JPS58176424A - Correction of irregularities of fuel controlling amount by engine cylinders - Google Patents

Correction of irregularities of fuel controlling amount by engine cylinders

Info

Publication number
JPS58176424A
JPS58176424A JP6016482A JP6016482A JPS58176424A JP S58176424 A JPS58176424 A JP S58176424A JP 6016482 A JP6016482 A JP 6016482A JP 6016482 A JP6016482 A JP 6016482A JP S58176424 A JPS58176424 A JP S58176424A
Authority
JP
Japan
Prior art keywords
engine
cylinder
fuel injection
cylinders
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6016482A
Other languages
Japanese (ja)
Inventor
Toshimi Matsumura
敏美 松村
Akira Masuda
明 益田
Masahiko Miyaki
宮木 正彦
Hitoshi Tomijima
冨島 均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP6016482A priority Critical patent/JPS58176424A/en
Priority to US06/482,884 priority patent/US4495920A/en
Priority to DE19833312697 priority patent/DE3312697A1/en
Publication of JPS58176424A publication Critical patent/JPS58176424A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To make it possible to correct the amount of fuel injection by cylinders by a method wherein in the case of a fuel injection device for an internal- combustion engine, the amount of fuel injection by cylinders is corrected in proportion to the difference between the average engine rotation speed and the engine rotation speed corresponding to each of the cylinders. CONSTITUTION:When the amount (e) of fuel injection by cylinders becomes irregular as a result of irregularities of the surface areas of the openings of fuel injection valves among the cylinders occurring due to a manufacturing tolerance or a secular change, the engine rotation speed becomes irregular as shown by the left hand side graph (a). To overcome such difficulties, a study amount K1 is first obtained on the base of the difference between the average value N of the engine rotation speed and the actual engine rotation speed N1 as shown by the right hand side graph (c) and then the fuel controlling amount T1 is corrected for each of the cylinders as shown by the right hand side graph (d). As a consequence, the amount (q1) of fuel supply becomes equal for each of the cylinders as shown by the graph (e).

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はエンジンシリンダ別燃利調聞バラツ4:補正方
法、特に多シリンダエンジンの気筒相Ti間にお
The present invention provides a method for correcting engine cylinder fuel adjustment variation 4, especially between cylinder phases Ti of a multi-cylinder engine.

【プる
燃料噴射量のバラツキをエンジン回転速度にもとづいて
?IIi正Jるエンジンシリンダ別燃料調量バラツキ補
正方法に関でるものである。 自動車等における電子制御式のエンジン・コントロール
・システムにおいて、燃料噴射弁からの燃料噴射量を制
御する燃料噴射制御がある。 従来、多シリンダエンジンの燃料噴射制御は、燃料噴射
量を全気筒其通に一律に制御していた。 −2− 即ち各気筒の燃料噴射弁の開弁時間を全気筒共通に同−
制御量で制御していた。 しかし、製造公差あるいは杆部変化などにj;り気筒相
互間で燃料噴射弁の開口面積にバラツキを生ずるなどし
て気筒別の燃料哨III吊にバラツ1を生じ、ぞの結果
安定した燃焼が得られず、排ガス中の有害成分が増大し
たりエンジン回転時特にアイドル回転時にお(jるドラ
イバビリテrを損うというような問題が生じ易かった3
、゛ 本発明は上記の点を解決することを目的とし、各気筒毎
に適正な燃料噴射量を決定し上記の如き=[ミッション
を良好にすることができしかもドライバビリティの向上
を図るものである。そのため本発明のTンジンシリンダ
別燃料調邑バラツキ補正方法は多シリンダ1ンジンの各
シリンダに対応するエンジン回転速度にもとづいて燃料
噴射弁の燃料lit躬吊を調節する方法であ?て、該エ
ンジンの全シリンダに対応Jる平均回転速度と各シリン
ダに対応する回転速度との(9i差に応じてシリンダ別
の燃料噴+3J@を補正することを特徴とする。以−3
− 下図面を参照しつつ本発明4説明する。 第1図は本発明が適用されるエンジン・コントロール・
システムの一例である4気筒ガソリンエンジン・システ
ムの概略構成図を示している。 第1図において、]ニンジン1は自動車に積載される公
知の4サモ 焼用空気を■アクリーチ2、吸気管3、ス[]ットル弁
4を経て吸入Jる。また燃料は図示しない燃料系から各
気筒に対応して設けられた電磁式の燃料噴射弁5を介し
て供給される。燃焼後の排気ガスは排気マニホールド6
、排気管7、触媒]ンバータ8等を経て大気に放出され
る。吸気管3にはJンジン負荷信号としてスロットル開
度に応じた$ アナ[]ググミを出力するボテンシ」メータ式の開度ワ
1ヘル開度センサー1及びエンジン1に吸入される空気
の潤度を検出し、吸気温に応じたアナログ電圧(アナロ
グ検出信@)を出力づるサーミスタ式の吸気温センサー
2がそれぞれ設置されている。また、エンジン1には冷
入り水温を検出し、冷却水温に応じたアナログ電圧(ア
ナログ検出信号)−4− を出力Jる1ノ一ミスタ式の水温センサ13が設置され
ている。回転速度〈数)センサ15は、エンジン1のク
ランク軸の回転)*度(回転数)を検出し、回転速度に
応じた周波数のパルス信号を出力Jる。 シリンダ判別センサ16は各シリンダの燃焼順序に応じ
て燃料を供給する各シリンダを特定するため基準どなる
第1シリンダの噴tAIIWにパルス信号を出力する。 制御回路20は、各センサ11〜16の検出信号にもと
づいて燃料噴射量を演綽する回路で、各シリンダごとの
電磁式燃料噴射弁5の開弁時間を制御することにより燃
料噴射量を調整する。 第2図により制御回路20について説明する。 100は燃料噴0」邑を演稗するマイク[1プロセツυ
(CPU)である。101は回転数カウンタで回転速度
(数)センリー15 hs +ろの信号より王ンジン回
転数をカウントする回転数カウンタである。 またこの回転数カウンタ101はエンジン回転に同期し
て割り込み制御部102に割り込み指令信−5− 号を送る。割り込み制御部102はこの信号を受けると
、コモンバス150を通じてマイクロプロセッサ100
に割り込み信号を出力する。103はデジタル入力ポー
トで燃料を供給するシリンダを示Jパルス信号を発生す
るシリンダ判別センυ−16からの信号等のデジタル2
進信号をマイクロプロセッサ100に伝達Jる。104
はアナログマルチプレクサとA−D変換器から成るアナ
ログ入カポ−[〜でスロットル開磨センザ11、吸気温
センサ12、冷却水温センサ13からの各信号をA−D
変換して順次マイクロプロセッサ100に読み込ませる
機能を持つ。これら各ユニット101.102.103
.104の出力情報はコモンバス150を通してマイク
ロプロセッサ100に伝達される。105は電源回路で
後)ホするRAM107に電力を供給する。17はバッ
テリ、18はキースイッチであるが電源回路105はキ
ースイッチ18を通さず直接、バッテリ17に接続され
ている。よって後述するRAM107はキースイッチ1
8に関係無く常時電源が印加されている。 −6− 106も電源回路であるがキースイッチ18を通してバ
ッテリ17に接続されている。電源回路106は後)ホ
】るR A M 107以外の部分に電源を供給する。 107はプログラム動作中一時使用される一時記gAユ
ニット(RAM)であるが前)ホの様にキースイッチ1
8に関1系なく常時電源が印加されキースイッチ18を
OFFにし−(機関の運転を停止lシ(ら記憶内容が消
失しない構成となっていて不揮発性メモリをなづ。10
8はプログラムや各種の定数等を記憶しておく読み出し
専用メ[す(ROM >である。109はレジスタを含
む燃料噴射時間制御用カウンタでダウンカウンタより成
り、マイク[]ププロセラ1ノCPU)100で演算さ
れた電磁式燃料噴削弁5の開弁時間つまり燃料噴剣量を
表わすデジタル信号を実際の電磁式燃料噴躬弁5の開弁
時間に対応しIこパルス時間幅のパルス信号に変換する
。110は電磁式燃料噴射弁5を駆動する電力増幅部で
あ兆。111はタイマーで経過時間を測定し、CPU1
00に伝達Jる。回転数カウンタ101は回転数セン4
f 15の−7− 出力によりエンジン半回転に1回エンジン回転数を測定
し、イの測定の終了時に割り込み制御部102に割り込
み指令信号を供給する。割り込み制御部102はその信
号から割り込み信号を発生し、マイクロプロセッサ10
0に燃料噴躬吊の演算を行なう割り込み処理ルーチンを
実行させる。 第3図はマイクロプロセッサ100の概略70−ヂヤー
トを示ず。以下、このフローチiy−トにもとづきマイ
クロプロセッサ100の機能を説明すると共に構成全体
の作動をも説明・づ゛る。 キースイッチ18がオンすると同時に、ROM108内
に予め用意されたプログラムがスタートし、まずステッ
プ100で後続の処理に先立って初期化の処理を実行す
る。 ステップ101ではエンジン回転速度Ni とスロット
ール開度αを取り込み、該ステップNi1αからステッ
プ102で基本噴側量TOを粋出覆る。 次にステップ103では冷却水温T HW 、吸気温T
 11 Aを取り込み、該THW、THAからステップ
104で補正係数f  (THW) 、f  (THA
)−8= を求めて、ステップ102で求めた基本噴射MTOをT
oXf(T)−1△)xf(TI−(W)と補正を行な
う。 ステップ105では基本噴tA量Toがとの気筒用のも
のかをシリンダ判別センサ16からのG信号入力後の回
転数センサ15からのNe信号の入力回数により判定覆
る。 ステップ106では不揮発性メモリ107内にある学習
補正量Kiを取り出し、ステップ107では学習補正量
KiにJ:り基本噴69時間TOを補正して出力噴射時
間1− iをToX(1+Ki)とし、ステップ108
で出力づる。 ステップ109〜110の間では、エンジン負荷および
エンジン回転速度の安定状態を判別し、安定状態の時の
みステップ111へ進む。非安定状態の時はステップ1
25へ進み、メモリ107内の後述するエンジン回転速
度積算値ΣNiをクリアして偏った気筒のエンジン回転
数データで学習補正をしない様にしている。 上述の安定状態の判別は次の様に実施している。 −9− 即ち、ステップ109ではエンジン回転速度変化量おJ
、びエンジン負荷変化量(ΔN=Ni−+−Niおにび
Δα−αi l−αi)がそれぞれ各所定値以下かどう
かを判別し、当該変化量が所定値以下の場合は更にステ
ップ110に進み、確実な学習のために、負荷変化が無
くなってからエンジン状態が安定になるまでのディレィ
判定を行なう。 そして所定ディレィ後はステップ111に進む、7ステ
ツプ111から115間では学習のための気筒別のTン
ジン回転速磨Niを取り込み後述するステップ116に
おける比較基準を算出する。 即ちステップ111では燃料噴射後の燃料がエンジン[
ヘルクどして反映されるまでのディレィを考慮し、所定
ディレィ中はこのルーチンから抜けてステップ125へ
進むが、所定ディレィ後はステップ112に進む。 ステップ112では燃料がエンジン出力として反映され
た時のエンジン回転速度Niをメモリ107内にあるエ
ンジン回転速度積算値ΣN1に加えて新たなΣNi と
する。 −10− ステップ113では前ステップ112で粋出したエンジ
ン回転速度積算値ΣNiをメモリ107に格納する。 ステップ114ではエンジン回転速度Niの取り込み回
数が所定回数(気筒数の整数倍)と一致したかどうかを
判定し、所定回数に満たない場合は本ルーチンから汰け
て次のエンジン回転速度N1をサンプリングづるステッ
プ101にジVンプづるが、所定回数になった場合には
ステップ115に進む。 ステップ115では所定回数取り込んだ後のエンジン回
転速度積算値ΣNiの平均値付を算出して、ステップ1
16では該平均値&と現在のエンジン回転速度Niとの
差(ΔN=Ni−艮)が正か、負かあるいは等しいかの
判別を行ない、エンジン回転速度Niが平均値付より大
ぎい場合は当該気筒の燃料噴躬崩が多いと判定しステッ
プ117に進むが、エンジン回転速度N1が平均値&よ
り小さい場合は当該気筒の燃料噴銅吊が少ないと判定し
てステップ118に進み、エンジン回転速−11一 度N1が平均値Nと等しい場合はステップ119に進む
。 ステップ117ではステップ108での出力噴射時間T
iから単位補iE吊ΔTを減じ、ステップ118では出
力噴射時間Tiに単位補正量Δ丁を加え、ステップ11
9では出力噴射時間Tiをそのままとし、それぞれ補正
出力噴射時間Ti −とする。 ステップ120では補正出力噴射時間T1−とステップ
104で求めた温度補正後の基本噴射時間Toとの差を
とり、単位補正量積算値(ΣΔT)iを求める。 ステップ121ではステップ120で求めたくΣΔT)
iが所定値以上であるがどうかを判別し、所定値以上の
場合は何らかの異常があるとしてステップ123へ進み
、学冒値Kiをクリアする。一方、所定伯未渦の場合は
正常としてステップ122で単位補正量積算値(ΣΔ下
)iとステップ104で求めた基本噴射時間Toとの比
即ち字間補正値Kiを求め、基本噴射時間Toに対して
m−12一 定比率で補正出来る様にづる。 ステップ124では学習補正IKiを不揮発性メモリ1
07に配憶して、次回の:[レジン稼動時の出力噴射時
間Ti痺出に利用する。 マイクロプロセッサの機能は以上の通りである。 以上の様にして字間値Kiを各気筒別に補正し各シリン
ダ相互間の燃料r141)l聞差をなく】ようにづる。 第4図および第5図は上述した如き実施例を従来例と比
較して具体的に説明するためのタイムヂャートを示して
おり、第4図が従来例に対応覆るもの、第5図が本実施
例に対応するものとして表わしている。 従来の方法においては、第4図に図示する如く、エンジ
ン回転速度Niが気筒間での供給燃料量のバラツキによ
り(a >に示す如く気筒間でバラツキを生じていても
、基本制御量Toおにび学習値Kiをイれぞれ(1))
および(C)に示J如く一定に設定しであることから燃
料制御ITi(−To*(1→−Ki))は(d )に
示す如く一定となり、−13− このため供給燃料量qiは(e)に示づ如く依然として
気筒間でバラツキをもち、この結果エンジン回転速度N
iは修正されずバラツキを生じたままの状態とされる。 これに対し、本実施例においては、第4図の(a )に
示す如くエンジン回転速度Niにバラツキが弁士づると
、第5図に図示する如く、学習量Kiを<G )に示す
如く気筒別に補正するため燃料制御部7iは(d )に
示(−如きものとなり、この結果供給燃料量qiは(e
)に示づ如く気筒間でのバラツキが解消されて金気筒に
ついて同一の値をもつようになる。従ってエンジン回転
速度Niは<a >に示ず如く気筒間でのバラツキが解
消し金気筒について同一の値となり回転ムラのない運転
状態となる。 第6図は−1−)ホした単位補正量Δ丁を設定J°るに
当っての他の実施例を示しており、第6図<A)は単位
補正量Δ丁をエンジン回転速度積算値ΣNiの平均値付
と現在のエンジン回転速度Niとの差ΔNに比例した値
とする実施例を示し、一方第一  14 − 6図(B)は甲債補正吊Δ丁を上記差ΔNが大きくなる
にしたがって大ぎな値とするよう設定した実施例を示し
ている。 このように単位補i1:@八Tを設定JることにJ、す
、精度が高くしかも迅)朱なバラツキ修正を行ない得る
。 以上説明した如く本発明は多シリンダエンジンの各シリ
ンダに対応づるエンジン回転速度にもとづいて燃料噴射
弁の燃料噴l1)J開を調節づる方法であって、該エン
ジンの全シリンダに対応する平均回転速度と各シリンダ
に対応づる回転速度との偏差に応じてシリンダ別の燃料
噴Di量を補正するようにした。 このため本発明によれば気筒間で燃料IIJ11躬聞に
バラツキを生ずるようになって6適切な修正を行なうた
め金気筒について均一な燃料噴削吊に補正でき、このI
こめエミッションの改善、ドライバビリティの向上を充
分に達成讐ることが可能になる。 更にアイ1ミル運転の安定性向上により燃費の改善を図
ることもできる。 −15− なお上)ホした実施例はガソリンエンジンに本発明を適
用したものであるが、本発明はこれに限定されずディー
ゼル]〕ンジンにも適用し得ることは言うまでもない。
[Is the variation in fuel injection amount based on engine speed? The present invention relates to a method for correcting fuel metering variation for each engine cylinder. BACKGROUND ART In electronic engine control systems for automobiles and the like, there is fuel injection control that controls the amount of fuel injected from a fuel injection valve. Conventionally, fuel injection control for multi-cylinder engines uniformly controls the fuel injection amount to all cylinders. -2- In other words, the opening time of the fuel injection valve of each cylinder is the same for all cylinders.
It was controlled by a control amount. However, due to manufacturing tolerances or changes in the rod section, variations occur in the opening area of the fuel injector between cylinders, resulting in variations in the fuel flow rate of each cylinder, resulting in stable combustion. This tends to cause problems such as an increase in harmful components in the exhaust gas and a loss of drivability during engine rotation, especially when idling.
, ``The present invention aims to solve the above-mentioned problems, and determines an appropriate fuel injection amount for each cylinder so as to improve the transmission as described above and improve drivability. be. Therefore, the method of correcting the fuel adjustment variation for each cylinder of a T-engine according to the present invention is a method of adjusting the fuel adjustment of the fuel injection valve based on the engine rotational speed corresponding to each cylinder of a multi-cylinder engine. It is characterized in that the fuel injection +3J@ for each cylinder is corrected according to the difference (9i) between the average rotational speed corresponding to all cylinders of the engine and the rotational speed corresponding to each cylinder.
- The present invention 4 will be explained with reference to the drawings below. Figure 1 shows an engine control system to which the present invention is applied.
1 shows a schematic configuration diagram of a four-cylinder gasoline engine system, which is an example of the system. In FIG. 1, a carrot 1 inhales air for roasting sardines, which is known in the art and is carried in an automobile, through an air reach 2, an intake pipe 3, and a throttle valve 4. Further, fuel is supplied from a fuel system (not shown) through electromagnetic fuel injection valves 5 provided corresponding to each cylinder. Exhaust gas after combustion goes to exhaust manifold 6
, exhaust pipe 7, catalyst] inverter 8, etc., and is released into the atmosphere. The intake pipe 3 is equipped with a meter-type opening sensor 1 that outputs the engine load signal that corresponds to the throttle opening. A thermistor-type intake temperature sensor 2 is installed, which detects the intake temperature and outputs an analog voltage (analog detection signal@) according to the intake temperature. Further, the engine 1 is equipped with a one-noise, one-mister type water temperature sensor 13 that detects the temperature of the coolant water and outputs an analog voltage (analog detection signal) -4- corresponding to the coolant temperature. The rotational speed (number) sensor 15 detects the rotation of the crankshaft of the engine 1 (in degrees) (rotational speed) and outputs a pulse signal with a frequency corresponding to the rotational speed. The cylinder discrimination sensor 16 outputs a pulse signal to the injection tAIIW of the first cylinder, which is a reference signal, in order to specify each cylinder to which fuel is to be supplied according to the combustion order of each cylinder. The control circuit 20 is a circuit that manipulates the fuel injection amount based on the detection signals of the sensors 11 to 16, and adjusts the fuel injection amount by controlling the opening time of the electromagnetic fuel injection valve 5 for each cylinder. do. The control circuit 20 will be explained with reference to FIG. 100 is a fuel injection 0" microphone [1 processor υ
(CPU). Reference numeral 101 denotes a rotation number counter that counts the engine rotation number based on a signal from the rotation speed (number) sensor 15hs+ro. Further, this rotation number counter 101 sends an interrupt command signal -5- to the interrupt control section 102 in synchronization with the engine rotation. When the interrupt control unit 102 receives this signal, it interrupts the microprocessor 100 via the common bus 150.
Outputs an interrupt signal to. 103 is a digital input port indicating the cylinder to which fuel is supplied
The forward signal is transmitted to the microprocessor 100. 104
is an analog input coupler consisting of an analog multiplexer and an A-D converter.
It has a function of converting the data and sequentially reading it into the microprocessor 100. Each of these units 101.102.103
.. The output information of 104 is communicated to microprocessor 100 via common bus 150. Reference numeral 105 is a power supply circuit which supplies power to the RAM 107 which will be described later. 17 is a battery, and 18 is a key switch, but the power supply circuit 105 is directly connected to the battery 17 without passing through the key switch 18. Therefore, the RAM 107, which will be described later, is the key switch 1.
Power is always applied regardless of 8. -6- 106 is also a power supply circuit, but it is connected to the battery 17 through the key switch 18. The power supply circuit 106 supplies power to parts other than the RAM 107 (see below). 107 is a temporary memory gA unit (RAM) that is used temporarily during program operation, but the key switch 1 is
8, the power is always applied regardless of the system, and the key switch 18 is turned OFF to stop the engine operation.
8 is a read-only memory (ROM) for storing programs and various constants, etc. 109 is a fuel injection time control counter including registers, which consists of a down counter, The digital signal representing the opening time of the electromagnetic fuel injection valve 5 calculated in , that is, the amount of fuel injector is converted into a pulse signal with a pulse time width of I corresponding to the actual opening time of the electromagnetic fuel injection valve 5. Convert. 110 is a power amplification unit that drives the electromagnetic fuel injection valve 5; 111 measures the elapsed time with a timer, and
Transfer to 00. The rotation number counter 101 is the rotation number sensor 4.
The engine rotation speed is measured once every half rotation of the engine based on the -7- output of f15, and an interrupt command signal is supplied to the interrupt control unit 102 at the end of the measurement in (a). The interrupt control unit 102 generates an interrupt signal from the signal and sends it to the microprocessor 10.
0 to execute an interrupt processing routine that performs fuel injection calculation. FIG. 3 does not show a schematic 70-day diagram of microprocessor 100. Hereinafter, the functions of the microprocessor 100 will be explained based on this flowchart, and the operation of the entire configuration will also be explained. At the same time as the key switch 18 is turned on, a program prepared in advance in the ROM 108 starts, and first, in step 100, initialization processing is executed prior to subsequent processing. In step 101, the engine rotational speed Ni and throttle opening degree α are taken in, and from step Ni1α to step 102, the basic injection side amount TO is determined and overturned. Next, in step 103, the cooling water temperature T HW and the intake temperature T
11A, and from the THW and THA, in step 104, the correction coefficients f (THW) and f (THA
)−8= and set the basic injection MTO obtained in step 102 to T
Correction is performed as oXf(T)-1△)xf(TI-(W). In step 105, it is determined whether the basic injection amount tA is for that cylinder by checking the rotational speed after the G signal is input from the cylinder discrimination sensor 16. The judgment is reversed depending on the number of inputs of the Ne signal from the sensor 15. In step 106, the learning correction amount Ki in the non-volatile memory 107 is retrieved, and in step 107, the basic injection 69 hours TO is corrected by using the learning correction amount Ki. Set the output injection time 1-i to ToX (1+Ki), and step 108
Output with . Between steps 109 and 110, it is determined whether the engine load and engine rotational speed are in a stable state, and the process proceeds to step 111 only when the engine load and engine rotational speed are in a stable state. Step 1 when in unstable state
25, the engine rotational speed integrated value ΣNi, which will be described later, in the memory 107 is cleared to prevent learning correction from being performed using biased cylinder engine rotational speed data. The above-mentioned stable state determination is performed as follows. -9- That is, in step 109, the engine rotational speed change amount and J
, and the engine load change amount (ΔN=Ni−+−Ni−Ni and Δα−αi l−αi) are each below a predetermined value. If the change amount is below a predetermined value, the process further proceeds to step 110. For reliable learning, a delay is determined from when the load change disappears until the engine condition becomes stable. After a predetermined delay, the process proceeds to step 111. During seven steps 111 to 115, the T engine rotational speed Ni for each cylinder is taken in for learning and a comparison standard in step 116, which will be described later, is calculated. That is, in step 111, the fuel after fuel injection is delivered to the engine [
Taking into consideration the delay until it is reflected in the HERC, the routine exits from this routine and proceeds to step 125 during a predetermined delay, but proceeds to step 112 after the predetermined delay. In step 112, the engine rotational speed Ni when the fuel is reflected as the engine output is added to the engine rotational speed integrated value ΣN1 in the memory 107, and is set as a new ΣNi. -10- In step 113, the engine rotational speed integrated value ΣNi obtained in the previous step 112 is stored in the memory 107. In step 114, it is determined whether the number of times the engine rotation speed Ni is captured matches a predetermined number of times (an integral multiple of the number of cylinders), and if it is less than the predetermined number, the routine is exited and the next engine rotation speed N1 is sampled. If the jump is executed a predetermined number of times in step 101, the process proceeds to step 115. In step 115, the average value of the engine rotational speed integrated value ΣNi after being captured a predetermined number of times is calculated, and step 1
In step 16, it is determined whether the difference between the average value & and the current engine rotational speed Ni (ΔN=Ni−艮) is positive, negative, or equal, and if the engine rotational speed Ni is larger than the average value, then It is determined that there is a large number of fuel injection failures in the relevant cylinder, and the process proceeds to step 117. However, if the engine rotational speed N1 is smaller than the average value &, it is determined that there is little fuel injection failure in the relevant cylinder, and the process proceeds to step 118, in which the engine rotation speed is determined to be low. Speed-11 Once N1 is equal to the average value N, the process proceeds to step 119. In step 117, the output injection time T in step 108 is
Subtract the unit correction iE suspension ΔT from i, and in step 118 add the unit correction amount Δt to the output injection time Ti, and in step 11
In step 9, the output injection time Ti is left as is, and the corrected output injection time Ti - is set respectively. In step 120, the difference between the corrected output injection time T1- and the basic injection time To after temperature correction obtained in step 104 is calculated to obtain a unit correction amount integrated value (ΣΔT)i. In step 121, we want to find ΣΔT in step 120)
It is determined whether i is greater than or equal to a predetermined value, and if it is greater than or equal to the predetermined value, it is determined that there is some abnormality and the process proceeds to step 123, where the student value Ki is cleared. On the other hand, in the case of a predetermined number of vortices, it is assumed that it is normal and the ratio of the unit correction amount integrated value (ΣΔ lower) i and the basic injection time To obtained in step 104, that is, the character spacing correction value Ki, is determined in step 122, and the basic injection time To It is written so that it can be corrected at a constant ratio of m-12. In step 124, the learning correction IKi is stored in the non-volatile memory 1.
07, and use it for the next output injection time Ti numbing when the resin is in operation. The functions of the microprocessor are as described above. As described above, the character spacing value Ki is corrected for each cylinder to eliminate the fuel difference between the cylinders. 4 and 5 show time charts for specifically explaining the embodiment as described above in comparison with the conventional example. FIG. 4 corresponds to the conventional example, and FIG. It is shown as corresponding to the example. In the conventional method, as shown in FIG. 4, even if the engine speed Ni varies between cylinders as shown in (a) due to variations in the amount of fuel supplied between cylinders, the basic control amount To and (1))
And since it is set constant as shown in (C), the fuel control ITi (-To*(1→-Ki)) becomes constant as shown in (d), and -13- Therefore, the supplied fuel amount qi is As shown in (e), there are still variations among the cylinders, and as a result, the engine speed N
i is not corrected and remains in a state with variations. On the other hand, in this embodiment, when the engine speed Ni varies as shown in FIG. 4(a), the learning amount Ki becomes < In order to make a separate correction, the fuel control unit 7i becomes as shown in (d), and as a result, the supplied fuel amount qi becomes (e
), the dispersion between the cylinders is eliminated and the gold cylinders have the same value. Therefore, as shown in <a>, the engine rotational speed Ni eliminates the dispersion among the cylinders and becomes the same value for all cylinders, resulting in an operating state with no rotational unevenness. Fig. 6 shows another example of setting the unit correction amount ∆t in -1-), and Fig. 6<A) shows the unit correction amount ∆t by integrating the engine rotation speed. An example is shown in which the value is proportional to the difference ΔN between the average value of the value ΣNi and the current engine rotational speed Ni. On the other hand, Figure 1 14-6 (B) shows the value ΣNi as a value proportional to the difference ΔN between the average value ΣNi and the current engine rotational speed Ni. An example is shown in which the value is set to be larger as the value increases. By setting the unit complement i1:@8T in this way, it is possible to perform a highly accurate and quick variation correction. As explained above, the present invention is a method for adjusting the fuel injection opening of a fuel injection valve based on the engine rotational speed corresponding to each cylinder of a multi-cylinder engine, which comprises: The amount of fuel injection Di for each cylinder is corrected according to the deviation between the speed and the rotational speed corresponding to each cylinder. Therefore, according to the present invention, it is possible to correct the unevenness of fuel injection speed between cylinders and to make appropriate corrections to achieve a uniform fuel injection speed for all cylinders.
It becomes possible to sufficiently improve emissions and drivability. Furthermore, it is possible to improve fuel efficiency by improving the stability of eye 1 mill operation. -15- Furthermore, although the above embodiment is an example in which the present invention is applied to a gasoline engine, it goes without saying that the present invention is not limited thereto and can also be applied to a diesel engine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用されるエンジンコントロールシス
テl\の一実施例、第2図はその電気ブロック構成、第
3図は本実施例の処理の一例を表わすフローヂト一ト、
第4図は従来例の説明図、第5図は本発明の説明図、第
6図は本発明の他の実施例の説明図をそれぞれ示す。 1・・・・・・多エンジンシリンダ 5・・・・・・燃料噴射弁 11・・・・・・スロットル開度センサ12・・・・・
・吸気温センサ 13・・・・・・冷却水温センサ 15・・・・・・回転数センサ 16・・・・・・シリンダ判別センサ 20・・・・・・制御回路 代理人 弁理士 定立 勉 −16−
FIG. 1 shows an embodiment of an engine control system to which the present invention is applied, FIG. 2 shows its electric block configuration, and FIG. 3 shows a flowchart showing an example of the processing of this embodiment.
FIG. 4 is an explanatory diagram of a conventional example, FIG. 5 is an explanatory diagram of the present invention, and FIG. 6 is an explanatory diagram of another embodiment of the present invention. 1...Multi-engine cylinder 5...Fuel injection valve 11...Throttle opening sensor 12...
・Intake temperature sensor 13...Cooling water temperature sensor 15...Rotation speed sensor 16...Cylinder discrimination sensor 20...Control circuit agent Patent attorney Tsutomu Seitachi 16-

Claims (1)

【特許請求の範囲】 1 多シリンダエンジンの各シリンダに対応Jるエンジ
ン回転速度にもとづいて燃料噴射弁の燃料噴射量を調節
する方法であって、該エンジンの全シリンダに対応づる
平均回転速度と各シリンダに対応する回転速度との偏差
に応じてシリンダ別の燃料噴射量を補正することを特徴
とJるエンジンシリンダ別燃料調吊バラツキ補正方法。 2 平均回転速度として、エンジン回転速度をシリンダ
数の整数倍のサンプリング数で1Jンブリングして得ら
れたサンプリング1市の相加平均値が用いられる特許請
求の範囲第1項に記載のエンジンシリンダ別燃利調絹バ
ラツキ補正方法。 3 シリンダ別の燃料噴射量の補正が偏差に無関係に一
定の補正量により行なわれる特許請求の範囲第1項又は
第2項に記載のエンジンシリンダ別燃PI調量バラツキ
補正方法。 −1− 4シリンダ別の燃料噴射量の補正が偏差の大小に応じた
補正用により行なわれる特許請求の範囲第1項又は第2
項に記載の]−ンジンシリンダ別燃斜調帛バラツキ補正
方法。 5 シリンダ別の燃料噴射量の補正がエンジン回転が安
定しかつエンジン負荷が安定したことを条171として
行なわれる特許請求の範囲第1項ないし第4項のいずれ
かに記載のエンジンシリンダ別燃料調吊バラツキ補正方
法。
[Claims] 1. A method for adjusting the fuel injection amount of a fuel injection valve based on the engine rotational speed corresponding to each cylinder of a multi-cylinder engine, the method comprising: adjusting the fuel injection amount of a fuel injection valve based on the engine rotational speed corresponding to each cylinder of a multi-cylinder engine, 1. A method for correcting fuel adjustment variations for individual engine cylinders, characterized in that the fuel injection amount for each cylinder is corrected according to the deviation from the rotational speed corresponding to each cylinder. 2. For each engine cylinder according to claim 1, the arithmetic mean value of one sampling city obtained by multiplying the engine rotation speed by 1J with a sampling number that is an integral multiple of the number of cylinders is used as the average rotation speed. Method for correcting variations in fuel tone silk. 3. The fuel PI metering variation correction method for each engine cylinder according to claim 1 or 2, wherein the fuel injection amount for each cylinder is corrected by a constant correction amount regardless of the deviation. -1- Claim 1 or 2, wherein the fuel injection amount for each of the four cylinders is corrected according to the magnitude of the deviation.
] - Method for correcting variations in combustion angle adjustment for each engine cylinder. 5. The fuel adjustment for each engine cylinder according to any one of claims 1 to 4, wherein the correction of the fuel injection amount for each cylinder is performed after the engine rotation is stabilized and the engine load is stabilized. How to correct hanging variations.
JP6016482A 1982-04-09 1982-04-09 Correction of irregularities of fuel controlling amount by engine cylinders Pending JPS58176424A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6016482A JPS58176424A (en) 1982-04-09 1982-04-09 Correction of irregularities of fuel controlling amount by engine cylinders
US06/482,884 US4495920A (en) 1982-04-09 1983-04-07 Engine control system and method for minimizing cylinder-to-cylinder speed variations
DE19833312697 DE3312697A1 (en) 1982-04-09 1983-04-08 METHOD AND DEVICE FOR INJECTING FUEL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6016482A JPS58176424A (en) 1982-04-09 1982-04-09 Correction of irregularities of fuel controlling amount by engine cylinders

Publications (1)

Publication Number Publication Date
JPS58176424A true JPS58176424A (en) 1983-10-15

Family

ID=13134236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6016482A Pending JPS58176424A (en) 1982-04-09 1982-04-09 Correction of irregularities of fuel controlling amount by engine cylinders

Country Status (1)

Country Link
JP (1) JPS58176424A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136524A (en) * 1982-09-01 1984-08-06 ザ・ベンデイツクス・コ−ポレ−シヨン Fuel distributing control method and apparatus of internal combustion engine
JPS6081450A (en) * 1983-10-04 1985-05-09 ローベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Operation amount controller of internal combustion engine
JPS60256537A (en) * 1984-05-30 1985-12-18 Nippon Denso Co Ltd Fuel injection quantity control of internal-combustion engine
JPS6146444A (en) * 1984-08-10 1986-03-06 Nippon Denso Co Ltd Fuel injection quantity control method for internal-conbustion engine
DE3533900A1 (en) * 1984-09-22 1986-04-03 Diesel Kiki Co. Ltd., Tokio/Tokyo DEVICE FOR CONTROLLING THE IDLE OPERATION OF AN INTERNAL COMBUSTION ENGINE
JPS61244851A (en) * 1985-04-22 1986-10-31 Diesel Kiki Co Ltd Idle operation controller for internal-combustion engine
JPS62113837A (en) * 1985-11-14 1987-05-25 Diesel Kiki Co Ltd Idle operation control device for internal-combustion engine
US4691286A (en) * 1984-06-27 1987-09-01 Nippon Soken, Inc. Method and apparatus for detecting combustion variations in internal combustion engine
US4700675A (en) * 1985-05-31 1987-10-20 Honda Giken Kogyo K.K. Method of controlling fuel supply for internal combustion engine at idle
JPS62240451A (en) * 1986-04-10 1987-10-21 Diesel Kiki Co Ltd Operation controller for internal combustion engine
JPH0275736A (en) * 1988-09-08 1990-03-15 Diesel Kiki Co Ltd Engine combustion control system upon idling operation
JPH02227534A (en) * 1989-03-01 1990-09-10 Hitachi Ltd Combustion control device for multi-cylinder engine and its method
JPH03194154A (en) * 1989-12-25 1991-08-23 Japan Electron Control Syst Co Ltd Misfire cylinder detector of internal combustion engine
JPH041442A (en) * 1990-04-13 1992-01-06 Japan Electron Control Syst Co Ltd Fuel injection control device
US5117793A (en) * 1990-02-15 1992-06-02 Yamaha Hatsudoki Kabushiki Kaisha High pressure fuel injection unit
JPH04362255A (en) * 1991-06-10 1992-12-15 Mitsubishi Electric Corp Failure diagnosis device of internal combustion engine
KR100859410B1 (en) 2007-06-07 2008-09-22 콘티넨탈 오토모티브 시스템 주식회사 Method for detecting leakage of fuel of car
CN104747306A (en) * 2015-01-30 2015-07-01 长城汽车股份有限公司 Engine fuel oil distribution method, device and car with device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136524A (en) * 1982-09-01 1984-08-06 ザ・ベンデイツクス・コ−ポレ−シヨン Fuel distributing control method and apparatus of internal combustion engine
JPH059624B2 (en) * 1982-09-01 1993-02-05 Bendix Corp
JPS6081450A (en) * 1983-10-04 1985-05-09 ローベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Operation amount controller of internal combustion engine
JPS60256537A (en) * 1984-05-30 1985-12-18 Nippon Denso Co Ltd Fuel injection quantity control of internal-combustion engine
US4691286A (en) * 1984-06-27 1987-09-01 Nippon Soken, Inc. Method and apparatus for detecting combustion variations in internal combustion engine
JPS6146444A (en) * 1984-08-10 1986-03-06 Nippon Denso Co Ltd Fuel injection quantity control method for internal-conbustion engine
US4780827A (en) * 1984-09-22 1988-10-25 Diesel Kiki Co., Ltd. Apparatus for controlling idling operation of an internal combustion engine
DE3533900A1 (en) * 1984-09-22 1986-04-03 Diesel Kiki Co. Ltd., Tokio/Tokyo DEVICE FOR CONTROLLING THE IDLE OPERATION OF AN INTERNAL COMBUSTION ENGINE
JPS61244851A (en) * 1985-04-22 1986-10-31 Diesel Kiki Co Ltd Idle operation controller for internal-combustion engine
US4700675A (en) * 1985-05-31 1987-10-20 Honda Giken Kogyo K.K. Method of controlling fuel supply for internal combustion engine at idle
JPS62113837A (en) * 1985-11-14 1987-05-25 Diesel Kiki Co Ltd Idle operation control device for internal-combustion engine
JPS62240451A (en) * 1986-04-10 1987-10-21 Diesel Kiki Co Ltd Operation controller for internal combustion engine
JPH0275736A (en) * 1988-09-08 1990-03-15 Diesel Kiki Co Ltd Engine combustion control system upon idling operation
JPH02227534A (en) * 1989-03-01 1990-09-10 Hitachi Ltd Combustion control device for multi-cylinder engine and its method
JPH03194154A (en) * 1989-12-25 1991-08-23 Japan Electron Control Syst Co Ltd Misfire cylinder detector of internal combustion engine
US5117793A (en) * 1990-02-15 1992-06-02 Yamaha Hatsudoki Kabushiki Kaisha High pressure fuel injection unit
JPH041442A (en) * 1990-04-13 1992-01-06 Japan Electron Control Syst Co Ltd Fuel injection control device
JPH04362255A (en) * 1991-06-10 1992-12-15 Mitsubishi Electric Corp Failure diagnosis device of internal combustion engine
KR100859410B1 (en) 2007-06-07 2008-09-22 콘티넨탈 오토모티브 시스템 주식회사 Method for detecting leakage of fuel of car
CN104747306A (en) * 2015-01-30 2015-07-01 长城汽车股份有限公司 Engine fuel oil distribution method, device and car with device

Similar Documents

Publication Publication Date Title
JPS58176424A (en) Correction of irregularities of fuel controlling amount by engine cylinders
JPH0385349A (en) Fuel injection device of internal combustion engine
JPS6231179B2 (en)
JPS62240446A (en) Air-fuel ratio control device for lean burn engine
JPH0316498B2 (en)
JPS58144633A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPS58144632A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPH0559263B2 (en)
JPS58144637A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPS58144635A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPS6090949A (en) Air-fuel ratio controlling apparatus
JPH01265122A (en) Measuring instrument for suction air of internal combustion engine
JPH0463933A (en) Fuel injection control device
JPS6172848A (en) Control device of fuel increase and ignition timing in internal-combustion engine
JPH06308142A (en) Electronic control device for internal combustion engine
JP3686098B2 (en) Fuel control method at start-up
JPH08312410A (en) Controlling method for air-fuel ratio of internal combustion engine
JPS60119336A (en) Air-fuel ratio control device
JPS58133430A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS60119344A (en) Control device of internal-combustion engine
JPS58144640A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPH04269363A (en) Failure detecting device for exhaust gas recirculation control device
JPH0261351A (en) Electronic controller for internal combustion engine
JPS61108839A (en) Fuel injection control device of internal-combustion engine
JPH0219626A (en) Fuel injection control device for internal combustion engine