JPS6270660A - Ignition timing control method for engine - Google Patents

Ignition timing control method for engine

Info

Publication number
JPS6270660A
JPS6270660A JP21180685A JP21180685A JPS6270660A JP S6270660 A JPS6270660 A JP S6270660A JP 21180685 A JP21180685 A JP 21180685A JP 21180685 A JP21180685 A JP 21180685A JP S6270660 A JPS6270660 A JP S6270660A
Authority
JP
Japan
Prior art keywords
engine
exhaust gas
gas temperature
exhaust
ignition timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21180685A
Other languages
Japanese (ja)
Other versions
JPH0742913B2 (en
Inventor
Noritaka Matsuo
典孝 松尾
Yoshihiko Moriya
守屋 美彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP60211806A priority Critical patent/JPH0742913B2/en
Publication of JPS6270660A publication Critical patent/JPS6270660A/en
Publication of JPH0742913B2 publication Critical patent/JPH0742913B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Ignition Timing (AREA)

Abstract

PURPOSE:To improve the output of an engine in an engine speed range higher than one for the maximum torque by controlling the ignition timing to be delayed in angle from a specified value for increasing the exhaust gas temperature when the exhaust gas temperature in an exhaust pipe is dropped. CONSTITUTION:While an engine runs, an exhaust gas temperature signal from a temperature sensor 10, and an engine speed signal from an engine speed detector 13 are inputted into an ignition timing control device 12 through amplifiers 11 and 14. In this control device 12, the optimum exhaust gas temperature for the engine speed is read out from a memory means so as to allow the outputted optimum exhaust gas temperature to be compared with the inputted actual exhaust gas temperature. And an ignition device 15 is controlled in such a way that the ignition timing is set so as to allow the exhaust gas temperature to come close to the optimum exhaust gas temperature. That is, when the actual exhaust gas temperature is below the optimum exhaust gas temperature, the ignition timing is controlled to be delayed in angle from a specified value for increasing the exhaust gas temperature so as to increase the output of the engine.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エンジンの点火時期制御方法に係り、特に最
大1−ルク回転数以上の高速域での出力向上のための点
火時期制御に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an ignition timing control method for an engine, and particularly to ignition timing control for improving output in a high speed range of 1-lux rotation speed or more. It is.

(従来技術) エンジンの出力向上を図るため、排気管の動的効果いわ
ゆる慣性効果、脈動効果を利用して燃焼室内の点火前後
の圧力を上昇させることが知られている。
(Prior Art) In order to improve the output of an engine, it is known that the dynamic effect of the exhaust pipe, so-called inertia effect, and pulsation effect are used to increase the pressure in the combustion chamber before and after ignition.

ところで、最大トルクを出力する最大出力エンジン回転
数以上の高回転域では、高速走行により排気管が冷却さ
れることから排気温度が下降するため排気管端などから
の圧力反)1波が排気口に戻るタイミングが、最大トル
ク時に発生ずるベストタイミングより遅れ気味になり、
出力が低下する傾向にある。
By the way, in the high rotation range above the maximum output engine rotation speed that outputs the maximum torque, the exhaust pipe is cooled by high speed running, and the exhaust temperature decreases, so the pressure wave from the end of the exhaust pipe etc. The timing to return to is slightly delayed from the best timing that occurs at maximum torque,
Output tends to decrease.

ところで、シリンダ内のガス交換に関しては排気系にお
1fる動的効果すなわち慣性効果と脈動効果が大きく寄
与する。そして、この排気系にJ3G−Jるv1的効果
の大きな要因として(ま、排気系の排気温度が高く、そ
れに伴って音速が大ぎ<’Jること、排気を吹き出す時
は燃焼室内の圧力が排気管内の圧力に比べて大きく、容
易に臨界圧に達し、励起される@v」エネルギが大きく
なること、吹き出す圧力の最大値はエンジン回転数が高
い程人きくなリ、かつ排気の流出時間が短くなることで
ある。
By the way, with respect to gas exchange within the cylinder, dynamic effects, that is, inertial effects and pulsation effects in the exhaust system greatly contribute. The major factor behind the J3G-J v1 effect on this exhaust system is that the temperature of the exhaust gas in the exhaust system is high, and as a result, the speed of sound is high, and when exhaust is blown out, the pressure inside the combustion chamber is is larger than the pressure in the exhaust pipe, easily reaches the critical pressure, and the excited @v energy increases, and the maximum value of the blown pressure becomes less severe as the engine speed increases, and the exhaust gas flows out. The time is shortened.

そして、このような動的効果を得るには4サイクルエン
ジンの場合、排気行程の終りと吸気行程の始めの間で排
気弁と吸気弁とのオーバラップづるピストンの上死点近
くでIJ+気系からの負圧の反射波が排気弁に達してい
ればよく、このとき動的効果によりシリンダ内の新気へ
のガス交換が充分に行なわれる。
In order to obtain such a dynamic effect, in the case of a 4-stroke engine, the IJ + air system must be closed near the top dead center of the piston, where the exhaust valve and intake valve overlap between the end of the exhaust stroke and the beginning of the intake stroke. It is only necessary that the reflected wave of the negative pressure from the exhaust valve reaches the exhaust valve, and at this time, sufficient gas exchange with fresh air in the cylinder is performed due to the dynamic effect.

一方、2サイクルエンジンでシリンダに排気孔、邪気孔
がある場合は、楠気孔が開孔期間中に負圧反射波がυ1
気孔に達すると、この負圧波は燃焼室、IJI気通路を
経てクランクケース、吸気孔にまでおよぶ。このクラン
クケース内に達した負圧はクランクケース内により多く
の新気を吸込むために、次のリイクルには多くの新気を
燃焼室に送り出すことになる。負圧の後には正圧の反射
波が排気孔あるいは棉気孔に達し、新気の流出を防止J
る。
On the other hand, in a 2-cycle engine, if the cylinder has an exhaust hole or a negative air hole, the negative pressure reflected wave is υ1 during the period when the air hole is open.
Upon reaching the air pores, this negative pressure wave travels through the combustion chamber and IJI air passage to the crankcase and intake holes. This negative pressure that has reached the inside of the crankcase causes more fresh air to be sucked into the crankcase, so more fresh air will be sent into the combustion chamber during the next recycle. After negative pressure, the reflected wave of positive pressure reaches the exhaust hole or cotton pore, preventing fresh air from flowing out.
Ru.

以上のような好ましい排気脈動等を得る同調条件を満足
させる排気系の仕様は一般には最大トルク回転数で設定
されることが多い。一方、使用回転数が広範囲に亘るエ
ンジンにおいては全ての使用回転数で動的効果を利用す
る同調条f[を得ることは難しい。その理由としては、
排気弁および吸気弁は、エンジンの回転、つまりクラン
ク軸の回転に対応して開閉されてJ3す、回転数に応じ
て動的効果を利用できるように開目1時点を変えること
ができないためである。
The exhaust system specifications that satisfy the tuning conditions for obtaining preferable exhaust pulsation and the like as described above are generally set at the maximum torque rotation speed. On the other hand, in an engine that uses a wide range of rotational speeds, it is difficult to obtain a tuning line f[ that utilizes dynamic effects at all rotational speeds. The reason is that
Exhaust valves and intake valves are opened and closed in response to the rotation of the engine, that is, the rotation of the crankshaft. This is because the opening point cannot be changed so that dynamic effects can be utilized depending on the rotation speed. be.

ここで、エンジン回転数をN、排気脈動数をn1排気管
長をり、音速をaとすると、脈動数当たりに要する時間
t ハ、t=1/ (n−N/60)−・・(1)とな
る。また、この時間tは、排気管の長さLを音速で往復
する時間であり、t = 21/a・・・(2)となる
。したがって、脈動数nは、上記(1)(2)式より、
n= (60/N> ・<a/2L>−・・(3)とな
る。上記音速aはガスの絶対温度Tの平方根に比例する
ので、n■(60/N)−(JT/2[)・・・(4)
という関係が成存する。いま、排気脈動の同調条件にお
ける排気の絶対温度をTm、エンジンの回転数をNm、
排気管の長さを1−mとすると、同調した脈動数と同じ
である条f[は、(ETl、 1. l  −(J]i
ハi−L+n)   ・(51または、T = (N 
−L/Nm ・Lm)  ・1m−= (G)となる。
Here, if the engine speed is N, the number of exhaust pulsations is n1, the exhaust pipe length is subtracted, and the speed of sound is a, then the time required per number of pulsations is t, t=1/ (n-N/60) - (1 ). Moreover, this time t is the time for reciprocating the length L of the exhaust pipe at the speed of sound, and is t = 21/a (2). Therefore, from the above formulas (1) and (2), the pulsation number n is
n= (60/N>・<a/2L>−・・(3). Since the above sound speed a is proportional to the square root of the absolute temperature T of the gas, n■(60/N)−(JT/2 [)...(4)
This relationship exists. Now, under the exhaust pulsation tuning condition, the absolute temperature of the exhaust is Tm, the engine speed is Nm,
If the length of the exhaust pipe is 1-m, the line f[, which is the same as the synchronized pulsation number, is (ETl, 1. l - (J]i
High i-L+n) ・(51 or T = (N
-L/Nm ・Lm) ・1m-= (G).

このように排気脈動数を同調条件と同じにするにtよ、
排気系の良さ、つまり排気管の長さしを可変とし同調設
定回転数よりも高い回転数あるいは低い回転数に同調さ
せればよい。このようなものとして、特開昭55−11
2823号公報に示されるごとき2サイクルエンジン用
可変長排気管があるが、排気系の長さを可変とするため
排気系の構成が複雑となる。
In this way, to make the exhaust pulsation rate the same as the tuning condition,
The quality of the exhaust system, that is, the length of the exhaust pipe, can be made variable and tuned to a higher or lower rotational speed than the tuning setting rotational speed. As such, JP-A-55-11
There is a variable length exhaust pipe for a two-stroke engine as shown in Japanese Patent No. 2823, but since the length of the exhaust system is made variable, the configuration of the exhaust system is complicated.

また、上記同調設定回転数よりも低い回転数領域にd3
いて、排気温度を下げて排気の音速を遅くし、中速回転
数領域のトルクの同士を図ったものに、例えば特開昭5
8−74826号公報に示されるごとき2サイクルエン
ジンの拮気消音装置がある。ところが、この装置は、中
速回転数ff1hi!のトルクの向上を図っているに過
ぎず、高速回転数領域でのトルクの向上は図られていな
い。ところで、理論的にはエンジンの最大トルク回転数
以上の回転域では、排気管内の排気温度を−L ’74
させた方が燃焼室への圧力伝揺速度が上がり、充填効率
が高まり、出力の向−トが図れることが知られている。
In addition, d3 is applied to the rotation speed region lower than the tuning setting rotation speed.
For example, in JP-A No. 5, the exhaust gas temperature is lowered, the sound speed of the exhaust is lowered, and the torque in the middle speed range is improved.
There is an antagonism silencer for a two-stroke engine as shown in Japanese Patent No. 8-74826. However, this device has a medium rotation speed ff1hi! The aim is only to improve the torque in the high speed range, but not in the high speed range. By the way, theoretically, in the rotation range above the maximum torque rotation speed of the engine, the exhaust temperature in the exhaust pipe should be -L '74
It is known that by doing so, the speed of pressure transmission to the combustion chamber increases, the charging efficiency increases, and the output can be adjusted.

一方、点火時期は遅角されると、それに対応して排ガス
温度が1胃することも知られている。
On the other hand, it is also known that when the ignition timing is retarded, the exhaust gas temperature decreases accordingly.

(発明の目的) 本発明は、上記前踏に着眼してなされたもので高回転域
において、排気管内の排気温度が下がれば点火時期を所
定値よりも遅角させて排気管内の排気温度を上げるよう
に制御することにより、排気の動的効果を効率よく利用
でさるようにしたbのであって、これによって特に最大
トルク回転数以上の高速域での出力の向−Lが図れるエ
ンジンの点火時期制御方法を提供することを目的とする
(Object of the Invention) The present invention has been made with an eye on the above-mentioned problem, and in a high rotation range, when the exhaust gas temperature in the exhaust pipe decreases, the ignition timing is retarded from a predetermined value to lower the exhaust gas temperature in the exhaust pipe. By controlling the engine to increase the ignition speed, the dynamic effect of the exhaust gas can be used efficiently. The purpose is to provide a timing control method.

(発明の構成) 本発明は、動的効果を用いエンジン回転数に対する最大
トルクを出力し得る最適排気温度データを予め作成記憶
し、エンジン回転数に対する最適排気温度を上記データ
から読み出し、この読み出された最適排気温度と実際の
エンジン運転状態で検出された排気温度とを比較し、こ
の検出された排気温度が上記最適排気温度に近付くよう
に耐大トルク回転数以上の回転数領域において、点火U
)期を遅角制御するものである。
(Structure of the Invention) The present invention creates and stores in advance optimum exhaust temperature data that can output the maximum torque for the engine rotation speed using a dynamic effect, reads out the optimum exhaust temperature for the engine rotation speed from the above data, and reads out the optimum exhaust temperature data for the engine rotation speed. The optimum exhaust temperature detected by the engine is compared with the exhaust temperature detected under the actual engine operating conditions, and the ignition is controlled in the rotational speed range equal to or higher than the high-torque rotational speed so that the detected exhaust temperature approaches the optimum exhaust temperature. U
) phase is retarded.

この構成により、エンジン運転状態における排気温度が
最適排気温度に近付くように制御され、エンジンは上記
回転数領域での最高1〜ルク出力で運転される。
With this configuration, the exhaust gas temperature in the engine operating state is controlled so as to approach the optimum exhaust gas temperature, and the engine is operated at a maximum output of 1 to 1 lux in the above-mentioned rotational speed range.

(実施例) 図面において、1は2サイクルエンジン、2はシリンダ
、3はビス1〜ン、4はクランク室、5は燃焼室、6は
排気管である。上記シリンダ2には排気孔7、吸気孔8
、■気孔9が設けられ、その排気孔7には上記排気管6
が接続されている。この排気管6には実際のエンジン1
の運転状態における排気温度を検出づる温度検出手段ど
しての温度センサ10が設けられている。この温度セン
サ1Gの出力は、増幅器11を介して点火時期制御装置
12に与えられる。
(Example) In the drawings, 1 is a two-stroke engine, 2 is a cylinder, 3 is a screw, 4 is a crank chamber, 5 is a combustion chamber, and 6 is an exhaust pipe. The cylinder 2 has an exhaust hole 7 and an intake hole 8.
, ■ A hole 9 is provided, and the exhaust hole 7 is provided with the above-mentioned exhaust pipe 6.
is connected. This exhaust pipe 6 contains the actual engine 1.
A temperature sensor 10 is provided as a temperature detection means for detecting the exhaust temperature in the operating state of the engine. The output of this temperature sensor 1G is given to an ignition timing control device 12 via an amplifier 11.

また、点火時期制御装置12には、実際のエンジン1の
運転状態におけるエンジン回転数を検出するエンジン回
転数検出手段としてのエンジン回転数検出悉13からの
エンジン回転数が増幅器14を介して与えられる。また
、点火時期制御装置12には予め作成されたエンジン回
転数に対する最適排気温度を記憶する記憶手段が備えら
れている。点火時期制御装置12の出力は、点火装置1
5に与えられている。
Further, the ignition timing control device 12 is supplied with the engine rotation speed from an engine rotation speed detection unit 13 as an engine rotation speed detection means for detecting the engine rotation speed in the actual operating state of the engine 1 via an amplifier 14. . Further, the ignition timing control device 12 is equipped with a storage means for storing an optimal exhaust temperature for the engine rotation speed created in advance. The output of the ignition timing control device 12 is the output of the ignition timing control device 1
5 is given.

ここで、この実施例の動作説明に入る前にこの01作の
原理を説明しておく。たとえば、予め設定された点火時
期よりも遅れてエンジン1の点火動作を行なうと、燃焼
空5内の火炎核が所定時期より遅れて発生ずる。これに
よる着火遅れ191間は、ピストン3の上死点近くにな
るに従って未燃焼混合気の断熱圧縮による燃焼室5内の
温度上y7にJ、りわずかに短くなるが、燃焼期間は上
死点以降となり燃焼室5内ガスの冷却面積の増加、燃焼
全5内の容積変化率の減少により増加する。これにより
排気温度は設定回転数時の排気温度にり上界し、音速が
増加する。このためにエンジン1の最大i・ルクあるい
は最大トルク回転数時とほぼ同一のクランク角時に脈動
を同調させ1!/るので体積効率あるいは充填効率を増
加さU、出力の増加を図ることができる。
Here, before going into the explanation of the operation of this embodiment, the principle of this 01 work will be explained. For example, if the ignition operation of the engine 1 is performed later than a preset ignition timing, the flame kernel in the combustion air 5 will be generated later than the predetermined timing. The ignition delay 191 due to this becomes slightly shorter as the piston 3 approaches the top dead center by y7 J above the temperature in the combustion chamber 5 due to adiabatic compression of the unburned air-fuel mixture, but the combustion period becomes closer to the top dead center. From then on, it increases due to an increase in the area for cooling the gas in the combustion chamber 5 and a decrease in the rate of change in volume within the combustion chamber 5. As a result, the exhaust temperature rises above the exhaust temperature at the set rotation speed, and the sound speed increases. For this purpose, the pulsation is synchronized at a crank angle that is approximately the same as the maximum i-lux or maximum torque rotation speed of engine 1. / Therefore, the volumetric efficiency or filling efficiency can be increased, and the output can be increased.

次に、この実施例の動作を説明する。Next, the operation of this embodiment will be explained.

点火時期制御装置12の記憶手段は第2図(a)に特性
曲線a1で示すごとき、最大重・ルクを出力することが
できるエンジン回転数に対する最適排気管内ガス温度(
以下、最適排気温度という)のデータが予め記憶されて
いる。な、113、lJt気管の冷月1条件が一定の時
のエンジン回転数に対する排気管内ガス温度の特性を曲
線a2で示している。また、第2図(b)はエンジン回
転数に対するトルク出力の特性図で、曲線b1.b2は
それぞれ上記第2図(a)における曲線a1.a2に相
当する条件で得られる特性を示す。
The storage means of the ignition timing control device 12 stores the optimum exhaust pipe gas temperature (
Data regarding the optimum exhaust gas temperature (hereinafter referred to as the optimum exhaust temperature) is stored in advance. A curve a2 shows the characteristic of the exhaust pipe gas temperature with respect to the engine speed when the 113,1Jt tracheal cold month 1 condition is constant. Moreover, FIG. 2(b) is a characteristic diagram of torque output with respect to engine speed, and curve b1. b2 are the curves a1.b2 in FIG. 2(a) above, respectively. Characteristics obtained under conditions corresponding to a2 are shown.

いま、エンジン1が始動し作動状態に入るど、温度セン
サ10からの排気温度信号J5よびエンジン回転数検出
器13からの回転数信局は増幅器11および14で屑綿
され、点火時期制御装置12に入力される。また、点火
時1111制御装置12は入力された回転数信号に対す
る最適排気温度を記憶手段から読み出し、この読み出さ
れた最適排気温度と入力された排気温度とを比較し、こ
の排気温度が最適排気温度に近付くように点火時期を設
定し、この点火IXf期により点火装置15を制御して
エンジン1を駆動づる。
Now, when the engine 1 starts and enters the operating state, the exhaust temperature signal J5 from the temperature sensor 10 and the rotational speed signal from the engine rotational speed detector 13 are filtered by amplifiers 11 and 14, and then sent to the ignition timing control device 12. is input. In addition, at the time of ignition, the control device 12 reads the optimum exhaust temperature for the input rotation speed signal from the storage means, compares the read optimum exhaust temperature with the input exhaust temperature, and determines whether this exhaust temperature is the optimum exhaust temperature. The ignition timing is set so as to approach the temperature, and the ignition device 15 is controlled by this ignition IXf period to drive the engine 1.

すなわら、エンジン回転数が第2図に示す最大トルク回
転数Nm(最大出力を発生するときのエンジン回転数)
より低く、検出された排気温度が曲線(a2)に相当し
て最適排気温度(al)J:り高いとぎ、排気温度が最
適排気温度(al)に近付くまで点火時期を所定値より
進角さUていく。
In other words, the engine rotation speed is the maximum torque rotation speed Nm (engine rotation speed when maximum output is generated) shown in Figure 2.
When the detected exhaust temperature corresponds to the curve (a2) and the detected exhaust temperature is higher than the optimum exhaust temperature (al), the ignition timing is advanced from the predetermined value until the exhaust temperature approaches the optimum exhaust temperature (al). I'm going to U.

これにより排気温度が下がるので第2図(b)の曲線b
2に相当するトルク出力は曲線b1で示す高トルク出力
に近付き、エンジン出力が大きくなる。
This lowers the exhaust temperature, so curve b in Figure 2(b)
The torque output corresponding to 2 approaches the high torque output shown by curve b1, and the engine output increases.

一方、エンジン回転数が最大トルク回転数Nmより高く
、検出された排気温度が最適排気温度(al)より低い
とき、排気温度が最適排気温度(al)に近付くまで点
火時1111を所定値より遅角させていく。これにより
、排気温度が上がるので1〜シルク力曲線b]で示す高
1〜ルク出力に近付き、エンジン出力が大きくなる。
On the other hand, when the engine speed is higher than the maximum torque rotation speed Nm and the detected exhaust temperature is lower than the optimum exhaust temperature (al), the ignition time 1111 is delayed from the predetermined value until the exhaust temperature approaches the optimum exhaust temperature (al). Make it corner. As a result, the exhaust gas temperature increases, approaching the high 1-lux output shown in the 1-silk force curve b], and the engine output increases.

第3図は排気管6の冷却の強弱に対する排気温度の関係
図で、曲線C1は本発明の排気温度に基づいた点火時期
制御を行なった場合の特性、曲線C2は排気温度によら
ず点火時11J固定(エンジン回転数のみの制御)の場
合の特性を示す。同図から判るように本発明の制御方法
によれば、排気温度変化幅(曲線C1に相当)が、排気
温度によらず点火時期固定の場合の排気温度変化幅(曲
FII02に相当)に比べ小さくなり、特に排気管6の
冷却が弱い場合の排気管6の過熱を防止することができ
、出力面および熱的面の双方の利点が得られる。
FIG. 3 is a diagram showing the relationship between exhaust temperature and the strength of cooling of the exhaust pipe 6. Curve C1 is the characteristic when ignition timing control is performed based on the exhaust temperature of the present invention, and curve C2 is the characteristic when ignition is performed regardless of the exhaust temperature. The characteristics are shown when 11J is fixed (controlling only the engine speed). As can be seen from the figure, according to the control method of the present invention, the range of change in exhaust temperature (corresponding to curve C1) is greater than the range of change in exhaust temperature (corresponding to curve FII02) when the ignition timing is fixed regardless of the exhaust temperature. This makes it possible to prevent the exhaust pipe 6 from overheating, especially when the cooling of the exhaust pipe 6 is weak, and provides advantages in both output and thermal aspects.

(発明の効’A> 以上のように本発明によれば、動的効果を用いエンジン
回転数に対する最大トルクを出力できる最適排気温度デ
ータを予め作成記憶し、運転中に検出されたエンジン回
転数に対する上記最適排気温度を読み出すとともに、運
転中の排気温度を検出し、この(B気温度が最適排気温
度に近付くように特に最大i〜シルク転数以上の高回転
数域において、点火「、1朋をR角制御することにより
、最大トルク回転数以上の高速域における出力トルクの
向上を図りエンジン出力を高めることができる。
(Advantage 'A' of the invention) As described above, according to the present invention, optimum exhaust temperature data that can output the maximum torque with respect to the engine rotation speed is created and stored in advance using a dynamic effect, and the engine rotation speed detected during operation is stored. At the same time as reading the optimum exhaust temperature for By controlling the R angle of the engine, it is possible to improve the output torque in the high speed range above the maximum torque rotation speed and increase the engine output.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のエンジンの点火1.1期制御方法を実
施りるための点火装置の一例を示す構成図、第2図(a
)は上記制御方法を説明するためのエンジン回転数に対
する排気管内ガス温度の特性図、第2図(b)は上記制
御方法を説明するため゛のエンジン回転数に対するトル
ク出力の特性図、第3図は排気管を冷7uJする冷却風
速に対するtn気淘度の関係図である。 1・・・エンジン、6・・・排気管、10・・・温度セ
ンサ、12・・・点火時期制御装置(記憶データを含む
)、13・・・エンジン回転数検出各、15・・・点火
装置。 特許出願人     ヤマハ発動機株式会社ms  図 第  3  図 一弱     力夫丁工Lit      −5較−L
−″(”−3−jやピ 手続ネ111正書(方式) %式% 2、発明の名称 エンジンの点火時1!IJ制御方法 3、補正をする者 事件との関係  特許出願人 名称  (AO7)〜7マハ発動機株式会社4、代理人 住所 大阪市西区西木町1丁目10番3月5、補正命令
の日付 1tft相61年1月28日 it図
FIG. 1 is a configuration diagram showing an example of an ignition device for implementing the engine ignition 1.1 period control method of the present invention, and FIG.
2(b) is a characteristic diagram of torque output versus engine speed for explaining the above control method. The figure is a diagram showing the relationship between the tn air flow rate and the cooling air velocity that cools the exhaust pipe by 7 uJ. DESCRIPTION OF SYMBOLS 1... Engine, 6... Exhaust pipe, 10... Temperature sensor, 12... Ignition timing control device (including memory data), 13... Engine rotation speed detection each, 15... Ignition Device. Patent applicant: Yamaha Motor Co., Ltd. ms Figure 3 Figure 1 L
-''(''-3-j and Pi procedure number 111 official text (method) % formula % 2, Name of the invention When the engine ignites 1! IJ control method 3, Person making the amendment Relationship with the case Patent applicant name ( AO 7) ~ 7 Maha Motor Co., Ltd. 4, Agent Address: March 5, 1-10 Nishiki-cho, Nishi-ku, Osaka City, Date of Amendment Order: 1 tft, January 28, 1961 IT Map

Claims (1)

【特許請求の範囲】[Claims] 1、動的効果を用いエンジン回転数に対する最大トルク
を出力し得る最適排気温度データを予め作成記憶し、エ
ンジン回転数に対する最適排気温度を上記データから読
み出し、この読み出された最適排気温度と実際のエンジ
ン運転状態で検出された排気温度とを比較し、この検出
された排気温度が上記最適排気温度に近付くように最大
トルク回転数以上の回転数領域において、点火時期を遅
角制御することを特徴とするエンジンの点火時期制御方
法。
1. Create and store in advance optimal exhaust temperature data that can output the maximum torque for the engine speed using dynamic effects, read the optimal exhaust temperature for the engine speed from the above data, and compare this read optimal exhaust temperature with the actual The exhaust temperature is compared with the exhaust temperature detected under the engine operating condition, and the ignition timing is retarded in the rotation speed region above the maximum torque rotation speed so that the detected exhaust temperature approaches the optimum exhaust temperature. Features: Engine ignition timing control method.
JP60211806A 1985-09-24 1985-09-24 Engine ignition timing control method Expired - Fee Related JPH0742913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60211806A JPH0742913B2 (en) 1985-09-24 1985-09-24 Engine ignition timing control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60211806A JPH0742913B2 (en) 1985-09-24 1985-09-24 Engine ignition timing control method

Publications (2)

Publication Number Publication Date
JPS6270660A true JPS6270660A (en) 1987-04-01
JPH0742913B2 JPH0742913B2 (en) 1995-05-15

Family

ID=16611908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60211806A Expired - Fee Related JPH0742913B2 (en) 1985-09-24 1985-09-24 Engine ignition timing control method

Country Status (1)

Country Link
JP (1) JPH0742913B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088870A (en) * 1983-10-21 1985-05-18 Mazda Motor Corp Ignition timing controller for engine
JPS60119344A (en) * 1983-11-30 1985-06-26 Nippon Denso Co Ltd Control device of internal-combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088870A (en) * 1983-10-21 1985-05-18 Mazda Motor Corp Ignition timing controller for engine
JPS60119344A (en) * 1983-11-30 1985-06-26 Nippon Denso Co Ltd Control device of internal-combustion engine

Also Published As

Publication number Publication date
JPH0742913B2 (en) 1995-05-15

Similar Documents

Publication Publication Date Title
US5159910A (en) Lubricating apparatus for internal combustion engine
JP2007211730A (en) Reciprocating internal combustion engine
US20170130658A1 (en) Vacuum control via a compressor bypass valve in a twin-compressor engine system
US5201907A (en) Internal combustion engine
US5782226A (en) Method of reducing the harmful emissions of a multicylinder internal combustion engine
US4608952A (en) Balancer control device for multiple-cylinder four-cycle engine
KR101771976B1 (en) Combustion engine, fresh air system and associated operating method
JPH0240042A (en) Fuel injection control device for 2-cycle direct injection engine
JP2001342838A (en) Diesel engine having supercharger
JPS6270660A (en) Ignition timing control method for engine
JP2004507651A (en) Method of controlling compression ratio in an internal combustion engine
US4819590A (en) Control valve driving device in an internal combustion engine
EP1353057A1 (en) Spontaneous intake type internal combustion engine for vehicles
JP2002242739A (en) Control device for diesel engine
JPS61112728A (en) Exhaust system for two cycle internal combustion engine
JPH07259707A (en) Fuel injection method in fuel injection type two-cycle engine
JP3361432B2 (en) Exhaust pulsation control method and apparatus in internal combustion engine
JPH0626413A (en) Control device for two cycle engine
JP2018076828A (en) Control device of engine
JPH07224741A (en) Fuel injection type two-cycle engine
JP2002195073A (en) Electronic fuel injection control device of two-cycle engine
Ospring et al. Comparison of computer predictions and experimental tests for two-stroke engine exhaust systems
JP3136040B2 (en) 2 cycle engine
JPS6121444A (en) Balancer control device for 4-cycle 2-cylinder operation engine
JP3229355B2 (en) Exhaust gas purifier for diesel engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees