JPH0564289B2 - - Google Patents

Info

Publication number
JPH0564289B2
JPH0564289B2 JP21335784A JP21335784A JPH0564289B2 JP H0564289 B2 JPH0564289 B2 JP H0564289B2 JP 21335784 A JP21335784 A JP 21335784A JP 21335784 A JP21335784 A JP 21335784A JP H0564289 B2 JPH0564289 B2 JP H0564289B2
Authority
JP
Japan
Prior art keywords
light
optical fiber
measured
optical
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21335784A
Other languages
Japanese (ja)
Other versions
JPS6191537A (en
Inventor
Makoto Tsubokawa
Noburu Shibata
Yoshuki Aomi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP21335784A priority Critical patent/JPS6191537A/en
Publication of JPS6191537A publication Critical patent/JPS6191537A/en
Publication of JPH0564289B2 publication Critical patent/JPH0564289B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/335Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using two or more input wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/333Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using modulated input signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/338Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face by measuring dispersion other than PMD, e.g. chromatic dispersion

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光フアイバの特性の測定に関する。
特に、光フアイバの波長分散を測定する装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to the measurement of properties of optical fibers.
In particular, it relates to an apparatus for measuring chromatic dispersion of optical fibers.

〔従来の技術〕[Conventional technology]

光フアイバの波長分散を測定する方法として
は、従来は、二つの光束の干渉により測定する方
法が一般的である。すなわち、一つの光源から出
力された光束を空間的に二つに分離し、この一方
の光束を被測定光フアイバ中に伝搬させ、他方の
光束を空間中に伝搬させ、これらの二つの光束の
干渉縞の可視度が最大となる位置をビジコン等の
撮像装置により検出する。これを異なる波長の光
源について行い、干渉縞の可視度が同じ位置で最
大となるような光路長差を測定する。この測定に
より波長に対する光路長差が測定され、その測定
値から計算により波長分散を求める。
Conventionally, the chromatic dispersion of an optical fiber has been generally measured by interference of two light beams. In other words, the light beam output from one light source is spatially separated into two, one light beam is propagated into the optical fiber to be measured, the other light beam is propagated in space, and these two light beams are The position where the visibility of the interference fringes is maximum is detected by an imaging device such as a vidicon. This is done for light sources of different wavelengths, and the optical path length difference is measured so that the visibility of the interference fringes is maximum at the same position. Through this measurement, the optical path length difference with respect to wavelength is measured, and chromatic dispersion is determined by calculation from the measured value.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、このような従来例光フアイバ波長分散
測定方法では、干渉縞の信号雑音比が低く、可視
度が最大となる位置に幅があり、精度の高い測定
が困難である欠点があつた。
However, such a conventional optical fiber wavelength dispersion measurement method has the disadvantage that the signal-to-noise ratio of the interference fringes is low and there is a width at the position where the visibility is maximum, making it difficult to measure with high precision.

本発明は、干渉が最大となる光路長を高精度で
測定し、高精度で光フアイバ波長分散を測定でき
る装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an apparatus capable of measuring the optical path length at which interference is maximum with high precision and measuring optical fiber wavelength dispersion with high precision.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の光フアイバ波長分散装置は、可干渉性
の光束を出力する光源から出射された光束を信号
光と参照光とに分離する光学的手段と、この信号
光を被測定光フアイバに入射させる光学的手段
と、被測定光フアイバを伝搬した信号光と被測定
光フアイバ以外の通路を伝搬した参照光とを干渉
させる光学的手段と、この手段で得られる干渉光
を検波する手段と、光源からの波長の異なる出力
光に対してそれぞれの干渉強度が最大となるよう
に信号光と参照光との光路長差を可変に設定する
手段とを備えた光フアイバ波長分散測定装置にお
いて、信号光と参照光との少なくとも一方に強度
変調または位相変調を施す手段と、干渉した光強
度の情報をこの手段の変調周波数を含む狭帯域周
波数で抽出する手段とを備えたことを特徴とす
る。
The optical fiber wavelength dispersion device of the present invention includes an optical means for separating a light beam emitted from a light source that outputs a coherent light beam into a signal light and a reference light, and an optical means for making the signal light enter an optical fiber to be measured. an optical means, an optical means for causing interference between a signal light propagated through an optical fiber to be measured and a reference light propagated through a path other than the optical fiber to be measured, a means for detecting interference light obtained by the means, and a light source. In an optical fiber chromatic dispersion measuring device, the optical fiber chromatic dispersion measuring device is equipped with means for variably setting the optical path length difference between the signal light and the reference light so that the interference intensity of each output light with different wavelengths from the signal light is maximized. The present invention is characterized by comprising means for applying intensity modulation or phase modulation to at least one of the reference light and the reference light, and means for extracting information on the intensity of the interfered light at a narrow band frequency including the modulation frequency of the means.

光源としては、異なる波長の出力光を発生する
ものを取り替えて使用することもできるが、同一
の光源で2以上の異なる波長を出力するものを使
用することが望ましい。
Although it is possible to replace and use light sources that generate output light of different wavelengths, it is preferable to use the same light source that outputs two or more different wavelengths.

〔作用〕[Effect]

本発明光フアイバ波長分散測定装置は、光束を
交流信号で変調することにより二つの光束の干渉
強度にこの交流信号成分の変化を与え、これを狭
帯域の周波数で検出することにより信号雑音比を
改善する。
The optical fiber wavelength dispersion measuring device of the present invention modulates a light beam with an alternating current signal to give a change in the interference intensity of the two light beams to the alternating current signal component, and detects this at a narrow frequency band to calculate the signal-to-noise ratio. Improve.

〔実施例〕〔Example〕

第1図は本発明第一実施例光フアイバ波長分散
測定装置のブロツク構成図である。
FIG. 1 is a block diagram of an optical fiber wavelength dispersion measurement apparatus according to a first embodiment of the present invention.

光源1は可干渉性の光束を出力する。一例とし
ては半導体レーザである。この光束は強度変調器
2により強度変調が施される。強度変調が施され
た光束は、半透鏡3により二つの光束に分離され
る。半透鏡3を透過した光束は信号として被測定
光フアイバ4を伝搬する。半透鏡3に反射された
光束は、参照光として空間中を伝搬し、反射鏡
5,6で反射され、半透鏡7を透過し、パルスモ
ータ等により移動可能な台座に固定された可動鏡
8で反射される。被測定光フアイバ4から出力さ
れた信号光は半透鏡7を透過し、可動鏡8で反射
された参照光は半透鏡7で反射され、これらの光
束が合波される合波された光束は、直線検光子9
を透過し、シリコン・アバランシエ・フオトダイ
オードまたはゲルマニユーム・アバランシエ・フ
オトダイオード等で構成された光検出器10に入
射する。
A light source 1 outputs a coherent light beam. An example is a semiconductor laser. This light flux is subjected to intensity modulation by an intensity modulator 2. The intensity-modulated light beam is separated into two light beams by a semi-transparent mirror 3. The light beam transmitted through the semi-transparent mirror 3 propagates through the optical fiber 4 to be measured as a signal. The light beam reflected by the semi-transparent mirror 3 propagates in space as a reference light, is reflected by the reflecting mirrors 5 and 6, passes through the semi-transparent mirror 7, and is moved to a movable mirror 8 fixed to a movable pedestal by a pulse motor or the like. reflected. The signal light outputted from the optical fiber 4 to be measured is transmitted through the semi-transparent mirror 7, the reference light reflected by the movable mirror 8 is reflected by the semi-transparent mirror 7, and the combined light beam obtained by combining these light beams is as follows. , linear analyzer 9
, and enters a photodetector 10 constructed of a silicon avalanche photodiode, a germanium avalanche photodiode, or the like.

光検出器10は帯域濾波器12に接続される。
帯域濾波器12は記録装置13に接続される。さ
らに、発振回路11が強度変調器2および帯域濾
波器12に接続される。
Photodetector 10 is connected to bandpass filter 12 .
Bandpass filter 12 is connected to recording device 13 . Further, an oscillation circuit 11 is connected to the intensity modulator 2 and the bandpass filter 12.

光検出器10に入射された光信号は、強度変調
器2により周波数で変調されている。このた
め、帯域濾波器12は、発振回路11からの周波
数の参照信号を用いて、光検出器10の出力信
号から周波数の成分を抽出する。帯域濾波器1
2の出力は、記録装置13により記録される。
The optical signal incident on the photodetector 10 is frequency-modulated by the intensity modulator 2. Therefore, the bandpass filter 12 extracts the frequency component from the output signal of the photodetector 10 using the frequency reference signal from the oscillation circuit 11. Bandpass filter 1
The output of No. 2 is recorded by the recording device 13.

光源1として、近接した波長〓1、〓2の光束を
出力する光源を用いた場合を比較する。どちらの
場合にも、信号光および参照光の自由空間におけ
る光路長に変化はない。しかし、被測定光フアイ
バ4中を伝搬する信号光の光路長は、被測定光フ
アイバ4の波長分散により変化する。したがつ
て、波長分散の変化を測定するには、可動鏡8の
位置を調整し、信号光と参照光との光路長が等し
くなるようにする。光フアイバの波長分散によ
り、波長〓1,〓2に対して可動鏡8の位置が異な
り、その位置の変位量から波長分散が得られる。
A comparison will be made in the case where a light source that outputs light beams of wavelengths 〓 1 and 〓 2 that are close to each other is used as the light source 1. In either case, the optical path lengths of the signal light and reference light in free space remain unchanged. However, the optical path length of the signal light propagating through the optical fiber 4 to be measured changes depending on the wavelength dispersion of the optical fiber 4 to be measured. Therefore, in order to measure the change in chromatic dispersion, the position of the movable mirror 8 is adjusted so that the optical path lengths of the signal light and the reference light are equal. Due to the wavelength dispersion of the optical fiber, the position of the movable mirror 8 differs for the wavelengths 1 and 2 , and the chromatic dispersion can be obtained from the amount of displacement at that position.

本実施例の特徴は、信号光および参照光に強度
変調が施されていることにある。これにより、光
路長が等しい場合には、半透鏡7で合波された光
束の干渉強度の周波数成分が最大となる。この
周波数成分の変化は大きく、光路長が等しいこ
とを容易に知ることができる。したがつて、光路
長差を高精度で測定でき、正確な波長分散を得る
ことができる。
The feature of this embodiment is that the signal light and the reference light are intensity modulated. As a result, when the optical path lengths are equal, the frequency component of the interference intensity of the light beams combined by the semi-transparent mirror 7 becomes maximum. This change in frequency component is large, and it can be easily seen that the optical path lengths are equal. Therefore, the optical path length difference can be measured with high precision, and accurate wavelength dispersion can be obtained.

以下に、式を用いて本実施例を定量的に説明す
る。
The present example will be described quantitatively below using equations.

光検出器10で検出される光強度の周波数成
分、すなわち干渉強度Iは、 I=〔I1+I2+2√1 2|〓(〓(12)|cos〓12
〕×cos2〓ft……(1) で与えられる。ここで、 I1:信号光強度、 I2:参照光強度、 |〓(〓12)|:コヒーレンス度(〓は〓12
関数)、 〓12:半透鏡3から光検出器10に至る二つの光
束の間の群遅延時間差、 〓12:半透鏡3から光検出器10に至る二つの光
束の間の位相差 である。可動鏡8を掃引すると、 〓12=0 の位置では、 |〓(〓12)|=1、cos〓12=1 となり、干渉強度Iの振幅が最大となる。
The frequency component of the light intensity detected by the photodetector 10, that is, the interference intensity I, is: I=[I 1 + I 2 +2√ 1 2 |
〕×cos2〓ft……(1). Here, I 1 : signal light intensity, I 2 : reference light intensity, |〓(〓 12 )|: degree of coherence (〓 is a function of 〓 12 ), 〓 12 : two points from the semi-transparent mirror 3 to the photodetector 10. Group delay time difference between the two light beams, 〓 12 : Phase difference between the two light beams reaching from the semi-transparent mirror 3 to the photodetector 10. When the movable mirror 8 is swept, at the position 〓 12 =0, |〓(〓 12 )|=1, cos〓 12 =1, and the amplitude of the interference intensity I becomes maximum.

異なる波長の光源を用いて干渉強度Iが最大と
なる可動鏡8の位置を求める。この可動鏡8の相
対的な位置ずれが、被測定光フアイバ4の波長分
散による光路長差となる。光路長差を光速cで割
ることにより群遅延時間差〓が求められる。この
群遅延時間差〓は、長さLの被測定光フアイバ4
の波長分散Dと、 D=(1/L)(d〓/d〓) ……(2) の関係がある。ここで〓は波長である。第(2)式に
より、異なる波長λに対して群遅延時間差〓を求
めることにより、被測定光フアイバ4の波長分散
が得られる。
The position of the movable mirror 8 where the interference intensity I becomes maximum is determined using light sources of different wavelengths. This relative positional shift of the movable mirror 8 becomes an optical path length difference due to wavelength dispersion of the optical fiber 4 to be measured. By dividing the optical path length difference by the speed of light c, the group delay time difference 〓 can be obtained. This group delay time difference 〓 is the optical fiber 4 to be measured with length L
There is a relationship between the wavelength dispersion D and D=(1/L)(d〓/d〓)...(2). Here, 〓 is the wavelength. The chromatic dispersion of the optical fiber 4 to be measured can be obtained by determining the group delay time difference 〓 for different wavelengths λ using equation (2).

本実施例では、光源1が出力した光束を強度変
調を施した後に信号光と参照光とに分離している
が、信号光と参照光とに分離した後にその双方に
強度変調を施しても本発明を同様に実施できる また、干渉強度が小さくなるが、信号光と参照
光の一方のみに強度変調を施しても本発明を実施
できる。
In this embodiment, the light beam output from the light source 1 is intensity-modulated and then separated into the signal light and the reference light. The present invention can be carried out in the same manner.Also, the present invention can be carried out even if only one of the signal light and the reference light is subjected to intensity modulation, although the interference intensity is reduced.

第2図は本発明第二実施例光フアイバ波長分散
測定装置のブロツク構成図である。
FIG. 2 is a block diagram of an optical fiber wavelength dispersion measurement apparatus according to a second embodiment of the present invention.

光源1が出力した光束は、半透鏡3により二つ
の光束に分離される。半透鏡3を透過した光束は
信号光として被測定光フアイバ4を伝搬する。半
透鏡3に反射された光束は、参照光として空間中
を伝搬し、反射鏡5で反射され、位相変調素子1
4により位相変調が施され、反射鏡6で反射さ
れ、半透鏡7を透過し、可動鏡8で反射される。
被測定光フアイバ4から出力された信号光は半透
鏡7を透過し、可動鏡8で反射された参照光は半
透鏡7で反射され、これらの光束が合波される。
合波された光束は、直線検光子9を透過し、光検
出器10に入射する。
The light beam output from the light source 1 is separated into two light beams by the semi-transparent mirror 3. The light beam transmitted through the semi-transparent mirror 3 propagates through the optical fiber 4 to be measured as signal light. The light beam reflected by the semi-transparent mirror 3 propagates in space as a reference light, is reflected by the reflecting mirror 5, and is transmitted to the phase modulating element 1.
4, the signal is phase-modulated, reflected by a reflecting mirror 6, transmitted through a semi-transparent mirror 7, and reflected by a movable mirror 8.
The signal light output from the optical fiber 4 to be measured is transmitted through the semi-transparent mirror 7, the reference light reflected by the movable mirror 8 is reflected by the semi-transparent mirror 7, and these light beams are combined.
The combined light flux passes through the linear analyzer 9 and enters the photodetector 10.

光検出器10は帯域濾波器12に接続される。
帯域濾波器12は記録装置13に接続される。さ
らに、発振回路11が位相変調素子14および帯
域濾波器12に接続される。
Photodetector 10 is connected to bandpass filter 12 .
Bandpass filter 12 is connected to recording device 13 . Further, an oscillation circuit 11 is connected to a phase modulation element 14 and a bandpass filter 12.

本実施例の特徴は、光源1が出力した光束に強
度変調を施すのではなく、位相変調素子14が参
照光に位相変調を施すことにある。これにより、
信号光と参照光との干渉強度が変調周波数で時間
的に変化し、信号光と干渉光との光路長が一致し
たときにその干渉強度が最大となる。
The feature of this embodiment is that the phase modulation element 14 applies phase modulation to the reference light instead of intensity modulating the light beam output from the light source 1. This results in
The interference intensity between the signal light and the reference light changes over time with the modulation frequency, and reaches its maximum when the optical path lengths of the signal light and the interference light match.

本実施例の作用をさらに定量的に説明する。 The effect of this example will be further explained quantitatively.

位相変調素子14が、周波数の矩形波rect
(t)で参照光を位相変調したとする。このとき
光検出器10で検出される干渉強度Iは、第(1)式
と同じ表記により、 I=I1+I2+2√1 2|〓(〓2)|cos(rect(t
)+〓12)……(3) で与えられる。
The phase modulation element 14 generates a rectangular wave of frequency rect
Assume that the reference light is phase modulated at (t). At this time, the interference intensity I detected by the photodetector 10 is expressed as I=I 1 +I 2 +2√ 1 2 |〓(〓 2 )|cos(rect(t
)+〓 12 )……(3) is given.

矩形波による位相変調の深さが〓の近傍に設定
されると、第(3)式は、 I=I1+I2+2√1 2|〓(〓12)|〓rect(t)
……(4) ここで〓は定数である。したがつて、干渉強度
Iは周波数で時間的に変化し、 〓12=0 でコヒーレンス度〓(〓12)が最大となり、干渉
強度Iの振幅が最大となる。したがつて、第一実
施例と同様に可動鏡8を掃引し、異なる波長の光
源に対して干渉強度Iが最大となる位置を測定
し、波長に対する光路長差から光フアイバの波長
分散を得ることができる。
When the depth of phase modulation by the rectangular wave is set near 〓, Equation (3) becomes: I=I 1 +I 2 + 2√ 1 2 |
...(4) Here, 〓 is a constant. Therefore, the interference intensity I changes over time depending on the frequency, and when 〓 12 =0, the degree of coherence 〓(〓 12 ) becomes maximum, and the amplitude of the interference intensity I becomes maximum. Therefore, as in the first embodiment, the movable mirror 8 is swept, the position where the interference intensity I is maximum is measured for light sources of different wavelengths, and the chromatic dispersion of the optical fiber is obtained from the optical path length difference with respect to the wavelength. be able to.

本実施例では、位相変調素子14を反射鏡5と
反射鏡6との間に配置したが、参照光の光路上で
あればその位置は任意である。
In this embodiment, the phase modulation element 14 is placed between the reflecting mirror 5 and the reflecting mirror 6, but it can be placed at any position as long as it is on the optical path of the reference light.

第3図は本発明第三実施例光フアイバ波長分散
測定装置のブロツク構成図である。
FIG. 3 is a block diagram of an optical fiber wavelength dispersion measurement apparatus according to a third embodiment of the present invention.

光源1が出力した光束は、半透鏡3により二つ
の光束に分離される。半透鏡3で反射された光束
は、信号光として被測定光フアイバ4を伝搬し、
水銀槽15により反射され、再び被測定光フアイ
バ4を伝搬する。半透鏡3を透過した光束は、参
照光として空間中を伝搬し、位相変調素子14に
より位相変調が施され、可動鏡8で反射され、再
び位相変調素子14により位相変調が施される。
被測定光フアイバ4を往復した信号光は半透鏡3
を透過し、二度位相変調された参照光は半透鏡3
で反射され、これらの光束が合波される。合波さ
れた光束は、直線検光子9を透過し、光検出器1
0に入射する。
The light beam output from the light source 1 is separated into two light beams by the semi-transparent mirror 3. The light beam reflected by the semi-transparent mirror 3 propagates through the optical fiber 4 to be measured as signal light,
It is reflected by the mercury bath 15 and propagates through the optical fiber 4 to be measured again. The light beam transmitted through the semi-transparent mirror 3 propagates in space as a reference light, undergoes phase modulation by the phase modulation element 14, is reflected by the movable mirror 8, and is phase modulated by the phase modulation element 14 again.
The signal light that has traveled back and forth through the optical fiber 4 to be measured passes through the semi-transparent mirror 3.
The reference light that has been phase-modulated twice is passed through the semi-transparent mirror 3.
and these beams are combined. The combined light beam passes through a linear analyzer 9 and is detected by a photodetector 1.
0.

光検出器10は帯域濾波器12に接続される。
帯域濾波器12は記録装置13に接続される。さ
らに、発振回路11が位相変調素子14および帯
域濾波器12に接続される。
Photodetector 10 is connected to bandpass filter 12 .
Bandpass filter 12 is connected to recording device 13 . Further, an oscillation circuit 11 is connected to a phase modulation element 14 and a bandpass filter 12.

本実施例は基本的に第二実施例と同等である
が、信号光が被測定光フアイバ4を往復し、参照
光も一つの光路を往復することが異なる。本実施
例では、被測定光フアイバ4の端面を水銀槽に浸
すことにより、この端面で信号光を全反射させて
いる。光検出器10で測定される干渉強度Iは第
二実施例と同等であるが、信号光が被測定光フア
イバ4を二度通過するので、長さが二倍の光フア
イバと等価になる。また、参照光も位相変調素子
4を二度通過するため、位相変調の深さも二倍と
なる。したがつて参照光が往復して〓程度の変調
の深さになるように、位相変調素子14を設定す
る。
This embodiment is basically the same as the second embodiment, except that the signal light travels back and forth through the optical fiber 4 to be measured, and the reference light also travels back and forth along one optical path. In this embodiment, the end face of the optical fiber 4 to be measured is immersed in a mercury bath, so that the signal light is totally reflected at this end face. The interference intensity I measured by the photodetector 10 is the same as in the second embodiment, but since the signal light passes through the optical fiber 4 to be measured twice, it is equivalent to an optical fiber twice the length. Furthermore, since the reference light also passes through the phase modulation element 4 twice, the depth of phase modulation is also doubled. Therefore, the phase modulation element 14 is set so that the reference light travels back and forth and has a modulation depth of approximately .

信号光と参照光との干渉強度の測定は、第二実
施例と同じである。
The measurement of the interference intensity between the signal light and the reference light is the same as in the second embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明により良好な信号
雑音比で光フアイバの波長分散を測定できる。こ
のため、比較的短い光フアイバの波長分散の測定
も可能になる。
As explained above, according to the present invention, the chromatic dispersion of an optical fiber can be measured with a good signal-to-noise ratio. Therefore, it is also possible to measure the chromatic dispersion of a relatively short optical fiber.

本発明は、簡単な構成で精度の高い測定が可能
となるので、光フアイバの品質検査や品質管理に
大きな効果がある。
Since the present invention enables highly accurate measurement with a simple configuration, it is highly effective in quality inspection and quality control of optical fibers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明第一実施例光フアイバ波長分散
測定装置のブロツク構成図。第2図は本発明第二
実施例光フアイバ波長分散測定装置のブロツク構
成図。第3図は本発明第三実施例光フアイバ波長
分散測定装置のブロツク構成図。 1……光源、2……強度変調器、3,7……半
透鏡、4……被測定光フアイバ、5,6……反射
鏡、8……可動鏡、9……直線検光子、10……
光検出器、11……発振回路、12……帯域濾波
器、13……記録装置、14……位相変調素子、
15……水銀槽。
FIG. 1 is a block diagram of an optical fiber wavelength dispersion measuring device according to a first embodiment of the present invention. FIG. 2 is a block diagram of an optical fiber wavelength dispersion measurement apparatus according to a second embodiment of the present invention. FIG. 3 is a block diagram of an optical fiber wavelength dispersion measurement apparatus according to a third embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Light source, 2... Intensity modulator, 3, 7... Semi-transparent mirror, 4... Optical fiber to be measured, 5, 6... Reflecting mirror, 8... Movable mirror, 9... Linear analyzer, 10 ……
Photodetector, 11...Oscillation circuit, 12...Band filter, 13...Recording device, 14...Phase modulation element,
15...Mercury tank.

Claims (1)

【特許請求の範囲】 1 可干渉性の光束を出力する光源から出射され
た光束を信号光と参照光とに分離する光学的手段
と、 この信号光を被測定光フアイバに入射させる光
学的手段と、 被測定光フアイバを伝搬した信号光と被測定光
アイバ以外の通路を伝搬した参照光とを干渉させ
る光学的手段と、 この手段で得られる干渉光を検波する手段と、 光源からの波長の異なる出力光に対してそれぞ
れの干渉強度が最大となるように信号光と参照光
との光路長差を可変に設定する手段と を備えた光フアイバ波長分散測定装置において、 上記信号光と上記参照光との少なくとも一方に
強度変調または位相変調を施す手段と、 干渉した光強度の情報をこの手段の変調周波数
を含む狭帯域周波数で抽出する手段と を備えたことを特徴とする光フアイバ波長分散測
定装置。
[Claims] 1. Optical means for separating a light beam emitted from a light source that outputs a coherent light beam into a signal light and a reference light, and an optical means for inputting this signal light into an optical fiber to be measured. an optical means for causing interference between the signal light propagated through the optical fiber to be measured and the reference light propagated through a path other than the optical fiber to be measured; means for detecting the interference light obtained by this means; and a wavelength from the light source. In an optical fiber wavelength dispersion measuring device, the optical fiber wavelength dispersion measuring device is equipped with means for variably setting the optical path length difference between the signal light and the reference light so that the interference intensity of each of the different output lights is maximized. An optical fiber wavelength characterized by comprising means for applying intensity modulation or phase modulation to at least one of the reference light and means for extracting information on the intensity of the interfered light at a narrow band frequency including the modulation frequency of this means. Dispersion measuring device.
JP21335784A 1984-10-12 1984-10-12 Method and apparatus for measuring dispersion of optical fiber wavelength Granted JPS6191537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21335784A JPS6191537A (en) 1984-10-12 1984-10-12 Method and apparatus for measuring dispersion of optical fiber wavelength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21335784A JPS6191537A (en) 1984-10-12 1984-10-12 Method and apparatus for measuring dispersion of optical fiber wavelength

Publications (2)

Publication Number Publication Date
JPS6191537A JPS6191537A (en) 1986-05-09
JPH0564289B2 true JPH0564289B2 (en) 1993-09-14

Family

ID=16637831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21335784A Granted JPS6191537A (en) 1984-10-12 1984-10-12 Method and apparatus for measuring dispersion of optical fiber wavelength

Country Status (1)

Country Link
JP (1) JPS6191537A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ304375B6 (en) * 2012-08-02 2014-04-02 Fyzikální ústav AV ČR, v.v.i. Dispersion modulation unit
CN112816180A (en) * 2020-12-27 2021-05-18 苏州六幺四信息科技有限责任公司 Optical fiber dispersion measuring method and measuring device

Also Published As

Publication number Publication date
JPS6191537A (en) 1986-05-09

Similar Documents

Publication Publication Date Title
US3891321A (en) Optical method and apparatus for measuring the relative displacement of a diffraction grid
EP0324708B1 (en) Method of and arrangement for measuring vibrations
EP0241512B1 (en) A common optical path interferometric gauge
US4799797A (en) Coherence multiplexing of optical sensors
JP3335205B2 (en) Optical system calibration method
JPH01503172A (en) Method and apparatus for two-wavelength interferometry with optical heterodyning and use for position or distance measurement
JPH07311182A (en) Evaluation of sample by measurement of thermo-optical displacement
US7515275B2 (en) Optical apparatus and method for distance measuring
JPH03180704A (en) Laser interference gauge
JPH116719A (en) Interference measuring apparatus
JPH04264206A (en) Optical apparatus using white-light interference- measuring method
EP0501559B1 (en) Process and apparatus for absolute interferometric measurements of physical magnitudes
JPH0564289B2 (en)
JPH07190712A (en) Interferometer
JPH02140638A (en) Backscattering light measuring instrument
JPS63196829A (en) Method and apparatus for searching fault point of light waveguide
JPH05203410A (en) Method and device for measuring reflecting point in optical frequency domain
JPH0658293B2 (en) Method and apparatus for measuring wavelength dispersion of optical fiber
JPH0886717A (en) Light beam passage discriminating optical part and its remote control measuring method and device
JPS60173429A (en) Method and device for measuring dispersion of polarized wave
JPH06109422A (en) Displacement measuring apparatus
SU408145A1 (en) DESCRIPTION OF THE INVENTION
JP3107814B2 (en) Michelson-type spectral line width measurement device
JPH0690112B2 (en) Backscattered light measurement device
SU1026010A1 (en) Device for measuring small slow changes of interferometer measuring arm optical length