JPS60119344A - Control device of internal-combustion engine - Google Patents

Control device of internal-combustion engine

Info

Publication number
JPS60119344A
JPS60119344A JP22668383A JP22668383A JPS60119344A JP S60119344 A JPS60119344 A JP S60119344A JP 22668383 A JP22668383 A JP 22668383A JP 22668383 A JP22668383 A JP 22668383A JP S60119344 A JPS60119344 A JP S60119344A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
fuel
detection means
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22668383A
Other languages
Japanese (ja)
Inventor
Hiroshi Tamura
浩 田村
Shigehiko Tajima
薫彦 田島
Katsuhiko Nakabayashi
中林 勝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP22668383A priority Critical patent/JPS60119344A/en
Publication of JPS60119344A publication Critical patent/JPS60119344A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent the fuel consumption rate of an engine from deteriorating and as well to prevent hydrogen sulfide and fresh gas in exhaust gas from entering, by compensating the amount of fuel injection and as well the timing of ignition in accordance with the difference between an actual exhaust gas temperature and a desired exhaust temperature to control the fuel injection and the ignition timing. CONSTITUTION:There are provided a fuel injection supply means M5 for supplying fuel into a cylinder M4 in an internal combustion engine M1, and an ignition means igniting the mixture of air and fuel in the cylinder M4. A computing means compensates the amount of fuel fed from the fuel supply means M5 and the timing of ignition by the ignition means so that the temperature of exhaust gas detected by the exhaust gas temperature detecting means M3 varies toward a desired value which is set in accordance with the operating condition of the internal combustion engine that is detected by an operating condition detecting means M6. Thus, it is possible to prevent the fuel consumption rate of the engine from deteriorating and as well to prevent hydrogen sulfide and fresh gas in exhaust gas from entering.

Description

【発明の詳細な説明】 本発明は内燃機関の燃料噴射量及び点火時期を排気温度
に応じて制御する制御I装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device that controls the fuel injection amount and ignition timing of an internal combustion engine in accordance with exhaust temperature.

[従来技術] 自動車用等の内燃機関として、排気中の有害成分を低減
するためにその排気系に三元触媒コンバータを設置した
内燃機関があり、この種の内燃機関では、三元触媒コン
バータの浄化動帯を良くするために、排気系に空燃比セ
ンサを設け、ここで検出した空燃比の検出信号に基づき
、内燃機関シリンダに供給する混合気の空燃比をi論空
燃比近傍にフィードバック制御する電子式機関制御装置
が設けられる。また、一般に、このような空燃比のフィ
ードバック制御を行なう内燃機関においては、内燃機関
の高速高負荷運転時、高出力を確保し良好な運転性を維
持するために、空燃比のフィー 3 − 一ドパツク制御が停止され、吸入空気量やスロットル開
度に応じて燃料噴射量を増量するオープンループ制御を
行なう。
[Prior art] Some internal combustion engines, such as those used in automobiles, have a three-way catalytic converter installed in their exhaust system in order to reduce harmful components in the exhaust gas. In order to improve the purification zone, an air-fuel ratio sensor is installed in the exhaust system, and based on the air-fuel ratio detection signal detected by this sensor, the air-fuel ratio of the mixture supplied to the internal combustion engine cylinders is feedback-controlled to near the stoichiometric air-fuel ratio. An electronic engine control device is provided. In addition, in general, in internal combustion engines that perform such feedback control of the air-fuel ratio, the air-fuel ratio fee is adjusted to ensure high output and maintain good drivability during high-speed, high-load operation of the internal combustion engine. Dopuck control is stopped, and open-loop control is performed to increase the fuel injection amount according to the intake air amount and throttle opening.

しかしながら、オープンループ制御を行なって燃料噴!
i1’l量を制御した場合、制御部品等の性能のバラツ
キにより空燃比がリーン(稀薄)側にずれると、排気温
度が異常に上昇し触媒等の排気系部品を劣化させてしま
うことから、このような場合には、排気温度を検出しそ
の排気温度が予め設定された目標排気渇痩より高くなる
と、燃料噴射量を増量制御する方法が、特開昭57−7
6234号公報により提案されている。
However, open-loop control is used to inject fuel!
When controlling the amount of i1'l, if the air-fuel ratio deviates to the lean side due to variations in the performance of control parts, the exhaust temperature will rise abnormally and the exhaust system parts such as the catalyst will deteriorate. In such a case, a method of detecting the exhaust gas temperature and controlling the fuel injection amount to increase when the exhaust temperature becomes higher than a preset target exhaust exhaust gas temperature is disclosed in Japanese Patent Laid-Open No. 57-7.
This method has been proposed in Japanese Patent No. 6234.

しかしながら、上記の空燃比制御において、このような
排気温に基づ(増員制御が頻繁に行なわれた場合、空燃
比が過度にリッチ化して燃料消費率が悪化すると共に、
排気中に生ガスや硫化水素が混入し悪臭を発する可能性
がある。
However, in the above-mentioned air-fuel ratio control, based on such exhaust temperature (if the increase control is performed frequently), the air-fuel ratio becomes excessively rich and the fuel consumption rate worsens.
Raw gas and hydrogen sulfide may get mixed into the exhaust and cause a bad odor.

[発明の目的] 本発明は、上記の問題点に鑑み、空燃比に基づくフィー
ドバック制御が行なわれていない時にお−4− ける排気温の異常上昇時には燃料III躬量の増量制御
と共に点火時期の進角制御を行なって、燃料噴射量を低
く抑えながら、最低の燃料消費量で排気温を下げるよう
に制御することができる内燃機関の制御装置を提供する
ことを目的とする。
[Object of the Invention] In view of the above-mentioned problems, the present invention provides a system for increasing the amount of fuel and controlling the ignition timing when the exhaust temperature rises abnormally when feedback control based on the air-fuel ratio is not performed. It is an object of the present invention to provide a control device for an internal combustion engine that can control the exhaust temperature to be lowered with the lowest fuel consumption while keeping the fuel injection amount low by performing advance angle control.

[発明の構成] この目的を達成すべく本発明は、第1図の基本的構成図
に示すように 内燃機関M1の運転状態検出手段M2と、内燃機関M1
の排気温検出手段M3と、内燃機関M1のシリンダM4
へ燃料を供給する燃料供給手段M5と、 内燃機関M1のシリンダM4内の空気と燃料との混合気
に点火する点火手段M6と、 上記排気温検出手段M3により検出された排気温が上記
運転状態検出手段M2により検出された内燃機関の運転
状態に応じて設定された目標排気温に向って変化するよ
うに、上記燃料供給手段から供給される燃料量及び上記
点火手段による点大時期を補正する演算制御手段と、 −5− を備えた内燃機関の制m装置を要旨とする。
[Structure of the Invention] In order to achieve this object, the present invention, as shown in the basic configuration diagram of FIG.
and the cylinder M4 of the internal combustion engine M1.
a fuel supply means M5 for supplying fuel to the engine; an ignition means M6 for igniting the mixture of air and fuel in the cylinder M4 of the internal combustion engine M1; Correcting the amount of fuel supplied from the fuel supply means and the ignition timing by the ignition means so that the temperature changes toward a target exhaust temperature set according to the operating state of the internal combustion engine detected by the detection means M2. The gist of the present invention is a control device for an internal combustion engine, which is equipped with an arithmetic control means and -5-.

以下、本発明の実施例を図面に基づいて説明する。Embodiments of the present invention will be described below based on the drawings.

[実施例] 第2図において、1は自動車に搭載される公知の4サイ
クル火花点火式内燃機関で、燃焼用空気をエアクリーナ
2、吸気管3、スロットル弁4を経て吸入する。また、
燃料は図示しない燃料系から各気筒に対応して設けられ
た燃料供給手段としての燃料噴射弁5を介して供給され
る。燃焼後の排気は排気マニホールド6、排気管7、三
元触媒コンバータ8を経て大気に放出される。吸気管3
には内燃機関1に吸入される吸気量を検出し、吸気量に
応じたアナログ電圧を出力するポテンショメータ式の吸
気量センサ10と、内燃機関1に吸入される空気の温度
を検出し、吸気温に応じたアナログ電圧信号を出力する
サーミスタ式の吸気温センサ12が設置される。また、
内燃機関1には冷却水温を検出し冷却水温に応じたアナ
ログ電圧信号を出力するサーミスタ式の水温センサ13
が−6− 設置され、さらに、排気マニホールド6には排気中のI
ll素濃度から空燃比を検出し、空燃比が理論空燃比よ
り小さくリッチのとき高レベル信号を、理論空燃比より
大きいリーンのとき低レベル信号を出力する空燃比セン
サ14が設置される。15はディストリビュータ16内
に設置されたピックアップコイル式の回転数センサで、
ディストリビコータ16のロータっまり内燃機関1のク
ランク軸の回転数に対応した周波数のパルス信号を出力
する。なお、内燃機関回転数の検出はイグナイタ17内
の点火コイルの一次側から点火パルス信号を回転速度信
号として取り出して行なうこともできる。18はスロッ
トルセンサで、スロワ1〜ル開度を検出し、その開度に
応じたデジタル信号を出力する。なお、上記の吸気量セ
ンサ1oにより検出された吸気11Qと回転数センサ1
5により検出された回転数Nとの比Q/Nが内燃機関負
荷として使用され、ここでは回転数センサ15と吸気量
センサ10との帽み合せが負荷検出手段を構成している
。19は排気管7に設置されたザーミスター 7 一 式の排気温センサで、排気温度に応じたアナログ電圧信
号を出力する。演算制御手段としての制御回路20は各
センサ10.12.13.14.15.18.19の検
出信号に基づいて燃料1m耐量と点火時期を演算し、そ
の噴射量データに応じて燃料噴射弁5の開弁時間を制御
し、その点火時期データに応じてイグナイタ17を制御
することにより図示しない点火プラグの点火時期を進角
又は遅角制御する。
[Embodiment] In FIG. 2, reference numeral 1 denotes a known four-stroke spark ignition internal combustion engine mounted on an automobile, which takes in combustion air through an air cleaner 2, an intake pipe 3, and a throttle valve 4. Also,
Fuel is supplied from a fuel system (not shown) through fuel injection valves 5 as fuel supply means provided corresponding to each cylinder. After combustion, the exhaust gas passes through an exhaust manifold 6, an exhaust pipe 7, and a three-way catalytic converter 8, and is released into the atmosphere. intake pipe 3
There is a potentiometer-type intake air amount sensor 10 that detects the intake air amount taken into the internal combustion engine 1 and outputs an analog voltage according to the intake air amount, and a potentiometer type intake air amount sensor 10 that detects the temperature of the air taken into the internal combustion engine 1 and outputs an analog voltage according to the intake air amount. A thermistor-type intake air temperature sensor 12 that outputs an analog voltage signal according to the temperature is installed. Also,
The internal combustion engine 1 includes a thermistor type water temperature sensor 13 that detects the cooling water temperature and outputs an analog voltage signal according to the cooling water temperature.
-6- is installed in the exhaust manifold 6.
An air-fuel ratio sensor 14 is installed which detects the air-fuel ratio from the elemental concentration and outputs a high-level signal when the air-fuel ratio is rich and smaller than the stoichiometric air-fuel ratio, and outputs a low-level signal when the air-fuel ratio is lean and larger than the stoichiometric air-fuel ratio. 15 is a pickup coil type rotation speed sensor installed in the distributor 16;
The rotor of the distributor 16 outputs a pulse signal with a frequency corresponding to the rotation speed of the crankshaft of the internal combustion engine 1. Note that the internal combustion engine rotational speed can also be detected by extracting an ignition pulse signal from the primary side of the ignition coil in the igniter 17 as a rotational speed signal. Reference numeral 18 denotes a throttle sensor that detects the opening degree of the throttles 1 to 3 and outputs a digital signal corresponding to the opening degree. In addition, the intake air 11Q detected by the above-mentioned intake air amount sensor 1o and the rotation speed sensor 1
The ratio Q/N to the rotation speed N detected by the rotation speed sensor 5 is used as the internal combustion engine load, and here, the combination of the rotation speed sensor 15 and the intake air amount sensor 10 constitutes a load detection means. 19 is a thermistor 7 installed in the exhaust pipe 7. A set of exhaust temperature sensors outputs an analog voltage signal according to the exhaust temperature. A control circuit 20 as an arithmetic control means calculates the 1m fuel capacity and ignition timing based on the detection signals of each sensor 10, 12, 13, 14, 15, 18, 19, and adjusts the fuel injection valve according to the injection amount data. By controlling the opening time of the valve 5 and controlling the igniter 17 according to the ignition timing data, the ignition timing of a spark plug (not shown) is advanced or retarded.

次に、第3図により制御回路2oについて説明する。制
御回路20はマイクロコンピュータから構成され、10
0は各種演算制御処理を実行するCPU、101は回転
数カウンタで、回転数センサ15からの信号により内燃
機関回転数をカウントする。102は割り込み制御部で
、回転数カウンタ101からの内燃機関回転に同期した
割り込み指令信号を受け、コモンバス103を通してC
PU100に割り込み信号を出力する。104はデジタ
ル入力ボートで、空燃比センサ14やスロットルセンサ
18からのデジタル信号を入力しC−8− PLJlooに伝達する。105はアナログマルチプレ
クサとA/D変換器からなるアナログ入力ポートで、吸
気量センサ10.吸気温センサ12、水温センサ13及
び排気温センサ19からの各アナログ検出信号を順次デ
ジタル信号に変換してCP U 100に読み込ませる
機能を有す。
Next, the control circuit 2o will be explained with reference to FIG. The control circuit 20 is composed of a microcomputer, and has 10
0 is a CPU that executes various arithmetic and control processes, and 101 is a rotational speed counter that counts the internal combustion engine rotational speed based on a signal from a rotational speed sensor 15. 102 is an interrupt control unit which receives an interrupt command signal synchronized with the rotation of the internal combustion engine from the rotation speed counter 101, and transmits the C through the common bus 103.
An interrupt signal is output to the PU100. 104 is a digital input boat that inputs digital signals from the air-fuel ratio sensor 14 and throttle sensor 18 and transmits them to C-8-PLJloo. 105 is an analog input port consisting of an analog multiplexer and an A/D converter, and the intake air amount sensor 10. It has a function of sequentially converting each analog detection signal from the intake temperature sensor 12, water temperature sensor 13, and exhaust temperature sensor 19 into digital signals and causing the CPU 100 to read the digital signals.

106は電源回路で後述するRAM107に電源を供給
する。電源回路106はキースイッチ18を通さず直接
バッテリ21′に接続される。よって、RAM107は
、キースイッチ22を通さず常時電源が印加され、キー
スイッチ22をオフして機関を停止しても記憶内容が隅
失しない不揮発性メモリをなし、各種演算に必要な補正
量等が読み出し書き込み可能にここに記憶される。電源
回路108はRAM107以外の部分に電源を供給する
。109はプログラムデータ、演算に必要な定数やマツ
プデータ等を記憶しておく固定メモリのROMである。
A power supply circuit 106 supplies power to a RAM 107, which will be described later. The power supply circuit 106 is directly connected to the battery 21' without passing through the key switch 18. Therefore, the RAM 107 is a non-volatile memory to which power is always applied without passing through the key switch 22, and whose stored contents are not lost even if the key switch 22 is turned off and the engine is stopped, and the amount of correction necessary for various calculations, etc. is stored here in a readable and writable manner. A power supply circuit 108 supplies power to parts other than the RAM 107. A ROM 109 is a fixed memory that stores program data, constants necessary for calculations, map data, and the like.

110と111とはラッチ、ダウンカウンタ、増幅器な
どからなる出力回路で、一方の出力回路−9− 110はCPU 100T−演算された燃料噴射量に対
応した燃料噴射弁5の開弁時間を与えるパルス信号をつ
くり、各燃料噴射弁5に印加する。他方の出力回路11
1はCPU100で演算された点火時期に応じてイグナ
イタ17に点火信号を印加し、これによってイグナイタ
17は点火コイルに一次電流を流し、最適点火時期に点
火コイルの一次電流を遮断することにより、点火プラグ
に高電圧を印加して点火させる。タイマー112はクロ
ックパルス信号を発生して経過時間を測定する回路で、
CPU100にクロック信号を出力したり、割り込み制
御部102に時間割り込み信号を出力する。
110 and 111 are output circuits consisting of latches, down counters, amplifiers, etc., and one output circuit -9-110 is a CPU 100T-a pulse that gives the opening time of the fuel injection valve 5 corresponding to the calculated fuel injection amount. A signal is generated and applied to each fuel injection valve 5. The other output circuit 11
1 applies an ignition signal to the igniter 17 according to the ignition timing calculated by the CPU 100, whereby the igniter 17 causes the primary current to flow through the ignition coil, and by cutting off the primary current of the ignition coil at the optimum ignition timing, ignition is started. Apply high voltage to the plug to ignite it. The timer 112 is a circuit that generates a clock pulse signal and measures elapsed time.
It outputs a clock signal to the CPU 100 and a time interrupt signal to the interrupt control unit 102.

次に、第4図のフローチャートを参照してIll 11
11回路の動作を説明する。
Next, referring to the flowchart in FIG.
The operation of No. 11 circuit will be explained.

とのルーチンに入ると、先ず、ステップ210にて、各
センサにより検出された内燃機関回転数と吸気量データ
とから基本燃料噴1i1量を算出し、この基本燃料噴射
量を水温データ、吸気温データ等の内燃機関状態に応じ
て補正し、燃料噴射量−10− (時間)τを算出する。次に、ステップ220に進み、
内燃機関回転数と吸気量との検出データから基本点火時
期がめられ、この基本点火時期を内燃機関暖機状態など
に応じて進角又は遅角補正して点火時期θを算出する。
When entering the routine, first, in step 210, a basic fuel injection amount 1i1 is calculated from the internal combustion engine rotation speed and intake air amount data detected by each sensor, and this basic fuel injection amount is calculated based on the water temperature data and intake air temperature data. The fuel injection amount -10- (time) τ is calculated by correcting it according to the internal combustion engine state such as data. Next, proceed to step 220,
The basic ignition timing is determined from the detected data of the internal combustion engine rotation speed and the intake air amount, and the ignition timing θ is calculated by advancing or retarding this basic ignition timing depending on the warm-up state of the internal combustion engine.

ステップ230では、回転数センサ15からの回転数デ
ータN1排気渇センサ19からの排気温データT×、及
び吸気量センサ10からの吸気量データQをCPU10
0に取り込む。そして、ステップ240を実行し、吸気
量Qと回転数Nとの比によってめた内燃機関負荷Q/N
と回転数データNとから、内燃機関が所定の高負荷高回
転域にあるか否かを判定する。
In step 230, the CPU 10 transmits the rotational speed data N1 from the rotational speed sensor 15, the exhaust temperature data Tx from the exhaust gas thirst sensor 19, and the intake air amount data Q from the intake air amount sensor 10.
Take it to 0. Then, step 240 is executed, and the internal combustion engine load Q/N is determined by the ratio of the intake air amount Q and the rotational speed N.
and the rotation speed data N, it is determined whether the internal combustion engine is in a predetermined high load high rotation range.

ここで、内燃機関が高負荷高回転域にない場合はステッ
プ320にジャンプし、ステップ210でめた燃料噴射
量(時間)τを出力回路110のカウンタにセットし、
ステップ220でめた点火時期θを出力回路111のカ
ウンタにセットする。
Here, if the internal combustion engine is not in the high load high speed range, jump to step 320, set the fuel injection amount (time) τ obtained in step 210 in the counter of the output circuit 110,
The ignition timing θ determined in step 220 is set in the counter of the output circuit 111.

一方、内燃機関が高負荷高回転域で運転されていると判
定された場合、ステップ240にて[Y−11− ESJとなり、次にステップ250に進み、検出した内
燃機関回転数Nと負荷Q/Nとから目標排気mTNがめ
られる。ここで、目標排気mTsは、第5図(A)に示
すように、テーブルデータとして予めRAM107又は
ROM109に格納してあり、回転数Nと負荷Q/Nと
によって決まる目標排気温TN がめられる。そして、
ステップ260を実行し、目標排気ff1T(へ)とス
テップ230で取り込んだ実際の排気mTxとの差ΔT
(Tx−TN)を算出し、次にステップ270にて、こ
の差6丁が零であるか否かを判定し、差6丁が零であれ
ば、排気1fiTXが目標排気mTNと等しく燃料噴射
量及び点火時期に補正を必要としないため、ステップ3
20にジャンプする。
On the other hand, if it is determined that the internal combustion engine is being operated in a high load/high rotation range, the process goes to step 240 where [Y-11-ESJ is selected, and the process then proceeds to step 250 where the detected internal combustion engine rotation speed N and load Q are determined. /N determines the target exhaust mTN. Here, the target exhaust gas mTs is stored in advance in the RAM 107 or ROM 109 as table data, as shown in FIG. and,
Execute step 260, and the difference ΔT between the target exhaust ff1T (to) and the actual exhaust mTx taken in step 230.
(Tx - TN), and then in step 270, it is determined whether or not this difference is zero. If the difference is zero, the exhaust 1fiTX is equal to the target exhaust mTN, and fuel injection is performed. Step 3 does not require correction to the amount or ignition timing.
Jump to 20.

一方、差Δ王が零でないとき、ステップ270にてrN
OJと判定され、次にステップ280に進み、排気11
Txと目標排気温TN との差ΔTから燃料噴射量τの
補正量Ktをめる。補正ffKtは、第5図(B)のグ
ラフに示すように、差6丁の関数としてつ(られ、差△
Tを変数とした数−12一 式の形で或いはテーブルデータとして予めRAM107
又はROM109に格納されており、この差6丁に基づ
き補正IKtがめられる。ステップ290では、排気m
Txと目標排気温T8 の差ΔTから点火時期θの補正
進角にθをめる。補正進角にθは、第5図(C)のグラ
フに示すように、差6丁の関数としてつくられ、差6丁
を変数とした数式の形で或いはテーブルデータとして予
めRAM107又はROM109に格納されており、こ
の差△Tから補正進角にθがめられる。
On the other hand, when the difference ΔK is not zero, in step 270 rN
It is determined that it is OJ, and then the process proceeds to step 280, where the exhaust
The correction amount Kt of the fuel injection amount τ is calculated from the difference ΔT between Tx and the target exhaust temperature TN. As shown in the graph of FIG. 5(B), the correction ffKt is calculated as a function of the difference △
The RAM 107 is stored in advance in the form of a set of number-12 with T as a variable or as table data.
Or, it is stored in the ROM 109, and the correction IKt is calculated based on this difference. In step 290, the exhaust m
θ is set as the correction advance angle of the ignition timing θ based on the difference ΔT between Tx and the target exhaust temperature T8. As shown in the graph of FIG. 5(C), the corrected advance angle θ is created as a function of the difference of 6 positions, and is stored in advance in the RAM 107 or ROM 109 in the form of a mathematical formula using the difference of 6 positions as a variable or as table data. θ is determined from this difference ΔT in the corrected advance angle.

そして、ステップ300に進み、補正量Ktによって燃
料噴射量τが補正され、ステップ310に進み、補正進
角にθによって点火時期θが補正される。なお、第5図
(B)、(C)のグラフに示すように、排気温Txが目
標排気温Tl、l より大きく差6丁が正の場合には、
補正IKtは正の補正量となって増量補正を行ない、同
様に差6丁が正の場合には補正進角にθは正の補正進角
となって進角補正を行なう。また、逆に、目標排気mT
hが排気IRT×より大きく差へTが負の場合には、−
13− 補正量Ktは負となって燃料噴射量τの減量補正を行な
い、同様に差6丁が負の場合には補正進角にθも角とな
って点火時期θの遅角補正が行なわれる。
The process then proceeds to step 300, where the fuel injection amount τ is corrected by the correction amount Kt, and the process proceeds to step 310, where the ignition timing θ is corrected by the corrected advance angle θ. As shown in the graphs of FIGS. 5(B) and 5(C), when the exhaust gas temperature Tx is greater than the target exhaust temperature Tl,l and the difference is positive,
The correction IKt becomes a positive correction amount to perform an increase correction, and similarly, when the difference 6 teeth is positive, the correction advance angle θ becomes a positive correction advance angle to perform an advance angle correction. Also, conversely, the target exhaust mT
If h is greater than exhaust IRT x difference and T is negative, -
13- The correction amount Kt becomes negative and the fuel injection amount τ is reduced and corrected, and similarly, if the difference is negative, θ also becomes an angle in the corrected advance angle and the ignition timing θ is retarded. It will be done.

このようにして補正された補正後の燃料噴射量τと点火
時期θは、ステップ320にてそれぞれ出力回路110
と111のカウンタにセットされ、排気ITxが目標排
気温T1.I より高いときには、燃料噴射弁5から増
量制御された燃料が噴射され、かつ点火時期が進角制御
されることによって排気温が下げられ、単に燃料増量に
よる排気温低下処理に比べてより少ない燃料消費量によ
り排気温を低下させることができる。
The corrected fuel injection amount τ and ignition timing θ corrected in this way are output to the output circuit 110 in step 320.
and 111 counter, and the exhaust ITx reaches the target exhaust temperature T1. When the temperature is higher than I, the fuel is injected from the fuel injection valve 5 and the ignition timing is advanced, thereby lowering the exhaust temperature. The exhaust temperature can be lowered depending on the consumption amount.

このように、本実施例では排気lTx >目標排気mT
s の場合には、Txを低下させるための燃料増量分を
点火時期の進角側への調整によって節約できる。又、T
X<TNの場合には、TXを上昇させるための燃料減量
分を点火の遅角により、−14− にθは零とすることにより、より一層燃料消費量を減少
させ節約させることが可能となる。このときにはKtは
第6図(A>に示すように6丁の負側のKtの傾きがよ
り大きいグラフとなる。
In this way, in this embodiment, exhaust lTx > target exhaust mT
In the case of s, the increased amount of fuel for lowering Tx can be saved by adjusting the ignition timing to the advanced side. Also, T
In the case of X<TN, it is possible to further reduce fuel consumption and save by retarding the ignition to compensate for the amount of fuel loss to increase TX and setting θ to zero at -14-. Become. In this case, Kt becomes a graph in which the slope of Kt on the negative side of the six guns is larger, as shown in FIG. 6 (A>).

[発明の効果] 以上説明したように、本発明に係る内燃機関の制御装置
によれば、実際の排気温と目標排気温との差に応じて燃
料噴射量と共に点火時期も補正して噴!)1 量制御と
点火時期制御を行なうため、内燃機関の高負荷高回転時
に排気温を下げるための制御が頻繁になされた場合にも
、燃料噴射量の増量を最小に抑えながら排気温を下げる
ように制御することができ、燃料消費率の悪化を防ぐと
共に排気中の硫化水素や生ガスの混入も防ぐことができ
る。
[Effects of the Invention] As explained above, according to the control device for an internal combustion engine according to the present invention, the ignition timing as well as the fuel injection amount are corrected according to the difference between the actual exhaust gas temperature and the target exhaust temperature. )1 Since it performs quantity control and ignition timing control, even if control is performed frequently to lower exhaust temperature when the internal combustion engine is under high load and speed, the exhaust temperature can be lowered while minimizing the increase in fuel injection amount. This makes it possible to prevent fuel consumption from deteriorating and to prevent hydrogen sulfide and raw gas from entering the exhaust gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本的構成図、第2図は本発明一実施
例の全体構成図、第3図はその制御回路のブロック図、
第4図は制御回路の動作を示すフローチャー1〜、第5
図(A)は目標排気温のデー−15− タテ−プル、第5図(B)は排気温と目標排気温との差
△Tと補正量との関係を示すグラフ、第5図(C)は周
差ΔTと補正進角との関係を示すグラフ、第6図(A>
は他の制御例の6丁と補正量との関係を示すグラフ、第
6図(B)はその制御例の6丁と補正進角との関係を示
すグラフである。 5・・・燃料噴射弁 10・・・吸気量センサ 15・・・回転数センサ 17・・・イグナイタ 19・・・排気温センサ 20・・・制御回路 代理人 弁理士 定立 勉 ほか1名 −16− 第1図 第2図 (B) (C) 第6図 (A) (B) 7、°“’l / (=)1
FIG. 1 is a basic configuration diagram of the present invention, FIG. 2 is an overall configuration diagram of an embodiment of the present invention, and FIG. 3 is a block diagram of its control circuit.
FIG. 4 shows flowcharts 1 to 5 showing the operation of the control circuit.
Figure (A) is a data table of target exhaust temperature, Figure 5 (B) is a graph showing the relationship between the difference △T between exhaust temperature and target exhaust temperature and the correction amount, Figure 5 (C ) is a graph showing the relationship between circumferential difference ΔT and corrected advance angle, FIG. 6 (A>
6 is a graph showing the relationship between the six guns and the correction amount in another control example, and FIG. 6(B) is a graph showing the relationship between the six guns and the correction advance angle in the control example. 5...Fuel injection valve 10...Intake air amount sensor 15...Rotational speed sensor 17...Igniter 19...Exhaust temperature sensor 20...Control circuit agent Patent attorney Tsutomu Sadachi and 1 other person-16 - Figure 1 Figure 2 (B) (C) Figure 6 (A) (B) 7, °“'l / (=)1

Claims (1)

【特許請求の範囲】 1 内燃機関の運転状態検出手段と、 内燃機関の排気温検出手段と、 内燃機関のシリンダへ燃料を供給する燃料供給手段と、 内燃機関のシリンダ内の空気と燃料との混合気に点火す
る点火手段と、 上記排気温検出手段により検出された排気温が上記運転
状態検出手段により検出された内燃機関の運転状態に応
じて設定された目標排気温に向って変化するように、上
記燃料供給手段から供給される燃料量及び上記点火手段
による点火時期を補正する演算制御手段と、 を備えた内燃機関の制御装置。 2 運転状態検出手段が内燃機関の回転数検出手段であ
り、演算制御手段が目標排気温を上記回転数検出手段に
より検出された回転数に応じて設−1= 定するよう構成されている特許請求の範囲第1項記載の
内燃i関の制御l装冒。 3 運転状態検出手段が内燃機関の回転数検出手段と内
燃機関の負荷検出手段とからなり、演算制御手段が目標
排気温を上記回転数検出手段により検出された回転数と
上記負荷検出手段により検出された負荷とに応じて設定
するよう構成されている特許請求の範囲第1項記載の内
燃機関の制御装置。 4 演算制御手段が、前記排気温検出手段により検出さ
れた排気温が目標排気温より高い場合に、前記燃料量を
増量側へ補正するとともに前記点火時期を進角側へ補正
するよう構成されている特許請求の範囲第3項記載の内
燃機関の制御装置。 5 演算制御手段が、前記排気温が目標排気温より低い
場合に前記燃料量を減量側へ補正するとともに前記点火
時期を遅角側へ補正するよう構成されている特許請求の
範囲第4項記載の内燃機関の制御装置。 6 演算制御手段が、前記排気温が目標排気温−2− より低い場合に、前記燃料量を減量側へ補正するととも
に、前記点火時期は補正しないよう構成されている特許
請求の範囲第4項記載の内燃機関の
[Scope of Claims] 1. An operating state detection means for an internal combustion engine; an exhaust temperature detection means for the internal combustion engine; a fuel supply means for supplying fuel to a cylinder of the internal combustion engine; an ignition means for igniting the air-fuel mixture; and an ignition means for causing the exhaust temperature detected by the exhaust temperature detection means to change toward a target exhaust temperature set according to the operating state of the internal combustion engine detected by the operating state detection means. A control device for an internal combustion engine, comprising: arithmetic control means for correcting the amount of fuel supplied from the fuel supply means and the ignition timing by the ignition means. 2. A patent in which the operating state detection means is a rotational speed detection means of an internal combustion engine, and the arithmetic control means is configured to set a target exhaust gas temperature in accordance with the rotational speed detected by the rotational speed detection means. A control system for an internal combustion engine according to claim 1. 3. The operating state detection means includes an internal combustion engine rotation speed detection means and an internal combustion engine load detection means, and the calculation control means detects the target exhaust gas temperature using the rotation speed detected by the rotation speed detection means and the load detection means. 2. The control device for an internal combustion engine according to claim 1, wherein the control device is configured to set the control device according to the applied load. 4. The arithmetic control means is configured to correct the fuel amount toward an increase side and advance the ignition timing when the exhaust gas temperature detected by the exhaust gas temperature detection means is higher than the target exhaust temperature. A control device for an internal combustion engine according to claim 3. 5. Claim 4, wherein the arithmetic control means is configured to correct the fuel amount to the reduction side and correct the ignition timing to the retard side when the exhaust gas temperature is lower than the target exhaust temperature. Control equipment for internal combustion engines. 6. Claim 4, wherein the arithmetic control means is configured to correct the fuel amount toward a reduction side and not correct the ignition timing when the exhaust gas temperature is lower than the target exhaust temperature -2-. of the internal combustion engine described
JP22668383A 1983-11-30 1983-11-30 Control device of internal-combustion engine Pending JPS60119344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22668383A JPS60119344A (en) 1983-11-30 1983-11-30 Control device of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22668383A JPS60119344A (en) 1983-11-30 1983-11-30 Control device of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS60119344A true JPS60119344A (en) 1985-06-26

Family

ID=16849013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22668383A Pending JPS60119344A (en) 1983-11-30 1983-11-30 Control device of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS60119344A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270660A (en) * 1985-09-24 1987-04-01 Yamaha Motor Co Ltd Ignition timing control method for engine
KR100422687B1 (en) * 1997-12-31 2004-06-16 현대자동차주식회사 Device for automatically controlling fuel amount of vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270660A (en) * 1985-09-24 1987-04-01 Yamaha Motor Co Ltd Ignition timing control method for engine
KR100422687B1 (en) * 1997-12-31 2004-06-16 현대자동차주식회사 Device for automatically controlling fuel amount of vehicle

Similar Documents

Publication Publication Date Title
JPH03271544A (en) Control device of internal combustion engine
JPH11210509A (en) Valve opening/closing characteristic controller for internal combustion engine
US4528956A (en) Method of and apparatus for controlling air-fuel ratio and ignition timing in internal combustion engine
JPS627374B2 (en)
JPS58176424A (en) Correction of irregularities of fuel controlling amount by engine cylinders
JP3331789B2 (en) Ignition timing control device for internal combustion engine
JPH0531643B2 (en)
KR100194174B1 (en) Fuel injection control device of internal combustion engine
JPS61185642A (en) Fuel injection timing controller for internal-combustion engine
JPS60119344A (en) Control device of internal-combustion engine
JPS59188057A (en) Method and device for controlling air-fuel ratio and ignition timing in internal-combustion engine
JPS58217745A (en) Air-fuel ratio control method for internal-combustion engine
JPH0932537A (en) Control device of internal combustion engine
JPS60119336A (en) Air-fuel ratio control device
JP4110534B2 (en) Variable valve control device for internal combustion engine
JP2615561B2 (en) Fuel injection amount control device for internal combustion engine
JP2506863Y2 (en) Engine idle speed controller
JPH0328581B2 (en)
JPS6172848A (en) Control device of fuel increase and ignition timing in internal-combustion engine
JPH0524342B2 (en)
JPS6073056A (en) Firing timing controller
JPS63162951A (en) Control method for ignition timing and air-fuel ratio of internal combustion engine
JPH0559262B2 (en)
JPS60209644A (en) Fuel injection control device for internal-combustion engine
JPH06146980A (en) Rotation speed controller for internal combustion engine