk and to measure the aberration inherent in the semiconductor laser itself with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、干渉計の二つの光束の光路差に対し、半導体
レーザの波長を1波長だけシフトするに要する電流変化
分を示すグラフ、第2図は半導体レーザの電流、光出力
特性を示すグラフ、第3図は本発明の一実施例〉・示す
構成図、第4図は本発明による干渉パタンの一例を示す
図、第5図は本発明の他の実施例を示す図、第6図(a
)は本発明で用いられる半導体レーザ駆動回路の一例を
示す回路図、第6図(b) Hその信号波形図である。 1・・・半導体レーザ、3.3−1.3−2・・・ビー
ムスプリッタ−14,、4−1,4−2・・・反射ミラ
ー、6・・・光検知器、10・・・被検査物体。 代理人 弁理士 高橋明f ″) (9) ゝ\ニーノ ■ 1 図 2 d 6g tt) t2 尤flr−差(ル〜 第 2 図 2θ 4ρ 〆ρ 3ρ lρρ 、馴動 1仁メ屓−(mt−A〕 遁 づ 図 冨 4 目 y N 鴎 姻 」 へ )
Figure 1 is a graph showing the current change required to shift the wavelength of the semiconductor laser by one wavelength with respect to the optical path difference between the two light beams of the interferometer. Figure 2 shows the current and optical output characteristics of the semiconductor laser. Graph, FIG. 3 is a configuration diagram showing one embodiment of the present invention, FIG. 4 is a diagram showing an example of an interference pattern according to the present invention, FIG. 5 is a diagram showing another embodiment of the present invention, and FIG. Figure (a
) is a circuit diagram showing an example of a semiconductor laser drive circuit used in the present invention, and FIG. 6(b) is a signal waveform diagram thereof. DESCRIPTION OF SYMBOLS 1... Semiconductor laser, 3.3-1.3-2... Beam splitter-14, 4-1, 4-2... Reflection mirror, 6... Photodetector, 10... Object to be inspected. Agent Patent attorney Akira Takahashi f'') (9) ゝ\Nino■ 1 Fig. 2 d 6g tt) t2 尤flr-difference (ru~ 2nd Fig. 2θ 4ρ 〆ρ 3ρ 1ρρ, familiarization 1 ninme 屓-(mt -A〕 Tonzu Zutomi 4th item y N Omori”)

Claims (1)

【特許請求の範囲】[Claims] 光源からの光束を二つに分割し、一方を参照光束、他方
を検査用光束とし、該三光束を再び同一面上に照射して
、干渉縞を生じせしめる干渉計において、該光源として
半導体レーザを用い、該半導体レーザの動作電流を動作
中心値から僅かに変調することにより、該半導体レーザ
の波長を走査して干渉縞の強度分布を交流的に変化させ
ることを特徴とする波長走査型半導体レーザ干渉計。
In an interferometer that splits a light beam from a light source into two, one as a reference beam and the other as a test beam, and irradiates the three beams onto the same surface again to produce interference fringes, a semiconductor laser is used as the light source. A wavelength scanning semiconductor characterized in that the wavelength of the semiconductor laser is scanned and the intensity distribution of interference fringes is changed in an alternating current manner by slightly modulating the operating current of the semiconductor laser from its central operating value. Laser interferometer.
JP22685083A 1983-12-02 1983-12-02 Wavelength scanning type semiconductor laser interferometer Granted JPS60119428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22685083A JPS60119428A (en) 1983-12-02 1983-12-02 Wavelength scanning type semiconductor laser interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22685083A JPS60119428A (en) 1983-12-02 1983-12-02 Wavelength scanning type semiconductor laser interferometer

Publications (2)

Publication Number Publication Date
JPS60119428A true JPS60119428A (en) 1985-06-26
JPH0444939B2 JPH0444939B2 (en) 1992-07-23

Family

ID=16851541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22685083A Granted JPS60119428A (en) 1983-12-02 1983-12-02 Wavelength scanning type semiconductor laser interferometer

Country Status (1)

Country Link
JP (1) JPS60119428A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002511294A (en) * 1998-04-15 2002-04-16 イントラルーミナル・セラピューティクス・インコーポレーテッド Guide wire assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002511294A (en) * 1998-04-15 2002-04-16 イントラルーミナル・セラピューティクス・インコーポレーテッド Guide wire assembly

Also Published As

Publication number Publication date
JPH0444939B2 (en) 1992-07-23

Similar Documents

Publication Publication Date Title
EP0193742B1 (en) Wavelength scanning interferometry and interferometer employing laser diode
JP2859292B2 (en) Method and apparatus for optical detection of transient motion from scattering surfaces
US3767307A (en) Real time interferometer
JPS6319822B2 (en)
KR100503007B1 (en) Apparatus for detecting sub-resonance of actuator for optical pickup
US6958817B1 (en) Method of interferometry with modulated optical path-length difference and interferometer
JPS6134430A (en) Active mirror wave-front sensor
JPS60119428A (en) Wavelength scanning type semiconductor laser interferometer
JPH0727746A (en) Method for evaluating specimen with photothermal displacement measurement
JPH0344243B2 (en)
JP2923779B1 (en) Optical interference device for ultrasonic detection
JP3340792B2 (en) Microstructure measuring device
JPS6371675A (en) Laser distance measuring instrument
JPS60253953A (en) Measurement system for gas concentration
JP2805045B2 (en) Spatial positioning method
JPH0648366Y2 (en) Laser frequency meter
JPH07159114A (en) Microdisplacement gage
JPS6231281B2 (en)
SU842626A1 (en) Device for measuring phase-frequency and amplitude-frequency characteristic
SU1026010A1 (en) Device for measuring small slow changes of interferometer measuring arm optical length
JPH0564289B2 (en)
JPS61133813A (en) Surface shape measuring apparatus
JPH02287104A (en) Laser length measuring instrument
JPH0774762B2 (en) Laser frequency meter
JPS59208409A (en) Surface-roughness measuring device utilizing optical heterodyne interference method