JPS60117675A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60117675A
JPS60117675A JP22722483A JP22722483A JPS60117675A JP S60117675 A JPS60117675 A JP S60117675A JP 22722483 A JP22722483 A JP 22722483A JP 22722483 A JP22722483 A JP 22722483A JP S60117675 A JPS60117675 A JP S60117675A
Authority
JP
Japan
Prior art keywords
layer
polycrystalline silicon
protrusions
polysilicon layer
polysilicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22722483A
Other languages
Japanese (ja)
Other versions
JPH0363829B2 (en
Inventor
Takayuki Matsukawa
隆行 松川
Hideaki Arima
有馬 秀明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22722483A priority Critical patent/JPS60117675A/en
Publication of JPS60117675A publication Critical patent/JPS60117675A/en
Publication of JPH0363829B2 publication Critical patent/JPH0363829B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To enable to realize an easily and securely writable and erasable EEPROM even under a state of low voltage in an intensified field concentration by a method wherein an ion beam etching is performed on the surfaces of electrodes consisting of polycrystalline silicon, etc., and small protrusions, each having a small radius of curvature, are formed in large numbers. CONSTITUTION:A first polycrystalline silicon pattern 3 is formed on an insulating layer 2 formed on a semiconductor substrate 1. Ion beams 10 are irradiated on this first polycrystalline layer 3 and when a sputter etching is performed on the surface thereof, conic protrusions, whose vertical angles are respectively about 20 deg., are countlessly formed on the surface of the polycrystalline silicon layer 3. Then, an interlayer insulating layer 4 and a second polycrystalline silicon layer 5 are formed, and similarly, the ion beams 10 are irradiated and acute protrusions are formed on the second polycrystalline silicon layer 5 as well. After this, an interlayer insulating film 6 and a third polycrystalline silicon layer 7 are formed, and moreover, a phosphorus glass layer 8 and an Al electrode 9 are formed. As a result, the purposive EEPROM is completed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は半導体装置、特に書込み消去特性の優れたE
 E P ROM (Electrically Er
asableand Progra+u+able R
ead 0nly Memory )に関するものであ
る。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a semiconductor device, particularly an electronic device with excellent write/erase characteristics.
E P ROM (Electrically Er
asable and Progra+u+able R
ead 0nly Memory).

〔従来技術〕[Prior art]

従来この種の装置としてその製造方法を第1図に示すも
のがあった。図において、1は半導体基板、2は5i0
2等の絶縁層、3は第1ポリシリコン層、4は5i02
等の絶縁層、5は第2ポリシリコン層、6は5i02等
の絶縁層゛、7は第3ポリシリコン層、8はリンガラス
層、9はAβ電極である。
Conventionally, there has been a device of this type whose manufacturing method is shown in FIG. In the figure, 1 is a semiconductor substrate, 2 is 5i0
2 is the insulating layer, 3 is the first polysilicon layer, 4 is 5i02
5 is a second polysilicon layer, 6 is an insulating layer such as 5i02, 7 is a third polysilicon layer, 8 is a phosphor glass layer, and 9 is an Aβ electrode.

実際のEEPROMでは、Al1W19の上にさらにパ
シベーション層がつけられるが、動作の本質とは関係が
ないので省略しである。
In an actual EEPROM, a passivation layer is further added on top of the Al1W19, but it is omitted because it has no relation to the essence of the operation.

次にこの従来のEEFROMの製造方法と動作について
説明する。まず第1図(a)のように、シリコン等の半
導体基板1の上に形成された5i02等の絶縁N2上に
、第1ポリシリコンパターン3をフォトリソグラフィ技
術を用いて形成する。第1ポリシリコン層3には、例え
ばリンのような不純物を混入させて適当な導電性を持た
せである。次いでこのポリシリコン層3を900℃以上
の高温でアニールするとポリシリコングレイン成長する
結果、第1図(blのように、ポリシリコン3の表面に
凹凸ができてくる。このようにした後に、第1図(C)
のように、ポリシリコン3の周囲に例えばポリシリコン
3を熱酸化して作った5i02からなる絶縁層4を10
00人程度形成し、その上に、一部が第1ポリシリコン
層3と重なるような配置で第2ポリシリコン層5のパタ
ーンを形成する。この第2ポリシリコン層5に対しても
、上記と同様の熱処理を加えて、その表面を第1図(d
)のように凹凸にする。そうしてさらに、第1図(13
)のようにこの第2ポリシリコン層5のまわりを絶縁層
6で囲んで、その上に、一部が第2ポリシリコン層5と
重なるような形で、第3ポリシリコン層7を形成する。
Next, the manufacturing method and operation of this conventional EEFROM will be explained. First, as shown in FIG. 1(a), a first polysilicon pattern 3 is formed using photolithography on an insulating layer N2 such as 5i02 formed on a semiconductor substrate 1 made of silicon or the like. The first polysilicon layer 3 is doped with an impurity such as phosphorus to give it appropriate conductivity. Next, when this polysilicon layer 3 is annealed at a high temperature of 900° C. or higher, polysilicon grains grow, resulting in unevenness on the surface of the polysilicon layer 3 as shown in FIG. Figure 1 (C)
As shown in FIG.
About 0.00 people are formed, and a pattern of second polysilicon layer 5 is formed thereon in such a manner that a portion thereof overlaps with first polysilicon layer 3. This second polysilicon layer 5 is also subjected to the same heat treatment as described above, and its surface is polished as shown in FIG.
) to make it uneven. Then, furthermore, Figure 1 (13
), this second polysilicon layer 5 is surrounded by an insulating layer 6, and a third polysilicon layer 7 is formed thereon so as to partially overlap with the second polysilicon layer 5. .

これ以降は通常のMOSデバイス作成フローと全く同様
に、第1図(f)のように全体にリンガラス層8を形成
して加熱平坦化し、第1図(勢のように第1と第3のポ
リシリコン層3.7にコンタクト穴を設けて、その部分
にAl電極9をつける。第2ポリシリコンパターン5は
Al電極をつけず、電気的にはフローティングに保たれ
る。
From this point on, in exactly the same way as the normal MOS device fabrication flow, a phosphorus glass layer 8 is formed on the entire surface as shown in FIG. A contact hole is formed in the polysilicon layer 3.7, and an Al electrode 9 is attached to the contact hole.The second polysilicon pattern 5 is not attached with an Al electrode and is kept electrically floating.

このようにして形成されたEEFROMの書込み、消去
動作は次のとおりである。即ち例えば第1ポリシリコン
層3をアースし、第3ポリシリコン層7に正の高い電圧
、例えば25Vを加えると、第2ポリシリコン屓5と第
1ポリシリコンJit3の重なり部分にも強、い電界が
加わり、しかも第1ポリシリコン層3表面につけられた
凹凸部分が電界集中して一層強電界となり、酸化膜4の
中をトンネリングによって電子が通り抜けて第2ポリシ
リコン層5の中にためられる。これがROMの書き込み
に相当する。逆に書き込まれた内容を消去する場合は逆
の電界を加えて、第2ポリシリコン層5中にためられた
余分の電子を吸いとればよい。
The writing and erasing operations of the EEFROM thus formed are as follows. That is, for example, if the first polysilicon layer 3 is grounded and a high positive voltage, for example 25V, is applied to the third polysilicon layer 7, the overlapping portion of the second polysilicon layer 5 and the first polysilicon Jit3 will also be strong. An electric field is applied, and the electric field is concentrated on the uneven portions formed on the surface of the first polysilicon layer 3, resulting in an even stronger electric field, and electrons pass through the oxide film 4 by tunneling and are stored in the second polysilicon layer 5. . This corresponds to writing to ROM. Conversely, if the written content is to be erased, a reverse electric field may be applied to absorb the excess electrons stored in the second polysilicon layer 5.

ところで一般的に、第4図を用いて後にも説明するよう
に、凹凸部分での電界強度は突起部の曲率半径に反比例
することが知られているが、従来のEEFROMでは凹
凸の形成を熱処理時のポリシリコンのグレイン形成で行
っていたためあまり曲率半径を小さくしたような突起は
出来ず、その結果として、従来のEEFROMでは書き
込み、消去時に25Vといった高電圧が必要で、5v単
一電源の他の素子と同じ電源で動作させられないと同時
に、信頼性の保持も高集積化も共にむずかしいという欠
点があった。
By the way, as will be explained later with reference to FIG. 4, it is generally known that the electric field strength at the uneven portion is inversely proportional to the radius of curvature of the protrusion, but in conventional EEFROMs, the unevenness is formed by heat treatment. Since this was done by forming grains of polysilicon at the time, protrusions with a small radius of curvature could not be created, and as a result, conventional EEFROMs required a high voltage of 25V for writing and erasing, and in addition to a single 5V power supply. They had the disadvantage that they could not be operated with the same power supply as other elements, and at the same time, it was difficult to maintain reliability and achieve high integration.

〔発明の概要〕[Summary of the invention]

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、ポリシリコン等の電極表面をイオ
ンビームでエツチングすることにより、曲率半径の小さ
な突起を多数形成し、電界集中を強くして低電圧でも容
易かつ確実に書き込み、消去ができる半導体装置を提供
することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above. By etching the surface of an electrode such as polysilicon with an ion beam, a large number of protrusions with a small radius of curvature are formed, thereby strongly concentrating the electric field. The object of the present invention is to provide a semiconductor device that can be easily and reliably written and erased even at low voltage.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第2
図は、この発明の一実施例による半導体装置の製造方法
を示す断面模式図であり、図において、10はio〜3
0KeV程度のエネルギーを持つイオンビームである。
An embodiment of the present invention will be described below with reference to the drawings. Second
The figure is a schematic cross-sectional view showing a method for manufacturing a semiconductor device according to an embodiment of the present invention. In the figure, 10 is io to 3.
It is an ion beam with an energy of about 0 KeV.

第2図(a)は従来法の場合と全く同じものを示し、絶
縁層2の上に第1ポリシリコンパターン3が形成されて
いる。この第1ポリシリコン層3に対して、第2図(b
)のようにイオンビーム10を照射して、表面をスパッ
タエツチングすると、ポリシリコン表面には頂角が約2
0°の円錐状の突起が無数に出来る。この現象が起きる
のは、第3図に示すように、イオンによるスパッタリン
グ収量が入射角依存性を有し、80°でほぼ最大となる
ことに起因している。照射するイオンとしては、10〜
30Ke■のエネルギーを持つAr”(アルゴンイオン
)やXe十(キセノンイオン)のような希ガスイオンが
最も有効であることも確かめられている。
FIG. 2(a) shows exactly the same as the conventional method, in which a first polysilicon pattern 3 is formed on an insulating layer 2. For this first polysilicon layer 3, as shown in FIG.
), when the surface is sputter-etched by irradiating the ion beam 10, the polysilicon surface has an apex angle of approximately 2.
Countless conical protrusions with an angle of 0° are formed. This phenomenon occurs because, as shown in FIG. 3, the sputtering yield by ions has an incidence angle dependence and is approximately maximum at 80°. The ions to be irradiated are 10~
It has also been confirmed that rare gas ions such as Ar'' (argon ion) and Xe (xenon ion) having an energy of 30 Ke■ are the most effective.

このようにして、第1ポリシリコン層3上に鋭い頂角を
持つ凹凸を作った上で、第2図(c+に示すように、従
来例と同様に眉間絶縁膜4、第2ポリシリコン層5を形
成する。そしてまた、第2図(d)に示すように、第2
図(b)の場合と同様にイオンビーム10を照射して、
第2ポリシリコン層5の表面にも鋭い突起を作る。この
後は、従来例と全く同様にして、第2図(e)のように
眉間絶縁膜6、第3ポリシリコン層7を形成し、第2図
(flのように、リンガラスff18. Att電極9
を形成してEEFROMを完成する。
In this way, after creating irregularities with sharp apex angles on the first polysilicon layer 3, as shown in FIG. 5. Then, as shown in FIG. 2(d), a second
Irradiate the ion beam 10 in the same way as in the case of Figure (b),
Sharp protrusions are also formed on the surface of the second polysilicon layer 5. After this, in exactly the same manner as in the conventional example, as shown in FIG. 2(e), the glabellar insulating film 6 and the third polysilicon layer 7 are formed, and as shown in FIG. Electrode 9
is formed to complete the EEFROM.

さて、このようにして頂角20“という鋭い突起をポリ
シリコン表面に持たせると、低電圧、例えば5vを加え
ただけでも突起の先端部分では電界集中が起きる結果、
はぼ10 M V /cmといわれる酸化膜への電子の
トンネリング注入を起こすに充分な電界となって、第2
ポリシリコン層5への電子の注入(書き込み)や過剰電
子の引きぬき(消去)が可能になる。なぜなら、第4図
Jこ示すように、棒状で平坦なプラス電極11とマイナ
ス電極である突起電極12との間に電圧■を印加した場
合、該突起電極12の先端部分の電界強度Eは、突起の
先端の曲率半径をaとすると、はぼEoc■/a(Vは
印加電圧)の関係にあるためで、曲率半径aを5分の1
にすれば、印加電圧を5分の1に下げても先端部分では
同じ電界強度が得られるためである。
Now, when a sharp protrusion with an apex angle of 20" is provided on the polysilicon surface in this way, an electric field will be concentrated at the tip of the protrusion even if a low voltage, for example 5V, is applied.
The electric field is said to be about 10 M V /cm, which is sufficient to cause tunneling injection of electrons into the oxide film, and the second
Injection (writing) of electrons into the polysilicon layer 5 and extraction (erasing) of excess electrons becomes possible. This is because, as shown in FIG. 4J, when a voltage ■ is applied between the rod-shaped flat positive electrode 11 and the negative protruding electrode 12, the electric field strength E at the tip of the protruding electrode 12 is This is because if the radius of curvature at the tip of the protrusion is a, then the relationship is Eoc /a (V is the applied voltage), and the radius of curvature a is 1/5
This is because the same electric field strength can be obtained at the tip even if the applied voltage is reduced to one-fifth.

なお、上記実施例では、ポリシリコンのパターン形成を
終えた後にイオンビーム照射をする場合について述べた
が、フォトリソグラフィによってパターン形成をする前
にイオンビーム照射をして、ポリシリコン表面に突起を
作っておいてもよいことは言うまでもない。
In the above example, the case was described in which ion beam irradiation was performed after pattern formation of polysilicon, but ion beam irradiation was performed before pattern formation by photolithography to create protrusions on the polysilicon surface. Needless to say, you can leave it as is.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る半導体装置によれば、ポ
リシリコン等の電極の表面にイオンビームエツチングに
よって曲率半径の小さな突起を多数形成するようにした
ので、非常に低い電圧で書き込み、消去のできるEEP
ROMが得られるという著しい効果がある。
As described above, according to the semiconductor device of the present invention, a large number of protrusions with a small radius of curvature are formed on the surface of an electrode made of polysilicon or the like by ion beam etching, so that writing and erasing can be performed with a very low voltage. EEP that can be done
This has the remarkable effect of providing ROM.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のEEFROMの製造方法を示す断面側面
図、第2図はこの発明の一実施例によるEEPROMの
製造方法を示す断面側面図、第3図はイオンビームのス
パッタリング収量の入射角依存性の実験データを示す図
、第4図は突起部において電界集中が起きることを説明
するための図である。 1は半導体基板、2は絶縁層、3は第1ポリシリコン層
、4は絶縁層、5は第2ポリシリコン層、6は絶縁層、
7は第3ポリシリコン層、8はリンガラス層、9はAJ
組電極10はイオンビーム、11はプラス電極、12は
マイナス電極である突起電極。 なお、図中同一符号は同−又は相当部分を示す。 代理人 大岩増雄 第1図 第1図 第2図 第2図
FIG. 1 is a cross-sectional side view showing a conventional EEFROM manufacturing method, FIG. 2 is a cross-sectional side view showing an EEPROM manufacturing method according to an embodiment of the present invention, and FIG. 3 is an incident angle dependence of ion beam sputtering yield. FIG. 4 is a diagram illustrating the fact that electric field concentration occurs at the protrusion. 1 is a semiconductor substrate, 2 is an insulating layer, 3 is a first polysilicon layer, 4 is an insulating layer, 5 is a second polysilicon layer, 6 is an insulating layer,
7 is the third polysilicon layer, 8 is the phosphorus glass layer, 9 is AJ
The set of electrodes 10 is an ion beam, 11 is a positive electrode, and 12 is a negative electrode, which are projecting electrodes. Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent Masuo OiwaFigure 1Figure 1Figure 2Figure 2

Claims (1)

【特許請求の範囲】 (l)その表面にイオンビームの照射により曲率半径の
小さな多数の針状突起が形成された電極を備えたことを
特徴とする半導体装置。 (2)上記イオンビームとして、10〜30KeVのア
ルゴンイオン、キセノンイオン等の希ガスイオンを用い
たことを特徴とする特許請求の範囲第1項記載の半導体
装置。 (3)上記電極が、ポリシリコンからなることを特徴と
する特許請求の範囲第1項又は第2項記載の半導体装置
Claims: (l) A semiconductor device comprising an electrode on the surface of which a large number of needle-like protrusions with a small radius of curvature are formed by irradiation with an ion beam. (2) The semiconductor device according to claim 1, wherein rare gas ions such as argon ions and xenon ions of 10 to 30 KeV are used as the ion beam. (3) The semiconductor device according to claim 1 or 2, wherein the electrode is made of polysilicon.
JP22722483A 1983-11-29 1983-11-29 Semiconductor device Granted JPS60117675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22722483A JPS60117675A (en) 1983-11-29 1983-11-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22722483A JPS60117675A (en) 1983-11-29 1983-11-29 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS60117675A true JPS60117675A (en) 1985-06-25
JPH0363829B2 JPH0363829B2 (en) 1991-10-02

Family

ID=16857440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22722483A Granted JPS60117675A (en) 1983-11-29 1983-11-29 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS60117675A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136880A (en) * 1985-12-11 1987-06-19 Fujitsu Ltd Semiconductor memory device and manufacture of the same
JPH01241177A (en) * 1988-03-23 1989-09-26 Toshiba Corp Nonvolatile semiconductor storage device and manufacture thereof
JPH0611563U (en) * 1992-07-17 1994-02-15 株式会社アオイ工芸社 Scented picture frame

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136880A (en) * 1985-12-11 1987-06-19 Fujitsu Ltd Semiconductor memory device and manufacture of the same
JPH01241177A (en) * 1988-03-23 1989-09-26 Toshiba Corp Nonvolatile semiconductor storage device and manufacture thereof
JPH0611563U (en) * 1992-07-17 1994-02-15 株式会社アオイ工芸社 Scented picture frame

Also Published As

Publication number Publication date
JPH0363829B2 (en) 1991-10-02

Similar Documents

Publication Publication Date Title
JP2631186B2 (en) Memory device
JP3431367B2 (en) Manufacturing method of nonvolatile semiconductor memory device
US6914290B2 (en) Split-gate type nonvolatile memory devices
JP2585180B2 (en) Semiconductor memory device and method of manufacturing the same
JPH01248670A (en) Nonvolatile semiconductor storage device, and operation and manufacture thereof
US5625213A (en) Top floating-gate flash EEPROM structure
US5972750A (en) Nonvolatile semiconductor memory device and manufacturing method of the same
JPS60117675A (en) Semiconductor device
JP2904498B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JPH02284473A (en) Semiconductor integrated circuit device and its manufacture
JPH0640587B2 (en) Semiconductor memory device
JP2637149B2 (en) Manufacturing method of nonvolatile semiconductor memory device
KR100836426B1 (en) Non-Volatile Memory Device and fabrication method thereof and apparatus of memory including thereof
JPH04221857A (en) Nonvolatile memory
JPS5821368A (en) Manufacture of erasable and programmable read only memory
JPS61225872A (en) Semiconductor nonvolatile memory device and manufacture thereof
JPH0685280A (en) Manufacture of nonvolatile semiconductor device
US5737264A (en) Non-volatile semiconductor memory cell
TWI710113B (en) Operation method of electronic writing erasable rewritable read-only memory
KR100493004B1 (en) Non volatile memory device having improved program and erase effeciency and fabricating method therefor
JPH0529587A (en) Nonvolatile semiconductor memory and manufacture thereof
US5360756A (en) Method of manufacturing a semiconductor device having a monocrystal silicon layer
JP3139165B2 (en) Method for manufacturing nonvolatile memory cell
JPH02128477A (en) Nonvolatile memory device
JPH0227773A (en) Manufacture of nonvolatile semiconductor memory