JPS60117149A - Apparatus for measuring flow rate of component - Google Patents

Apparatus for measuring flow rate of component

Info

Publication number
JPS60117149A
JPS60117149A JP58226130A JP22613083A JPS60117149A JP S60117149 A JPS60117149 A JP S60117149A JP 58226130 A JP58226130 A JP 58226130A JP 22613083 A JP22613083 A JP 22613083A JP S60117149 A JPS60117149 A JP S60117149A
Authority
JP
Japan
Prior art keywords
flow rate
pair
component
light
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58226130A
Other languages
Japanese (ja)
Other versions
JPH0634008B2 (en
Inventor
Ichiro Ogura
一郎 小倉
Kaoru Machida
町田 薫
Muneshige Kurahashi
宗重 倉橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Koden Corp
Original Assignee
Toshiba Corp
Nippon Koden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Koden Corp filed Critical Toshiba Corp
Priority to JP58226130A priority Critical patent/JPH0634008B2/en
Publication of JPS60117149A publication Critical patent/JPS60117149A/en
Publication of JPH0634008B2 publication Critical patent/JPH0634008B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/087Measuring breath flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02836Flow rate, liquid level

Abstract

PURPOSE:To reduce the load imparted to a person to be examined by reducing a dead space amount, by making it possible to perform the measurements, of a flow rate and a concn. by one tubular body. CONSTITUTION:A flow rate/concn. simultaneous measuring tube is constituted by attaching a flow rate measuring ultrasonic transducer and a concn. measuring optical sensor to one tubular body 2 through which a fluid to be measured, for example, breathing air. That is, a pair of ultrasonic vibrators 4a, 4b are attached and a pair of light transmittable windows 5a, 5b for measuring a concn. are attached between the vibrators 4a, 4b so as to be opposed to each other in an air-tight state. Further, a flow rate measuring circuit 6 is connected to a pair of the ultrasonic vibrators 4a, 4b and a component concn. measuring circuit 14 is connected through the light transmittable windows 5a, 5b.

Description

【発明の詳細な説明】 し発明の技術分野] この発明は、呼吸気体等の流体に含まれている特定の成
分の流量(成分流量)を測定する成分流量測定装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a component flow rate measuring device that measures the flow rate of a specific component (component flow rate) contained in a fluid such as respiratory gas.

[発明の技術的背景とその問題点] 流体が単一成分でなく種々の成分で構成されている場合
、特定の成分の流量を測定する要求がしばしば生ずる。
[Technical Background of the Invention and Problems Therewith] When a fluid is composed of various components rather than a single component, a need often arises to measure the flow rate of a specific component.

例えば呼吸気体のような、空気または空気に酸素を人工
的に付加した気体を吸入し炭酸ガスを含む気体匂呼出す
る場合、呼出気体(呼気)の炭酸ガス流量を測定して得
られたデータは炭酸ガス産生量として呼吸機能の評価に
利用される。
For example, when breathing gas, such as air or a gas in which oxygen is artificially added to the air, is inhaled and a gas containing carbon dioxide is exhaled, the data obtained by measuring the carbon dioxide flow rate of the exhaled gas (exhalation) is It is used to evaluate respiratory function as the amount of carbon dioxide produced.

一般に、従来行なわれている炭酸ガス産生量の測定はダ
グラスバッグ法と呼ばれるもので、気密バッグに呼出気
体を収集し、その体積■と炭酸ガス濃度Fco2との積
をめ、炭酸ガス産生量を数る。
Generally, the conventional method for measuring the amount of carbon dioxide gas produced is called the Douglas bag method, in which exhaled gas is collected in an airtight bag, and the product of its volume ■ and the carbon dioxide concentration Fco2 is calculated to calculate the amount of carbon dioxide gas produced. Count.

一方、流体の汲置測定、成分分析法の進歩により成分流
量についても実時間測定が可能となっており、例えば炭
酸ガス産生量を測定する場合、呼出気体(流体)の流量
の瞬時値v(t)と炭酸ガスについての成分分析結果で
ある濃度の瞬時値fco2(t)を同時に測定し、これ
らの積をめてvco2 (t)=v (t) −fco
2 (t)の形で炭酸ガス産生量を測定することが行な
われている。
On the other hand, advances in fluid pumping measurement and component analysis methods have made it possible to measure component flow rates in real time.For example, when measuring the amount of carbon dioxide gas produced, the instantaneous value v( t) and the instantaneous value fco2(t) of the concentration, which is the result of the component analysis of carbon dioxide gas, are simultaneously measured, and the product of these is vco2 (t) = v (t) −fco
The amount of carbon dioxide produced has been measured in the form of 2 (t).

ところで、流口測定とm度測定はいずれも流体を測定管
に通流させながら行なわれるのであるが、従来において
はこれら汲置測定用の測定管と濃度測定用の測定管とを
直列に接続して測定を行なっていた。しかしながら、こ
のように2つの測定管を直列に接続することは呼吸気体
に対する測定系の容量、いわゆる死腔量がそれぞれの測
定管における値の和となってかなり大きなものとなる。
Incidentally, both flow mouth measurement and m degree measurement are performed while flowing the fluid through the measurement tube, but in the past, the measurement tube for pumping measurement and the measurement tube for concentration measurement were connected in series. I was conducting measurements. However, when two measuring tubes are connected in series in this way, the capacity of the measuring system for respiratory gas, so-called dead space amount, becomes the sum of the values in the respective measuring tubes, and becomes quite large.

このため被検者の呼吸能力の負担が大となり、重症患者
等への適用が難しくなるという問題があった。
This poses a problem in that it places a heavy burden on the breathing capacity of the subject, making it difficult to apply it to critically ill patients.

また、このように流量測定および11度測定用の測定管
を直列に設けることは、測定精度の面でも問題がある。
Moreover, providing measurement tubes for flow rate measurement and 11 degree measurement in series in this way also poses a problem in terms of measurement accuracy.

これは2つの測定管の間の距離により量測定のタイミン
グに時間ずれが生じるのが原因である。すなわち、流量
測定用測定管から濃度測定用測定管までの距離をLとし
流体の流速をVとすれば、流量測定がなされたある流量
が濃度測定用の測定管に到達するのに要する時間td 
(時間ずれ)は t(1=L/V となり、流速に応じて変化することになる。この時間ず
れtdの影響を除去するため、従来ではこのtdの値を
記憶しておき VCO2(t)=v(t)−fco2 (t+td )
−の形で炭酸ガス産生量をめていた。しかし、特に呼吸
気体のような圧縮性の流体では1呼吸の間に流速が多様
に変化するとともに、その圧力変化による流速変化も生
じるため時間ずれtdの変化が複雑であり、上記式に示
されるような補正を厳密に行なうことは極めて困難であ
った。
This is because a time lag occurs in the timing of quantity measurement due to the distance between the two measuring tubes. In other words, if the distance from the flow rate measurement pipe to the concentration measurement pipe is L and the flow velocity of the fluid is V, then the time td required for a certain flow rate to reach the concentration measurement pipe is
(time lag) is t(1=L/V) and changes according to the flow velocity.In order to remove the influence of this time lag td, conventionally the value of td is memorized and VCO2(t) =v(t)−fco2(t+td)
The amount of carbon dioxide produced was measured in the form of -. However, especially in compressible fluids such as breathing gas, the flow velocity changes variously during one breath, and the flow velocity also changes due to pressure changes, so the change in time lag td is complicated, and as shown in the above equation. It has been extremely difficult to make such a correction strictly.

[発明の目的コ この発明の目的は、流体の特定成分の流量の測定を、で
きるだけ少ない死腔徂で、しかも流体の測定管内での流
速変化の影響を受番プることなく高精痕に、かつ複雑な
補正処理を必要とすることなく行なえるようにした成分
流量測定装置を提供することにある。
[Purpose of the Invention] The purpose of the invention is to measure the flow rate of a specific component of a fluid with as little dead space as possible and with high precision without being influenced by changes in flow velocity in the measurement pipe of the fluid. It is an object of the present invention to provide a component flow rate measuring device which can perform the above-mentioned flow rate measurement without requiring complicated correction processing.

[発明の概要コ この発明は、流口測定は超音波を用いて行ない、成分濃
度測定は光学的に行なう成分流量測定装置であって、流
体が通流する管体に流体の流れ方向を斜めに横切る線上
で相対向するように一対の超音波振動子を取付けるとと
もに、前記管体の前記一対の超音波振動子開領域の壁面
で相対向するように一対の光透過窓を気密に取付けてな
る測定管と、前記一対の超音波振動子を駆動し、これら
各超音波振動子によって送信され他の超音波振動子によ
り互いに受信された超音波信号から前記流体の流量を測
定する流量測定回路と、前記一対の光透過窓の一方から
前記管体内に照射きれ、前記管体内の流体を透過して前
記一対の光照射窓の他方から外部に導き出された光のう
ち、少なくとも前記流体の特定成分によって吸収される
波長の光の光Dを検出して前記流体の前記特定成分の濃
度を測定する成分a度測定回路と、これら流量測定回路
および成分濃度測定回路により測定された流量と成分濃
度から前記流量の前記特定成分の流量を算出する手段と
を備えたことを特徴としている。
[Summary of the Invention] This invention is a component flow rate measuring device in which flow port measurement is performed using ultrasonic waves and component concentration measurement is performed optically. A pair of ultrasonic transducers are mounted so as to face each other on a line intersecting with the oscillator, and a pair of light transmitting windows are airtightly mounted so as to face each other on a wall surface of an open area of the pair of ultrasonic transducers of the tube body. a measurement tube, and a flow rate measurement circuit that drives the pair of ultrasonic transducers and measures the flow rate of the fluid from ultrasonic signals transmitted by each of the ultrasonic transducers and mutually received by the other ultrasonic transducers. and identifying at least the fluid among the light that is completely irradiated into the tube body from one of the pair of light transmission windows, passes through the fluid in the tube body, and is led out from the other of the pair of light irradiation windows. a component a degree measurement circuit that measures the concentration of the specific component of the fluid by detecting light D having a wavelength that is absorbed by the component, and the flow rate and component concentration measured by the flow rate measurement circuit and the component concentration measurement circuit. The present invention is characterized by comprising means for calculating the flow rate of the specific component of the flow rate from the flow rate.

[発明の効果コ この発明によれば、流m測定と濃度測定とを1つの管体
内で行なうことができるため、それぞれの測定のための
測定管を個別に用意して直列に配置した場合に比べ測定
すべき流体に対する測定系の各回、つまり死腔邑が低減
され、被検者に与える負担を著しく軽減することができ
る。
[Effects of the Invention] According to the present invention, flow m measurement and concentration measurement can be performed in one tube. Each time of the measurement system for the fluid to be compared and measured, that is, the dead space is reduced, and the burden on the subject can be significantly reduced.

また、流m測定と濃度測定とがほぼ同一位置で行なわれ
るので、これらの測定の時間ずれは零または極めて微少
な時間となる。従って、この時間ずれの影響を除去す゛
るために従来必要とした複雑な補正が不要となるか、あ
るいは補正を行なう場合でもその時間ずれはもともと小
さいことと、流量測定位置と濃度測定位置どの間の距離
が微少でこの間における流速の変化が実質的になく、こ
の時間ずれは常に一定と見なせることから、非常に簡単
な処理で済むという利点がある。この結果、測定管部分
が小形化されることと相まって、測定装置全体の構成を
簡略化することが可能であり、また測定管内での流体の
流速変化の影響による測定誤差がなく、非常に高精度な
成分流巳の測定が可能となる。
Further, since the flow m measurement and the concentration measurement are performed at almost the same position, the time lag between these measurements is zero or extremely small. Therefore, in order to eliminate the influence of this time lag, the complicated correction that was required in the past is not necessary, or even if correction is made, the time lag is small to begin with, and the difference between the flow rate measurement position and the concentration measurement position. Since the distance is minute, there is virtually no change in flow velocity during this time, and this time lag can always be considered constant, it has the advantage of requiring very simple processing. As a result, along with the downsizing of the measuring tube, it is possible to simplify the overall configuration of the measuring device, and there is no measurement error due to changes in fluid flow velocity within the measuring tube, resulting in extremely high performance. Accurate measurement of component flow becomes possible.

[発明の実施例] 第1図は、この発明の一実施例の成分流量測定装置の構
成図である。
[Embodiment of the Invention] FIG. 1 is a configuration diagram of a component flow rate measuring device according to an embodiment of the invention.

図において、1は流量・濃度同時測定用測定管であり、
被測定流体、例えば呼吸気体が通流する1つの管体2に
、流量測定用の超音波トランスデユーサと濃度測定用の
光学センサとを取付けた構成となっている。すなわち、
管体2の長さ方向に所定路離隔てた位置に、この管体2
内を通流する流体の流れ方向を斜めに横切る線上で相対
向するように一対の超音波振動子4 a 、’ 4 b
が取付けられている。なお、超音波振動子4a、4bは
管体2内に突出して設けられてもよいが、この実施例で
は流体の流れに極力影響を与えないように、管体2の内
側に凹所3a、3bを形成し、ここに超音波振動子4a
、4bを配置している。
In the figure, 1 is a measurement tube for simultaneous flow rate and concentration measurement;
The structure is such that an ultrasonic transducer for measuring flow rate and an optical sensor for measuring concentration are attached to one tube 2 through which a fluid to be measured, such as breathing gas, flows. That is,
This tube body 2 is placed at a predetermined distance apart in the length direction of the tube body 2.
A pair of ultrasonic transducers 4 a and ' 4 b are arranged opposite to each other on a line that diagonally crosses the flow direction of the fluid flowing through them.
is installed. Note that the ultrasonic transducers 4a and 4b may be provided to protrude into the tube body 2, but in this embodiment, recesses 3a, 3b, and an ultrasonic transducer 4a is placed here.
, 4b are arranged.

一方、管体2の超音波振動子4a、4b間の領域の壁面
に、一対の光透過窓5a、5+bが相対向して気密に取
付けられている。これらの光透過窓5a、5bは濃度測
定用の光を透過させるためのものである。ここで、この
実施例では管体2の管軸中心線と超音波振動子4a、4
b間で送受される超音波のビーム中心線との交点Pと、
光透過窓5a、5bを通る光の光束中心線とが交わるよ
うに超音波振動子4a、4bおよび光透過窓5a。
On the other hand, a pair of light transmission windows 5a and 5+b are airtightly attached to the wall surface of the region between the ultrasonic transducers 4a and 4b of the tube body 2, facing each other. These light transmission windows 5a and 5b are for transmitting light for concentration measurement. Here, in this embodiment, the tube axis center line of the tube body 2 and the ultrasonic transducers 4a, 4
The intersection point P with the beam center line of the ultrasound transmitted and received between b,
The ultrasonic transducers 4a, 4b and the light transmitting window 5a are arranged so that the center lines of the light beams passing through the light transmitting windows 5a, 5b intersect.

5bが配置されている。5b is placed.

このように構成された測定管1に対し、次に説明する要
素が組合わされることによって、成分流量測定装置が構
成される。すなわち、一対の超音波振動子4a、4bに
は流量測定回路6が接続される。この流量測定回路6は
例えば伝搬時間差法によるものが用いられる。
A component flow rate measuring device is constructed by combining the measuring tube 1 thus constructed with the elements described below. That is, a flow rate measurement circuit 6 is connected to the pair of ultrasonic transducers 4a and 4b. This flow rate measuring circuit 6 uses, for example, one based on the propagation time difference method.

第2図は伝搬時間差法による流量測定回路の基本構成を
示すもので、超音波振動子4a、4bを駆動回路218
.21bにより同時に駆動し、そのとき各超音波振動子
4a、4.bで受信される他の超音波振動子4b、4a
からの超音波信号を受信回路22a、22bで電気信号
に変換し波形整形回路23a、23bを通して時間差演
算回路24に導いて、超音波振動子4aから超音波振動
子4bへの超音波伝搬時間と超音波振動子4bから超音
波振動子4aへの超音波伝搬時間との差をめ、これに所
定の定数を乗じることによって流量信号v(t)を得る
ものである。なお、第2図はあくまで原理的な構成を示
すものであって、例えば特開昭57−77914号公報
、特開昭57−77915号公報等に記載されたような
、より改良された構成をとることも可能である。
FIG. 2 shows the basic configuration of a flow rate measuring circuit using the propagation time difference method.
.. 21b simultaneously, and at that time each ultrasonic transducer 4a, 4. Other ultrasonic transducers 4b and 4a received by b
The receiving circuits 22a and 22b convert the ultrasonic signals from the ultrasonic waves into electric signals, which are guided to the time difference calculation circuit 24 through the waveform shaping circuits 23a and 23b, thereby calculating the ultrasonic propagation time from the ultrasonic transducer 4a to the ultrasonic transducer 4b. The flow rate signal v(t) is obtained by calculating the difference between the ultrasonic propagation time from the ultrasonic transducer 4b to the ultrasonic transducer 4a and multiplying this by a predetermined constant. Note that FIG. 2 only shows the basic configuration, and it is possible to use a more improved configuration as described in, for example, Japanese Patent Laid-Open No. 57-77914, Japanese Patent Laid-Open No. 57-77915, etc. It is also possible to take

一方、濃度測定は例えば特開昭57723843号公報
に記載された原理に従い、次のようにして行なわれる。
On the other hand, concentration measurement is carried out as follows, for example, according to the principle described in Japanese Patent Application Laid-open No. 57723843.

すなわち、一方の光透過窓5aの外側に電源7により点
灯される光源8が設けられ、この光源8からの光が光透
過窓5aを通して管体2内に導入される。管体2内に導
入された光は管体2内を通流する流体を透過した後、他
方の光透過窓5bを通して外部に導き出される。外部に
導き出された光は、モータ9により一定回転数で駆動さ
れるチョッパ用回転板10に到達する。この回転板10
には被測定流体に含まれる特定の成分、例えば炭酸ガス
によって吸収される波長の光のみを通過させる第1のフ
ィルタ11と、被測定流体に含まれるいかなる成分にも
吸収されない波長の光を通過させる第2のフィルタ12
とを円周方向の異なる位置に配設したものである。そし
てこれらのフィルタ11.12を透過した光は光検出器
13に導かれ、電気信号に変換された後、成分濃度測定
回路14に供給される。
That is, a light source 8 turned on by a power source 7 is provided outside one light transmitting window 5a, and light from this light source 8 is introduced into the tube body 2 through the light transmitting window 5a. The light introduced into the tube body 2 passes through the fluid flowing through the tube body 2, and then is guided to the outside through the other light transmission window 5b. The light led to the outside reaches a chopper rotary plate 10 driven by a motor 9 at a constant rotation speed. This rotating plate 10
includes a first filter 11 that passes only light with a wavelength that is absorbed by a specific component contained in the fluid to be measured, such as carbon dioxide gas, and a first filter that passes light with a wavelength that is not absorbed by any component contained in the fluid to be measured. second filter 12
and are arranged at different positions in the circumferential direction. The light transmitted through these filters 11 and 12 is guided to a photodetector 13, converted into an electrical signal, and then supplied to a component concentration measuring circuit 14.

濃度測定回路14は例えば第3図に示すように構成され
る。この構成は特開昭57−23843号公報に記載さ
れたもので、光検出器13の出力を増幅器31で増幅し
た後、前記チョッパ用回転板10の回転に同期して第1
のフィルタ11を透過した波長の光に起因する成分と、
第2のフィルタ12を透過した波長の光に起因する成分
とを第1.第2の検波器32a、32bにより同期検波
し、その各検波出力の比(第1の検波器出力/第2の検
波器出力)を割算回路33でめ、さらにこの比を対数増
幅器34で対数変換することにより、特定成分、例えば
炭酸ガスについての濃度信号fcO2(’j)を得る構
成となっている。なお、成分濃度測定回路14の構成は
あくまで一例であって、要するに光学的に特定成分の濃
度を測定するものであれば基本的にどのような構成でも
よい。
The concentration measuring circuit 14 is configured as shown in FIG. 3, for example. This configuration is described in Japanese Patent Application Laid-Open No. 57-23843, and after the output of the photodetector 13 is amplified by the amplifier 31, the first
A component caused by the light of the wavelength transmitted through the filter 11 of
The component resulting from the light having the wavelength transmitted through the second filter 12 and the component resulting from the light having the wavelength transmitted through the second filter 12. Synchronous detection is performed by the second detectors 32a and 32b, the ratio of the respective detection outputs (first detector output/second detector output) is determined by the divider circuit 33, and this ratio is further determined by the logarithmic amplifier 34. The configuration is such that a concentration signal fcO2('j) for a specific component, for example, carbon dioxide gas, is obtained by logarithmic conversion. The configuration of the component concentration measuring circuit 14 is merely an example, and basically any configuration may be used as long as it optically measures the concentration of a specific component.

ここで、流量測定回路6と成分濃度測定回路14とは、
同期信号16によってチョッパ用回転板10の回転によ
る光のサンプリングと超音波振動子4a、4bからの超
音波の放射とが同期して行なわれるように動作する。す
なわち、例えば第1のフィルタ11を透過した光の検出
と、超音波振動子4a、4bからの超音波の放射とが同
時に行なわれる。これにより流量の測定と成分濃度の測
定は被測定流体の同−流塊に対して行なわれることにな
る。
Here, the flow rate measurement circuit 6 and the component concentration measurement circuit 14 are as follows.
The synchronization signal 16 operates so that the sampling of light caused by the rotation of the chopper rotating plate 10 and the emission of ultrasonic waves from the ultrasonic transducers 4a and 4b are performed in synchronization. That is, for example, detection of the light transmitted through the first filter 11 and emission of ultrasonic waves from the ultrasonic transducers 4a and 4b are performed simultaneously. As a result, the measurement of the flow rate and the measurement of the component concentration are performed on the same flow mass of the fluid to be measured.

このようにして流量測定回路6および成分濃度測定回路
14からそれぞれ得られた流量信号■(1)および成分
濃度信号fco2 (t)は演算処理回路15に供給さ
れ、ここで例えば fV(t)・fco2(t) なる演算が行なわれることにより、特定成分についての
成分流量、例えば炭酸ガス産生量がめられることになる
。すなわち、上記のようにして得られる流量信号v(t
)および成分濃度信号fc。
The flow rate signal (1) and the component concentration signal fco2 (t) obtained from the flow rate measurement circuit 6 and the component concentration measurement circuit 14 in this way are supplied to the arithmetic processing circuit 15, where, for example, fV(t) By performing the calculation fco2(t), the component flow rate of a specific component, for example, the amount of carbon dioxide gas produced, can be determined. That is, the flow rate signal v(t
) and component concentration signal fc.

2 (i>は被測定流体の同−流塊に対応しており時間
ずれがないため、演算処理回路15でこれらを直接演算
処理できるのである。
2 (i>) corresponds to the same flow mass of the fluid to be measured and there is no time lag, so the arithmetic processing circuit 15 can directly perform arithmetic processing on these.

以上説明したように、この発明によれば同一の測定管を
用いて流量と特定成分の濃度とを同時に測定できるので
、これらの測定に直列接続した個別の測定管を用いる場
合に比べて、被測定流体に対する測定系全体の容量を小
さくすることができ、被検者に与える負担が大きく軽減
される。これは特に重症患者の呼吸管理を行なう場合等
において、大きな効果となる。
As explained above, according to the present invention, the flow rate and the concentration of a specific component can be measured simultaneously using the same measuring tube. The capacity of the entire measurement system for the measurement fluid can be reduced, and the burden on the subject is greatly reduced. This is particularly effective when managing the breathing of critically ill patients.

また、同一の測定管において流量と成分11度の測定が
行なわれることは、これらの測定位置が近接していると
いうことであり、従って同じ流塊に対するこれら量測定
の時間的なずれが非常に少なくなるため、測定のための
信号処理が簡単となるという利点がある。特に、上記実
施例では流量測定点と成分濃度測定点とが、測定管を構
成する管体の管軸中心線と一対の超音波振動子間で送受
される超音波のビーム中心線との交点で一致しているこ
とから、この時間ずれはほぼ完全に零となるので、その
補正のための処理は全く不要となる。
In addition, the fact that flow rate and component 11 degrees are measured in the same measurement tube means that these measurement positions are close to each other, and therefore the time lag in measuring these quantities for the same flow mass is very large. This has the advantage of simplifying signal processing for measurement. In particular, in the above embodiment, the flow rate measurement point and the component concentration measurement point are the intersections of the tube axis center line of the tube body constituting the measurement tube and the beam center line of the ultrasonic waves transmitted and received between the pair of ultrasonic transducers. Since they match, this time lag becomes almost completely zero, so there is no need for any processing to correct it.

これにより、従来に比べより高精度な成分流口の測定が
可能となる。
This makes it possible to measure component flow ports with higher precision than in the past.

なお、流量測定点と成分濃度測定点とは必ずしも正確に
一致している必要はなく、管体の管軸中心線と超音波振
動子間で送受される超音波のビーム中心線との交点と、
光透過窓を透過する光の光束の一部とが交わる程度であ
っても、はぼ同様な効果が得られる。
Note that the flow rate measurement point and the component concentration measurement point do not necessarily have to match exactly, but should be ,
Almost the same effect can be obtained even if only a portion of the light flux passing through the light transmission window intersects.

さらに、上記実施例では、図に示すように管体2の管軸
中心線と超音波振動子4a、4b間で送受される超音波
のビーム中心線とを通る面と、光透過窓5a、5bを透
過する光の光軸中心線と管体2の管軸中心線とを通る面
とがほぼ一致している、換言すれば超音波振動子4a、
4bおよび光透過窓5a、5bが、管体2の管軸中心線
を通る一つの面上に位置している。従って、この面が水
平となるように測定管1を配置すれば、管体2内を通流
する流体が呼吸気体のような気体の場合に管体2内で液
化が生じ、その液体が底部に溜ることがあっても、超音
波振動子4a、4bが設けられている凹所3a、3bや
光透過窓5a、5bがその液体により塞がれることはな
いので、超音波の伝搬や光の透過状態が悪くなることが
なく、安定な測定が可能である。
Further, in the above embodiment, as shown in the figure, a plane passing through the tube axis center line of the tube body 2 and the beam center line of the ultrasonic waves transmitted and received between the ultrasonic transducers 4a and 4b, and the light transmission window 5a, The plane passing through the optical axis center line of the light transmitted through 5b and the tube axis center line of the tube body 2 almost coincides, in other words, the ultrasonic transducer 4a,
4b and the light transmission windows 5a, 5b are located on one surface passing through the tube axis center line of the tube body 2. Therefore, if the measuring tube 1 is arranged so that this surface is horizontal, when the fluid flowing through the tube body 2 is a gas such as breathing gas, liquefaction will occur within the tube body 2, and the liquid will flow to the bottom. Even if the liquid accumulates in the liquid, the recesses 3a, 3b where the ultrasonic transducers 4a, 4b are installed and the light transmission windows 5a, 5b will not be blocked by the liquid, preventing ultrasonic propagation and light. Stable measurement is possible without deterioration of the transmission state.

この発明はその他種々変形実施が可能であり、例えば管
体2の管軸中心線と一対の超音波振動子4a、4b間で
送受される超音波のビーム中心線との交点に対し、一対
の光透過窓5a、5bを透過する光の光束が交わる必要
は必ずしもなく、要するに光透過窓5a、5bが超音波
振動子4a。
This invention can be implemented in various other ways. For example, a pair of It is not necessary that the beams of light passing through the light transmission windows 5a and 5b intersect, and in short, the light transmission windows 5a and 5b are the ultrasonic transducers 4a.

4b間領域における管体2の壁面に取付けられていれば
よい。特に管体2の超音波振動子4a、4b間領域にお
ける管軸方向の長さが数チぢ程度と短い場合には、流量
測定と濃度測定との時間ずれは実質上はとんど問題とな
らず、仮にこの時間ずれを補正するとしても流速の変化
による時間ずれの変化は無視できることがら゛、補正の
ための信号処理は非常に簡単で済むという利点がある。
It suffices if it is attached to the wall surface of the tube body 2 in the area between 4b. In particular, when the length in the tube axis direction in the region between the ultrasonic transducers 4a and 4b of the tube body 2 is as short as several inches, the time lag between flow rate measurement and concentration measurement is virtually no problem. However, even if this time lag is corrected, changes in the time lag due to changes in flow velocity can be ignored, so there is an advantage that signal processing for correction is very simple.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の成分濃度測定回路の構成
図、第2図は同実施例における流]測定回路の具体的構
成例を示す図、第3図は同じく成分濃度測定回路の具体
的構成例を示す図である。 1・・・測定管、2・・・管体、3a、3b・・・凹所
、4a、4b・・・超音波振動子、5a、5b・・・光
透過窓、6・・・流量測定回路、7・・・電源、8・・
・光源、9・・・モータ、10・・・チョッパ用回転板
、11.12・・・フィルタ、13・・・光検出器、1
4・・・成分濃度測定回路。 出願人代理人 弁理士 鈴江武彦 第 1 図 第 2 図 第 31!1
FIG. 1 is a block diagram of a component concentration measuring circuit according to an embodiment of the present invention, FIG. 2 is a diagram showing a specific configuration example of the flow measuring circuit in the same embodiment, and FIG. It is a figure showing a concrete example of composition. DESCRIPTION OF SYMBOLS 1... Measuring tube, 2... Tube body, 3a, 3b... Recess, 4a, 4b... Ultrasonic vibrator, 5a, 5b... Light transmission window, 6... Flow rate measurement Circuit, 7... Power supply, 8...
・Light source, 9...Motor, 10...Chopper rotating plate, 11.12...Filter, 13...Photodetector, 1
4...Component concentration measurement circuit. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 31!1

Claims (4)

【特許請求の範囲】[Claims] (1)流体が通流する管体に流体の流れ方向を斜めに横
切る線上で相対向するように一対の超音波振動子を取付
けるとともに、前記管体の前記一対の超音波振動子開領
域の壁面で相対向するように一対の光透過窓を気密に取
付けてなる測定管と、前記一対の超音波振動子を駆動し
、これら各超音波振動子によって送信され他の超音波振
動子により互いに受信された超音波信号から前記流体の
流量を測定する流量測定回路と、前記一対の光透過窓の
一方から前記管体内に照射され、前記管体内の流体を透
過して前記一対の光照射窓の他方から外部に導き出され
た光のうち、少なくとも前記流体の特定成分によって吸
収される波長の光の光量を検出して前記流体の前記特定
成分の濃度を測定する成分濃度測定回路と、これら流量
測定回路および成分+1度測定回路により測定された流
量と成分濃度から前記流量の前記特定成分の流mを算出
する手段とを備えたことを特徴とする成分流量測定装置
(1) A pair of ultrasonic transducers are installed in a pipe body through which fluid flows so as to face each other on a line diagonally crossing the fluid flow direction, and the open area of the pair of ultrasonic transducers of the pipe body is A measuring tube consisting of a pair of light transmitting windows airtightly mounted opposite to each other on a wall surface and the pair of ultrasonic transducers are driven, and the waves transmitted by each ultrasonic transducer are transmitted to each other by the other ultrasonic transducers. a flow rate measurement circuit that measures the flow rate of the fluid from a received ultrasonic signal; and a light irradiation window that is irradiated into the tube body from one of the pair of light transmission windows and transmitted through the fluid in the tube body. a component concentration measuring circuit that measures the concentration of the specific component of the fluid by detecting the amount of light of a wavelength that is absorbed by at least a specific component of the fluid, out of the light guided to the outside from the other side of the fluid; A component flow rate measuring device comprising: a measuring circuit; and means for calculating the flow m of the specific component of the flow rate from the flow rate and component concentration measured by the component +1 degree measuring circuit.
(2)一対の超音波振動子および一対の光透過窓は、管
体の管軸中心線と一対の超音波振動子間で送受される超
音波のビーム中心線との交点と、一対の光透過窓を透過
する光の光束中心線または光束の一部とが交わるように
配置されていることを特徴とする特許請求の範囲第1項
記載の成分流量測定装置。
(2) A pair of ultrasonic transducers and a pair of light transmission windows are located at the intersection of the tube axis center line of the tube body and the beam center line of the ultrasonic waves transmitted and received between the pair of ultrasonic transducers, and the pair of light beams. 2. The component flow rate measuring device according to claim 1, wherein the component flow rate measuring device is arranged so that the center line of the light flux of the light transmitted through the transmission window or a part of the light flux intersects with each other.
(3)一対の超音波振動子および一対の光透過窓は、管
体の管軸中心線と一対の超音波振動子間で送受される超
音波のビーム中心線とを通る面と、管体の管軸中心線と
一対の光透過窓を透過する光の光束中心線とを通る面と
がほぼ一致するように配置されていることを特徴とする
特許請求の範囲第1項または第2項記載の成分流量測定
装置。
(3) The pair of ultrasonic transducers and the pair of light transmission windows are connected to a plane passing through the tube axis center line of the tube body and the beam center line of the ultrasonic waves transmitted and received between the pair of ultrasonic vibrators, and the tube body. Claim 1 or 2, characterized in that the tube axis center line of the tube is arranged so that a plane passing through the center line of the light flux of light transmitted through the pair of light transmission windows substantially coincides with each other. The component flow rate measuring device described.
(4)流量測定回路による流量測定と成分濃度測定回路
による特定成分の濃度測定とが管体内を通流する同じ流
量に対して同時に行なわれることを特徴、とする特許請
求の範囲第1項記載の成分流量測定装置。
(4) According to claim 1, the flow rate measurement by the flow rate measurement circuit and the concentration measurement of a specific component by the component concentration measurement circuit are performed simultaneously for the same flow rate flowing through the tube. component flow measuring device.
JP58226130A 1983-11-30 1983-11-30 Component flow rate measuring device Expired - Lifetime JPH0634008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58226130A JPH0634008B2 (en) 1983-11-30 1983-11-30 Component flow rate measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58226130A JPH0634008B2 (en) 1983-11-30 1983-11-30 Component flow rate measuring device

Publications (2)

Publication Number Publication Date
JPS60117149A true JPS60117149A (en) 1985-06-24
JPH0634008B2 JPH0634008B2 (en) 1994-05-02

Family

ID=16840312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58226130A Expired - Lifetime JPH0634008B2 (en) 1983-11-30 1983-11-30 Component flow rate measuring device

Country Status (1)

Country Link
JP (1) JPH0634008B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4222286C1 (en) * 1992-06-03 1994-05-11 Reutter Georg Dr Ultrasound spirometer
WO1994028790A1 (en) * 1993-06-04 1994-12-22 Ndd Medizintechnik Gmbh Method and device for determining the molecular weight of gases or gas mixtures
JP2015025702A (en) * 2013-07-25 2015-02-05 株式会社東京建設コンサルタント Measuring apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55148640U (en) * 1980-04-23 1980-10-25
JPS5865526U (en) * 1981-10-27 1983-05-04 株式会社 西原環境衛生研究所 Flow rate and concentration meter using single wavelength electromagnetic waves

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55148640U (en) * 1980-04-23 1980-10-25
JPS5865526U (en) * 1981-10-27 1983-05-04 株式会社 西原環境衛生研究所 Flow rate and concentration meter using single wavelength electromagnetic waves

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4222286C1 (en) * 1992-06-03 1994-05-11 Reutter Georg Dr Ultrasound spirometer
WO1994028790A1 (en) * 1993-06-04 1994-12-22 Ndd Medizintechnik Gmbh Method and device for determining the molecular weight of gases or gas mixtures
US5645071A (en) * 1993-06-04 1997-07-08 Ndd Medizintechnik Gmbh Method for the measurement of the molar mass of gases or gas mixtures and an apparatus for the performance of the method
JP2015025702A (en) * 2013-07-25 2015-02-05 株式会社東京建設コンサルタント Measuring apparatus

Also Published As

Publication number Publication date
JPH0634008B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
JPS60117131A (en) Measuring tube for simultaneously measuring flow rate and concentration of fluid
US5645071A (en) Method for the measurement of the molar mass of gases or gas mixtures and an apparatus for the performance of the method
US5479019A (en) Apparatus for determining the 13 CO2 /12 CO2 ratio of concentrations in a gas sample
US5398695A (en) Cardiopulmonary performance analyzer having dynamic transit time compensation
US6286360B1 (en) Methods and apparatus for real time fluid analysis
US4197857A (en) System for measurement of oxygen uptake and respiratory quotient
US6572561B2 (en) Respiratory calorimeter
US5282473A (en) Sidestream infrared gas analyzer requiring small sample volumes
US6493567B1 (en) Single light sensor optical probe for monitoring blood parameters and cardiovascular measurements
US6277645B1 (en) Method and apparatus for respiratory gas analysis employing measurement of expired gas mass
US20030130570A1 (en) Sensor calibration and blood volume determination
JP2001516875A (en) Isotopic gas analyzer
CN104970795A (en) Device for measurement and analysis of multiple breath nitrogen washout process
CN103487295B (en) Expiration nitric oxide measures sampling apparatus
JPS63286162A (en) Apparatus for measuring ultrafiltration amount and concentration of dialysing fluid
ES2309882T3 (en) METHOD FOR THE DETERMINATION OF THE TEMPORARY DELAY BETWEEN A MAIN CURRENT ULTRASONIC FLOW SENSOR AND A SIDE CURRENT GAS ANALYZER.
Murphy et al. Multi-animal test system for measuring effects of irritant gases and vapors on respiratory function of guinea pigs
JPS60117149A (en) Apparatus for measuring flow rate of component
JP2012239690A (en) Oxygen meter using ultrasonic flowmeter
JP2004294434A (en) Acoustic type gas analyzer
Henderson et al. A system for the continuous measurement of oxygen uptake and carbon dioxide output in artificially ventilated patients
WO2022027091A1 (en) Ultrasonic gas flow calibration device
JPH05329132A (en) Breath by breath metabolism measuring apparatus
Kou et al. A pulsed phase measurement ultrasonic flowmeter for medical gases
JPS5927568B2 (en) Breathing gas measuring device