JP2012239690A - Oxygen meter using ultrasonic flowmeter - Google Patents

Oxygen meter using ultrasonic flowmeter Download PDF

Info

Publication number
JP2012239690A
JP2012239690A JP2011113374A JP2011113374A JP2012239690A JP 2012239690 A JP2012239690 A JP 2012239690A JP 2011113374 A JP2011113374 A JP 2011113374A JP 2011113374 A JP2011113374 A JP 2011113374A JP 2012239690 A JP2012239690 A JP 2012239690A
Authority
JP
Japan
Prior art keywords
gas
ultrasonic
humidity
propagation time
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011113374A
Other languages
Japanese (ja)
Other versions
JP5938597B2 (en
Inventor
Ryohei Mogi
良平 茂木
Yuji Ogasawara
雄二 小笠原
Yoshikatsu Tanaka
義克 田中
Hiroshi Kaizuka
洋 貝塚
Yoshinori Hosokawa
嘉寛 細川
Hiroki Shimizu
浩樹 清水
Kazufuku Nitta
一福 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKUSHIN ELECTRONICS KK
Akita Prefecture
Institute of National Colleges of Technologies Japan
Metran Co Ltd
Original Assignee
HOKUSHIN ELECTRONICS KK
Akita Prefecture
Institute of National Colleges of Technologies Japan
Metran Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKUSHIN ELECTRONICS KK, Akita Prefecture, Institute of National Colleges of Technologies Japan, Metran Co Ltd filed Critical HOKUSHIN ELECTRONICS KK
Priority to JP2011113374A priority Critical patent/JP5938597B2/en
Publication of JP2012239690A publication Critical patent/JP2012239690A/en
Application granted granted Critical
Publication of JP5938597B2 publication Critical patent/JP5938597B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an oxygen meter using an ultrasonic flowmeter that precisely determines the mixing ratio of mixed gas containing oxygen.SOLUTION: The oxygen meter includes: a pair of ultrasonic wave transmitter and receiver SU, SD arranged oppositely to each other upstream and downstream of the measuring tube flow path 1 of an ultrasonic flowmeter; a temperature sensor ST and a humidity sensor SH to measure the temperature and humidity in the measuring tube flow path 1; a transmission time measuring unit for measuring the ultrasonic wave transmission time tD from SU to SD and the ultrasonic wave transmission time tU from SD to SU; a temperature/humidity corrector for converting the sum of the tU and tD into a value tC at a specified temperature and humidity; a gas transmission time measuring unit for calculating the time tG when the micro wave is transmitted only in a gas by subtracting the time Δt when the micro wave is transmitted in a thing other than in a gas from the tC; a sound velocity calculator for calculating the sound velocity C of the mixed gas using the tG, etc.; an instrument for preliminarily inputting elements of two kinds of gases to be measured; and an instrument for calculating the concentrations of the two kinds of gases in the mixed gas from the calculated sound velocity C.

Description

本発明は、医療の分野において特に人工呼吸器等で使用される様々な気体の混合気体が流れる系に組み込まれる超音波流量計を用いて、混合気体中の各気体のガス濃度(混合比率)、特に酸素濃度を算出することのできる超音波流量計を用いた酸素濃度計に関する。   The present invention uses an ultrasonic flow meter incorporated in a system in which a mixed gas of various gases used in the field of medicine, particularly in a ventilator, flows, and the gas concentration (mixing ratio) of each gas in the mixed gas. In particular, the present invention relates to an oxygen concentration meter using an ultrasonic flow meter capable of calculating an oxygen concentration.

一般に、人工呼吸器は、新生児から老人まで、特に呼吸が不調になっている緊急性の高い患者や肺疾患を抱える患者に対して用いられる医療器である。このような人工呼吸器においては様々な酸素濃度の空気すなわち窒素と酸素の混合気体が患者の吸気用として供給される。その際に、この混合気体の流量を管理するだけでなく酸素濃度も同時に管理できることが望ましい。超音波流量計は流れる気体の流量を測定するものであるが、超音波流量計には流体の音速を測定できる機能もあり、気体の音速が分かれば気体の分子量が分かるので、混合気体の混合比率すなわち酸素濃度を知れる可能性がある。本発明は、超音波流量計を用いて、この人工呼吸器用の管内を流れる混合気体の流量と混合比率(ガス濃度)を同時に算出することを目的とした、超音波流量計を用いた酸素濃度計に関する。   In general, a ventilator is a medical device used from a newborn to an elderly person, especially for a patient with a high urgency in which breathing is unsatisfactory or a patient with a lung disease. In such a ventilator, air of various oxygen concentrations, that is, a mixed gas of nitrogen and oxygen is supplied for patient inhalation. At that time, it is desirable that not only the flow rate of the mixed gas but also the oxygen concentration can be managed at the same time. The ultrasonic flowmeter measures the flow rate of the flowing gas, but the ultrasonic flowmeter also has a function that can measure the sound speed of the fluid, and if the sound speed of the gas is known, the molecular weight of the gas can be known. The ratio or oxygen concentration may be known. The present invention aims to simultaneously calculate the flow rate and the mixing ratio (gas concentration) of the mixed gas flowing through the tube for the ventilator using the ultrasonic flow meter, and the oxygen concentration using the ultrasonic flow meter. Regarding the total.

2種類の気体(例えば、酸素と窒素等)の混合気体の分子量Mと気体の音速Cには次の関係がある。ここで、γは混合気体の比熱比、Rは気体定数、Tは温度(°K)である。したがって、気体の音速Cが分かれば、混合気体の分子量Mが求められる。   There is the following relationship between the molecular weight M of a mixed gas of two kinds of gases (for example, oxygen and nitrogen) and the sound velocity C of the gas. Here, γ is the specific heat ratio of the mixed gas, R is the gas constant, and T is the temperature (° K). Therefore, if the sound velocity C of the gas is known, the molecular weight M of the mixed gas is obtained.

Figure 2012239690
Figure 2012239690

一方、各気体の分子量をMA、MBとし、それぞれの混合比率(濃度)をαA、αBとすると、それらは混合気体の分子量と次の関係式が成立する。   On the other hand, when the molecular weight of each gas is MA and MB, and the mixing ratio (concentration) is αA and αB, they satisfy the following relational expression with the molecular weight of the mixed gas.

Figure 2012239690
Figure 2012239690

Figure 2012239690
Figure 2012239690

したがって、混合気体が酸素と窒素であれば、各気体の分子量はそれぞれ、MA=32、MB=28と分かっているので、音速から混合気体の分子量Mが求められていれば、各気体の混合比率が求められる。つまり、酸素濃度αAが求められる。
次に、気体の音速Cは超音波センサ間の距離Lとこの距離を超音波が伝搬する時間から算出できる。しかし、超音波流量計の測定管の中では気体が流れているので、超音波を上流方向に向けて伝搬させたときの伝搬時間tUは流れのないときの伝搬時間に比較し若干長くなる。一方、超音波を下流方向に向けて伝搬させたときの伝搬時間tDは流れのないときの伝搬時間に比較し若干短くなる。ただし、これらの時間の増分と減少分はほぼ等しいので、tUとtDの和を取ると流れのない状態での往復伝搬時間となる。そこで、超音波流量計では、次の式で気体の音速を求めている。
Therefore, if the mixed gas is oxygen and nitrogen, the molecular weight of each gas is known to be MA = 32 and MB = 28. Therefore, if the molecular weight M of the mixed gas is determined from the speed of sound, the mixing of each gas A ratio is required. That is, the oxygen concentration αA is obtained.
Next, the sound velocity C of the gas can be calculated from the distance L between the ultrasonic sensors and the time for which the ultrasonic wave propagates. However, since gas flows in the measurement tube of the ultrasonic flowmeter, the propagation time tU when the ultrasonic wave is propagated in the upstream direction is slightly longer than the propagation time when there is no flow. On the other hand, the propagation time tD when the ultrasonic wave is propagated in the downstream direction is slightly shorter than the propagation time when there is no flow. However, since the increment and decrement of these times are almost equal, taking the sum of tU and tD gives the round-trip propagation time in the absence of flow. Therefore, in the ultrasonic flowmeter, the sound velocity of gas is obtained by the following equation.

Figure 2012239690
Figure 2012239690

特開2002−306603号公報JP 2002-306603 A

ガス濃度を測定できるとされている超音波流量計はすでに存在するが、まだ余り普及しているとは言えない。解析によるとガス濃度を気体の音速から求める場合、0.05%程度以下の精度が必要であることが分かる。音速の値を如何に精度良く求めることができるのかが課題だったと考えられる。一方、超音波酸素濃度計でありながら流量も測定できるとする装置がある。これは、酸素濃度測定のための引き込み管を備える場合が多く、本管での測定は行われていない。また、酸素濃度を正確に求めるために、流量は微小流量しか測定できないし、応答性も数秒〜1分と非常に遅い。ここでも、音速の値を如何に精度良く求めるかが課題である。   Ultrasonic flowmeters that are supposed to be able to measure gas concentration already exist, but they are not so popular yet. According to the analysis, it is found that when the gas concentration is obtained from the sound velocity of the gas, an accuracy of about 0.05% or less is necessary. It seems that the problem was how accurately the value of sound velocity could be obtained. On the other hand, there is an apparatus that can measure the flow rate while being an ultrasonic oximeter. This is often provided with a lead-in tube for oxygen concentration measurement, and the main tube is not measured. Further, in order to accurately determine the oxygen concentration, only a minute flow rate can be measured, and the response is very slow, from several seconds to 1 minute. Again, the problem is how to obtain the sound speed value with high accuracy.

気体の音速の値は、気体の分子量以外に温度や湿度にも依存する。人工呼吸器で患者に供給する混合気体は十分な湿度を与えるために加湿される場合が多い。したがって、気体の音速を精度良く求めるためには、温度や湿度も正確な値を知り、それらを用いて温度補正や湿度補正を行うことが必要になる。特に、気体の音速の値から気体の分子量を求める数式(1)は、乾燥気体に対してのものであり、湿度については別途考慮されなければならない。湿度補正は必須となるが、超音波流量計で湿度補正を実施した例は非常に少ない(特許文献1)。
しかし、特許文献1に開示された発明では、湿度補正について考慮されているものの、超音波伝搬時間の精度に問題が存在した。
The value of the sound velocity of gas depends not only on the molecular weight of gas but also on temperature and humidity. The gas mixture supplied to the patient with a ventilator is often humidified to provide sufficient humidity. Therefore, in order to obtain the sound speed of gas with high accuracy, it is necessary to know the accurate values of temperature and humidity, and use them to perform temperature correction and humidity correction. In particular, the mathematical formula (1) for obtaining the molecular weight of the gas from the value of the sound velocity of the gas is for the dry gas, and the humidity must be considered separately. Humidity correction is essential, but there are very few examples of performing humidity correction with an ultrasonic flowmeter (Patent Document 1).
However, although the invention disclosed in Patent Document 1 takes into account humidity correction, there is a problem in the accuracy of ultrasonic propagation time.

また、温度がわずかに変化しても気体の音速は変化するので、その値からガス濃度を求めようとする場合は、温度も高精度な値を求め、その値で温度補正をする必要がある。超音波流量計の測定管内の温度の値を知ることが最善であるが、測定管の内部にはセンサ等の介在物を突出させたくない。しかし、これは患者の呼吸抵抗の基となる圧力損失を増大させるので、超音波流量計の最大の特徴を損なってしまう。したがって、管内壁面に沿った形で温度や湿度のセンサも取り付けたいところである。   Also, even if the temperature changes slightly, the sound velocity of the gas changes. Therefore, when trying to obtain the gas concentration from the value, it is necessary to obtain a highly accurate value of the temperature and perform temperature correction with that value. . Although it is best to know the value of the temperature in the measurement pipe of the ultrasonic flowmeter, it is not desirable to project an inclusion such as a sensor inside the measurement pipe. However, this increases the pressure loss that is the basis of the patient's respiratory resistance and thus detracts from the maximum features of the ultrasonic flowmeter. Therefore, we would like to install temperature and humidity sensors along the inner wall of the tube.

さらに、超音波伝搬時間も精度良く求められる必要があるが、産業用の気体用超音波流量計の口径は一般的には50mm以上と大きなものが多く、これまでセンサの微細な構造を問題にする必要がなかった。しかし、人工呼吸器用の超音波流量計の口径は20mm以下と小さなものが多く、センサの微細構造まで考慮する必要がある。   Furthermore, the ultrasonic propagation time needs to be determined with high accuracy, but the diameter of industrial industrial ultrasonic flowmeters is generally as large as 50 mm or more, and the fine structure of the sensor has been a problem until now. There was no need to do. However, the diameter of ultrasonic flowmeters for ventilators is often as small as 20 mm or less, and it is necessary to consider the fine structure of the sensor.

超音波センサの振動子表面から放射される超音波は、気体中を通過するだけではなく振動子の前面に設置されている前面層などの固体部分をも通過する。通常測定される超音波伝搬時間は、この気体以外の伝搬時間も含むことになり、極わずかといえども、この伝搬時間で気体の音速を求めると誤差を生ずることになる。従来の気体用超音波流量計においては、この部分の伝搬時間による誤差は無視できるほどに小さいものだったが、気体の濃度を求める場合は、もはや無視できる量とはいえない。したがって、全伝搬時間から削除し、気体中だけを通過する伝搬時間を用いて音速を求めなければならない。   The ultrasonic wave radiated from the transducer surface of the ultrasonic sensor not only passes through the gas, but also passes through a solid portion such as a front layer provided on the front surface of the transducer. The ultrasonic propagation time that is normally measured includes propagation times other than this gas. Even if the propagation time is extremely small, an error occurs if the sound velocity of the gas is obtained with this propagation time. In the conventional ultrasonic flowmeter for gas, the error due to the propagation time in this portion is so small that it can be ignored. However, when the concentration of the gas is obtained, it is no longer a negligible amount. Therefore, it is necessary to delete the total propagation time and obtain the speed of sound using the propagation time passing only in the gas.

本発明は上記実情に鑑み提案されたもので、本管で流量を測定する超音波送受波器を用いて、流量とともに酸素濃度も精度良く測定できる超音波流量計を用いた酸素濃度計を提供することを目的とする。   The present invention has been proposed in view of the above circumstances, and provides an oxygen concentration meter using an ultrasonic flowmeter that can accurately measure the oxygen concentration together with the flow rate using an ultrasonic transducer that measures the flow rate with a main pipe. The purpose is to do.

前記目的を達成するために、本発明は酸素を含む2種類の混合気体が流れる系に組み込まれる超音波流量計を用いた酸素濃度計に於いて、a)超音波流量計の測定管流路の上流側と下流側に対向させて配置された一対の超音波送受波器SU,SDと、b)前記測定管流路中の温度および湿度を測定するための温度センサSTおよび湿度センサSHと、c)上流側超音波送受波器SUから超音波を前記測定管流路に放射してから該超音波が下流側超音波送受波器SDに到達するまでの超音波伝搬時間tDと、前記下流側超音波送受波器SDから超音波を前記測定管流路に放射してから前記超音波が前記上流側超音波送受波器SUに到達するまでの超音波伝搬時間tUとを測定する伝搬時間測定手段と、d)測定された伝搬時間tU、tDの和tR=tU+tDに対して、これを特定の温度および湿度での値tCに変換する温度湿度補正手段と、e)前記d)で温度湿度補正された伝搬時間tCから気体以外を伝搬する時間Δtを減じて、気体中だけを伝搬する時間tGを算出する気体伝搬時間測定手段と、f)前記e)で算出された伝搬時間tG等を用いて前記測定管流路を流れる混合気体の音速Cを算出する音速演算手段と、g)被測定気体である2種類の気体の諸元(名称、分子量、構成原子数等)を予め入力する諸元入力手段と、h)算出された混合気体の音速Cから、混合気体中の2種類の気体のガス濃度(混合比率)を演算するガス濃度演算手段とから構成されることで、2種類の混気体中の各気体のガス濃度を、湿度を含む場合においても、測定できることを特徴としている。   In order to achieve the above object, the present invention relates to an oxygen concentration meter using an ultrasonic flow meter incorporated in a system in which two kinds of mixed gas containing oxygen flow, and a) a measurement tube flow path of the ultrasonic flow meter. A pair of ultrasonic transducers SU and SD arranged to face the upstream side and the downstream side of b, and b) a temperature sensor ST and a humidity sensor SH for measuring the temperature and humidity in the measurement tube flow path, C) an ultrasonic wave propagation time tD from when the ultrasonic wave is radiated from the upstream ultrasonic transducer SU to the measurement tube flow path until the ultrasonic wave reaches the downstream ultrasonic transducer SD, and Propagation for measuring an ultrasonic propagation time tU from when an ultrasonic wave is emitted from the downstream ultrasonic transducer SD to the measurement tube flow path until the ultrasonic wave reaches the upstream ultrasonic transducer SU. A time measuring means; and d) a sum t of measured propagation times tU and tD. = TU + tD, temperature / humidity correction means for converting this to a value tC at a specific temperature and humidity, and e) subtracting the time Δt for propagating other than gas from the propagation time tC corrected for temperature / humidity in d) Then, using the gas propagation time measuring means for calculating the time tG for propagation only in the gas, and f) the propagation time tG calculated in the above e), the sound velocity C of the mixed gas flowing through the measurement pipe flow path is calculated. Sound speed calculating means, g) specification input means for previously inputting specifications (name, molecular weight, number of constituent atoms, etc.) of two kinds of gases to be measured, and h) calculated sound speed C of the mixed gas From the gas concentration calculation means for calculating the gas concentration (mixing ratio) of the two types of gas in the mixed gas, the humidity of each gas concentration in the two types of mixed gas includes humidity However, it can be measured The

また、本発明において、前記温度センサSTあるいは湿度センサSHの替わりに、温度あるいは湿度の値として、既設の他の装置での測定値を自動的にあるいは手動的に入力する手段で代替することを特徴とする。   In the present invention, instead of the temperature sensor ST or the humidity sensor SH, the temperature or humidity value may be replaced with a means for automatically or manually inputting a measured value in another existing device. Features.

また、本発明において、前記気体以外の伝搬時間Δtとして、同時並行に他の手段で別途計測した値を、自動的にあるいは手動的に入力する手段を備えることを特徴とするものである。   In the present invention, there is provided means for automatically or manually inputting a value separately measured by another means in parallel as the propagation time Δt other than the gas.

また、本発明において、前記被測定気体が3種類以上の気体が混合された気体である場合に、その中の2種類の気体についてはその混合比が未知であり、その他の気体について名称、分子量、構成原子数および混合比率が既知または別途計測値が入手できるときに、それらを予め入力する手段を備え、温度湿度補正手段や未知の2種類の気体のガス濃度(混合比率)を算出する手段に情報を提供し、これら2種類の気体のガス濃度(混合比率)求めることを特徴とするものである。   In the present invention, when the gas to be measured is a gas in which three or more kinds of gases are mixed, the mixing ratio of the two kinds of gases is unknown, and the names and molecular weights of the other gases are unknown. When the number of constituent atoms and the mixing ratio are known or when separately measured values are available, a means for inputting them in advance and a means for calculating the temperature / humidity correcting means and the gas concentrations (mixing ratios) of two unknown gases Information is obtained, and the gas concentrations (mixing ratios) of these two kinds of gases are obtained.

また、本発明において、前記温度センサST及び前記湿度センサSHを超音波流量計の管壁内部に埋め込んだことを特徴とする。   In the present invention, the temperature sensor ST and the humidity sensor SH are embedded in the tube wall of the ultrasonic flowmeter.

また、本発明において、前記気体以外の伝搬時間Δtを、測定された超音波往復伝搬時間tRを予め定めた特定の温度湿度での値に補正した値tCから、この特定の温度湿度での理論的な伝搬時間tTを差し引くこと、すなわちΔt=tC−tTで求めることを特徴とするものである。   Further, in the present invention, the theory at the specific temperature and humidity is obtained from the value tC obtained by correcting the propagation time Δt other than the gas to the value at the predetermined specific temperature and humidity of the measured ultrasonic round-trip propagation time tR. It is characterized by subtracting a typical propagation time tT, that is, by obtaining Δt = tC−tT.

この発明は前記した構成からなるので、以下に説明するような効果を奏することができる。   Since this invention consists of an above-described structure, there can exist an effect which is demonstrated below.

本発明では、酸素を含む2種類の混合気体が流れる系に組み込まれる超音波流量計を用いた酸素濃度計に於いて、a)超音波流量計の測定管流路の上流側と下流側に対向させて配置された一対の超音波送受波器SU,SDと、b)前記測定管流路中の温度および湿度を測定するための温度センサSTおよび湿度センサSHと、c)上流側超音波送受波器SUから超音波を前記測定管流路に放射してから該超音波が下流側超音波送受波器SDに到達するまでの超音波伝搬時間tDと、前記下流側超音波送受波器SDから超音波を前記測定管流路に放射してから前記超音波が前記上流側超音波送受波器SUに到達するまでの超音波伝搬時間tUとを測定する伝搬時間測定手段と、d)測定された伝搬時間tU、tDの和tR=tU+tDに対して、これを特定の温度および湿度での値tCに変換する温度湿度補正手段と、e)前記d)で温度湿度補正された伝搬時間tCから気体以外を伝搬する時間Δtを減じて、気体中だけを伝搬する時間tGを算出する気体伝搬時間測定手段と、f)前記e)で算出された伝搬時間tG等を用いて前記測定管流路を流れる混合気体の音速Cを算出する音速演算手段と、g)被測定気体である2種類の気体の諸元(名称、分子量、構成原子数等)を予め入力する諸元入力手段と、h)算出された混合気体の音速Cから、混合気体中の2種類の気体のガス濃度(混合比率)を演算するガス濃度演算手段とから構成されることで、2種類の混気体中の各気体のガス濃度を、湿度を含む場合においても、測定できるので、正確な超音波伝搬時間を算出でき、この値を用いて気体の音速を高精度に求め、混合気体の混合比率を精度良く求めることができる。
また、超音波伝搬時間の温度湿度補正した値から、気体以外の伝搬時間を差し引いた値で音速を求めるので、気体の音速が高精度に求められ、混合気体の混合比率を精度良く求めることができる。
In the present invention, in an oxygen concentration meter using an ultrasonic flow meter incorporated in a system in which two kinds of mixed gas containing oxygen flow, a) on the upstream side and the downstream side of the measurement pipe channel of the ultrasonic flow meter A pair of ultrasonic transducers SU and SD arranged opposite to each other; b) a temperature sensor ST and a humidity sensor SH for measuring the temperature and humidity in the measurement pipe flow path; and c) an upstream ultrasonic wave. The ultrasonic wave propagation time tD from when the ultrasonic wave is emitted from the transducer SU to the measurement tube flow path until the ultrasonic wave reaches the downstream ultrasonic transducer SD, and the downstream ultrasonic transducer A propagation time measuring means for measuring an ultrasonic propagation time tU from when an ultrasonic wave is emitted from the SD to the measurement tube flow path until the ultrasonic wave reaches the upstream ultrasonic transducer SU; d) For the sum of measured propagation times tU, tD tR = tU + tD A temperature / humidity correction means for converting this to a value tC at a specific temperature and humidity; and e) subtracting the time Δt for propagating other than gas from the propagation time tC corrected for temperature / humidity in d) above, A gas propagation time measuring means for calculating a propagation time tG; and f) a sound speed calculating means for calculating the sound velocity C of the mixed gas flowing through the measurement pipe channel using the propagation time tG calculated in e). g) Specification input means for inputting in advance specifications (name, molecular weight, number of constituent atoms, etc.) of two kinds of gases to be measured, and h) from the calculated sound velocity C of the mixed gas, By comprising gas concentration calculation means for calculating the gas concentration (mixing ratio) of two types of gas, the gas concentration of each gas in the two types of mixed gas can be measured even when humidity is included. Accurate ultrasonic propagation time can be calculated, Using this value, the sound velocity of gas can be obtained with high accuracy, and the mixing ratio of the mixed gas can be obtained with high accuracy.
In addition, since the sound speed is obtained by subtracting the propagation time other than the gas from the temperature / humidity corrected value of the ultrasonic propagation time, the sound speed of the gas can be obtained with high accuracy, and the mixing ratio of the mixed gas can be obtained with high accuracy. it can.

また、本発明において、前記温度センサSTあるいは湿度センサSHの替わりに、温度あるいは湿度の値として、既設の他の装置での測定値を自動的にあるいは手動的に入力する手段で代替するので、温度センサ等の設置コストを低減することができる。   Further, in the present invention, instead of the temperature sensor ST or the humidity sensor SH, as a temperature or humidity value, it is replaced with a means for automatically or manually inputting a measured value in another existing device. The installation cost of a temperature sensor etc. can be reduced.

また、本発明において、前記気体以外の伝搬時間Δtとして、同時並行に他の手段で別途計測した値を、自動的にあるいは手動的に入力する手段を備えるので、気体の音速をさらに高精度に求められ、混合気体の混合比率を精度良く求めることができる。   Further, in the present invention, since a value separately measured by other means at the same time as the propagation time Δt other than the gas is provided either automatically or manually, the sound velocity of the gas is further improved with high accuracy. It is calculated | required and the mixing ratio of mixed gas can be calculated | required accurately.

また、本発明において、前記被測定気体が3種類以上の気体が混合された気体である場合に、その中の2種類の気体についてはその混合比が未知であり、その他の気体について名称、分子量、構成原子数および混合比率が既知または別途計測値が入手できるときに、それらを予め入力する手段を備え、温度湿度補正手段や未知の2種類の気体のガス濃度(混合比率)を算出する手段に情報を提供し、これら2種類の気体のガス濃度(混合比率)求めるので、2種類の気体についてはその混合比が未知であり、その他の気体について名称、分子量、構成原子数および混合比が既知または別途計測値が入手できるときに、それらを予め入力することにより、未知の2種類の気体の混合比を求めることができる。   In the present invention, when the gas to be measured is a gas in which three or more kinds of gases are mixed, the mixing ratio of the two kinds of gases is unknown, and the names and molecular weights of the other gases are unknown. When the number of constituent atoms and the mixing ratio are known or when separately measured values are available, a means for inputting them in advance and a means for calculating the temperature / humidity correcting means and the gas concentrations (mixing ratios) of two unknown gases Information is obtained, and the gas concentrations (mixing ratios) of these two gases are determined, so the mixing ratio is unknown for the two gases, and the name, molecular weight, number of constituent atoms and mixing ratio of the other gases are unknown. When known or separately measured values can be obtained, the mixing ratio of the two unknown gases can be obtained by inputting them in advance.

また、本発明において、前記温度センサST及び前記湿度センサSHを超音波流量計の管壁内部に埋め込んだので、管内の温度を精度良く測定できる。しかも、管壁に埋め込む方式にしたので、圧力損失を発生させることもない。これによって、高精度の温度補正が可能となり、音気体の音速を高精度に求めることで、混合気体の混合比率を精度良く求めることができる。また、管内の湿度も精度良く測定できる。これによって、加湿された混合気体においても、高精度の湿度補正が可能となり、気体の音速を高精度に求めることで、混合気体の混合比率を精度良く求めることができる。   In the present invention, since the temperature sensor ST and the humidity sensor SH are embedded in the tube wall of the ultrasonic flowmeter, the temperature in the tube can be measured with high accuracy. In addition, since it is embedded in the pipe wall, no pressure loss is generated. Thereby, highly accurate temperature correction becomes possible, and the mixing ratio of the mixed gas can be accurately obtained by obtaining the sound velocity of the sound gas with high precision. Moreover, the humidity in the pipe can be measured with high accuracy. Thereby, even in the humidified gas mixture, humidity correction with high accuracy is possible, and by obtaining the sound speed of the gas with high accuracy, the mixture ratio of the gas mixture can be obtained with high accuracy.

また、本発明において、前記気体以外の伝搬時間Δtを、測定された超音波往復伝搬時間tRを予め定めた特定の温度湿度での値に補正した値tCから、この特定の温度湿度での理論的な伝搬時間tTを差し引くこと、すなわちΔt=tC−tTで求めるので、時々刻々に測定される超音波伝搬時間を温度湿度補正した値から、気体以外の伝搬時間を減ずることが可能となり、気体の音速がさらに高精度に求められ、混合気体の混合比率を精度良く求めることができる。   Further, in the present invention, the theory at the specific temperature and humidity is obtained from the value tC obtained by correcting the propagation time Δt other than the gas to the value at the predetermined specific temperature and humidity of the measured ultrasonic round-trip propagation time tR. Therefore, it is possible to subtract the propagation time other than the gas from the value obtained by correcting the ultrasonic propagation time measured from time to time by the temperature and humidity, and subtracting the typical propagation time tT, that is, Δt = tC−tT. Is obtained with higher accuracy, and the mixing ratio of the mixed gas can be obtained with high accuracy.

図1は、本発明に係る超音波流量計を用いた酸素濃度計における測定管部の一例を示す要部断面図である。FIG. 1 is a cross-sectional view of an essential part showing an example of a measurement tube part in an oximeter using an ultrasonic flowmeter according to the present invention. 図2は、同酸素濃度計の動作説明用のブロック図である。FIG. 2 is a block diagram for explaining the operation of the oximeter. 図3は、同酸素濃度計における主な信号の流れを示す説明図である。FIG. 3 is an explanatory diagram showing a main signal flow in the oximeter. 図4は、同酸素濃度計における気体以外の伝搬時間Δtに関する説明図である。FIG. 4 is an explanatory diagram relating to a propagation time Δt other than gas in the oximeter. 図5は、同酸素濃度計に使用される温度センサと湿度センサを管壁に埋め込んだ例を示す要部拡大断面図である。FIG. 5 is an enlarged cross-sectional view of a main part showing an example in which a temperature sensor and a humidity sensor used in the oximeter are embedded in a tube wall.

本発明の超音波流量計を用いた酸素濃度計は、超音波流量計で、流量計の管内を流れる気体の音速を精度良く求め、その値から混合気体の混合比率(ガス濃度)を求めることとした。そのために、流量計の管内の温度と湿度を正確に求め、その値を使って、温度補正と湿度補正を行うとともに、測定された超音波伝搬時間から気体以外を伝搬する時間Δtを差し引いて、この値から音速を算出することとした。   The oxygen concentration meter using the ultrasonic flowmeter of the present invention is an ultrasonic flowmeter, which accurately obtains the sound velocity of the gas flowing through the pipe of the flowmeter, and obtains the mixture ratio (gas concentration) of the mixed gas from the value. It was. For this purpose, the temperature and humidity in the pipe of the flowmeter are accurately obtained, and the temperature and humidity correction are performed using the values, and the time Δt for propagating other than gas is subtracted from the measured ultrasonic propagation time, The sound speed was calculated from this value.

以下、一実施の形態を示す図面に基づいて本発明を詳細に説明する。図1は本発明に係る超音波流量計を用いた酸素濃度計における測定管部の一例を示す要部断面図である。ここで、測定管流路1は直径Dの直管になっており、その上流部1aと下流部1bに流路を挟んで対向した位置に一対の超音波送受波器SU2、超音波送受波器SD3が配置されている。超音波送受波器2、3の間隔はLで、超音波送受波器2、3を取り付けている測定管4と測定管流路1は角度θをなして交差している。測定管4近傍の測定管流路の内壁に温度センサST5と湿度センサSH6が埋め込まれている。   Hereinafter, the present invention will be described in detail with reference to the drawings illustrating an embodiment. FIG. 1 is a cross-sectional view of an essential part showing an example of a measurement tube portion in an oximeter using an ultrasonic flowmeter according to the present invention. Here, the measurement pipe flow path 1 is a straight pipe having a diameter D, and a pair of ultrasonic transducers SU2 and ultrasonic transmission / reception waves are disposed at positions opposed to the upstream portion 1a and the downstream portion 1b with the flow channel interposed therebetween. A device SD3 is arranged. The interval between the ultrasonic transducers 2 and 3 is L, and the measurement tube 4 and the measurement tube flow path 1 to which the ultrasonic transducers 2 and 3 are attached intersect at an angle θ. A temperature sensor ST5 and a humidity sensor SH6 are embedded in the inner wall of the measurement tube flow path in the vicinity of the measurement tube 4.

つまり、本発明の超音波流量計を用いた酸素濃度計は、酸素を含む2種類の混合気体が流れる系に組み込まれる超音波流量計を用いた酸素濃度計に於いて、a)超音波流量計の測定管流路1の上流側1aと下流側1bに対向させて配置された一対の超音波送受波器SU2,SD3と、b)前記測定管流路中の温度および湿度を測定するための温度センサST5および湿度センサSH6と、c)上流側超音波送受波器SU2から超音波を前記測定管流路1に放射してから該超音波が下流側超音波送受波器SD3に到達するまでの超音波伝搬時間tDと、前記下流側超音波送受波器SD2から超音波を前記測定管流路1に放射してから前記超音波が前記上流側超音波送受波器SU3に到達するまでの超音波伝搬時間tUとを測定する伝搬時間測定手段7と、d)測定された伝搬時間tU、tDの和tR=tU+tDに対して、これを特定の温度および湿度での値tCに変換する温度湿度補正手段8と、e)前記d)で温度湿度補正された伝搬時間tCから気体以外を伝搬する時間Δtを減じて、気体中だけを伝搬する時間tGを算出する気体伝搬時間測定手段9と、f)前記e)で算出された伝搬時間tG等を用いて前記測定管流路を流れる混合気体の音速Cを算出する音速演算手段10と、g)被測定気体である2種類の気体の諸元(名称、分子量、構成原子数等)を予め入力する諸元入力手段11と、h)算出された混合気体の音速Cから、混合気体中の2種類の気体のガス濃度(混合比率)を演算するガス濃度演算手段12とから構成されている。   That is, the oxygen concentration meter using the ultrasonic flow meter of the present invention is an oxygen concentration meter using an ultrasonic flow meter incorporated in a system in which two kinds of mixed gas containing oxygen flow. A) Ultrasonic flow rate A pair of ultrasonic transducers SU2 and SD3 disposed opposite the upstream side 1a and the downstream side 1b of the measuring tube channel 1 of the meter, and b) for measuring the temperature and humidity in the measuring tube channel Temperature sensor ST5 and humidity sensor SH6, and c) after radiating ultrasonic waves from the upstream ultrasonic transducer SU2 to the measurement tube flow path 1, the ultrasonic waves reach the downstream ultrasonic transducer SD3. Until the ultrasonic wave reaches the upstream ultrasonic transducer SU3 after the ultrasonic wave is radiated from the downstream ultrasonic transducer SD2 to the measurement tube flow path 1. Time measurement to measure the ultrasonic propagation time tU Stage 7 and d) temperature humidity correction means 8 for converting the measured propagation time tU, tD sum tR = tU + tD into a value tC at a specific temperature and humidity, and e) at d) above The gas propagation time measuring means 9 for calculating the time tG for propagating only in the gas by subtracting the time Δt for propagating other than the gas from the temperature / humidity corrected propagation time tC, and f) the propagation time calculated in e) above. a sonic speed calculation means 10 for calculating the sonic speed C of the mixed gas flowing through the measuring tube flow path using tG or the like, and g) specifications of two kinds of gases to be measured (name, molecular weight, number of constituent atoms, etc.) And a gas concentration calculation means 12 for calculating the gas concentrations (mixing ratios) of two kinds of gases in the mixed gas from the calculated sound velocity C of the mixed gas. ing.

測定管流路1の材質は、金属、プラスチックスなど用途によって適切なものを使用することができる。超音波送受波器SU、SDは、圧電材料からなる振動板13をケース14の前面の壁に固着した構造になっている。振動板14の前面14aは単純に保護板としての機能の他に、振動子と負荷(気体)の音響インピーダンスの違いが大きいので、それを補うための音響整合層の機能を持たせることもある。したがって、振動体の設計思想により材質がプラスチックス、金属、セラミック等、多様なものが選択されている。超音波送受波器2、3のリード線15は背面から取られており、流量測定装置に接続される。 As the material of the measurement tube channel 1, an appropriate material such as metal or plastic can be used. The ultrasonic transducers S U and S D have a structure in which a diaphragm 13 made of a piezoelectric material is fixed to the front wall of the case 14. The front surface 14a of the diaphragm 14 has a function of an acoustic matching layer to compensate for the large difference in acoustic impedance between the vibrator and the load (gas) in addition to the function as a protective plate. . Therefore, various materials such as plastics, metals, ceramics and the like are selected according to the design concept of the vibrator. The lead wires 15 of the ultrasonic transducers 2 and 3 are taken from the back and connected to a flow rate measuring device.

図2は本発明の超音波流量計を用いた酸素濃度計の動作説明用のブロック図であり、制御部16から各種指令信号を出力して装置の各部が動作する。まず、主な信号の流れを、図2と図3(主な信号の流れ)例えば、制御部16がi番目の駆動用トリガ信号(iD)を発信して送信回路TD17を動作させ超音波送受波器SU2に駆動電圧入力が加わり測定管流路1に超音波が放射される。この超音波は超音波送受波器SD3で受信され電気信号に変換されて受信回路RD18に入力される。   FIG. 2 is a block diagram for explaining the operation of the oximeter using the ultrasonic flowmeter of the present invention. Various command signals are output from the control unit 16 to operate each part of the apparatus. First, the main signal flow is shown in FIGS. 2 and 3 (main signal flow). For example, the control unit 16 transmits the i-th driving trigger signal (iD) to operate the transmission circuit TD17 to transmit / receive ultrasonic waves. Driving voltage input is applied to the wave generator SU2, and ultrasonic waves are radiated to the measuring tube flow path 1. This ultrasonic wave is received by the ultrasonic transducer SD3, converted into an electric signal, and input to the receiving circuit RD18.

受信回路RD18の出力は切換器19と比較器20を経由して受信パルス信号となり伝播時間測定手段7の測時ゲート発生器に入力される。測時ゲート発生器では制御部16から出力された送信回路TD17の駆動用トリガ信号と比較器20から出力された受信パルス信号を用いて超音波が送波されてから受波されるまでのi番目の超音波伝播時間tD(i)に相当する長さを有するゲートパルスを生成し計数器に送る。計数器は、超音波伝播時間tD(i)をデジタル数値に変換し、温度湿度補正手段8の演算器に入力する。   The output of the receiving circuit RD18 becomes a received pulse signal via the switch 19 and the comparator 20, and is input to the time measuring gate generator of the propagation time measuring means 7. The time measurement gate generator uses the trigger signal for driving the transmission circuit TD17 output from the control unit 16 and the received pulse signal output from the comparator 20 to transmit the ultrasonic wave from i to when it is received. A gate pulse having a length corresponding to the first ultrasonic propagation time tD (i) is generated and sent to the counter. The counter converts the ultrasonic propagation time tD (i) into a digital numerical value and inputs it to the calculator of the temperature / humidity correction means 8.

次に、先の制御部16の駆動用トリガ信号から一定周期T遅れて、制御部16が再びi番目駆動用トリガ信号(iU)を発信して送信回路TU21を動作させ超音波送受波器SD3に駆動電圧入力が加わり測定管流路1に超音波が放射される。この超音波は、超音波送受波器SU2に受信され電気信号に変換されて受信回路RU22に入力される。受信回路SUの出力は切換器19と比較器20を経由して受信パルス信号となり伝播時間測定手段7の測時ゲート発生器に入力される。測時ゲート発生器では制御部16から出力された送信回路TU21の駆動用トリガ信号と比較器20から出力された受信パルス信号を用いて超音波が送波されてから受波されるまでの超音波伝播時間tU(i)に相当する長さを有するゲートパルスを生成し、同じく伝播時間測定手段7に内在する計数器に送る。計数器は、超音波伝播時間tUをデジタル数値に変換し、温度湿度補正手段8の演算器に入力する。   Next, after a predetermined period T from the drive trigger signal of the previous control unit 16, the control unit 16 again transmits the i-th drive trigger signal (iU) to operate the transmission circuit TU21 and the ultrasonic transducer SD3. In addition, an input of a driving voltage is applied and ultrasonic waves are radiated to the measuring tube channel 1. This ultrasonic wave is received by the ultrasonic transducer SU2, converted into an electric signal, and input to the receiving circuit RU22. The output of the receiving circuit SU is a received pulse signal via the switch 19 and the comparator 20, and is input to the time measuring gate generator of the propagation time measuring means 7. The timing gate generator uses the trigger signal for driving the transmission circuit TU21 output from the control unit 16 and the received pulse signal output from the comparator 20 to transmit the ultrasonic wave from when it is transmitted to when it is received. A gate pulse having a length corresponding to the acoustic wave propagation time tU (i) is generated and sent to a counter that is also included in the propagation time measuring means 7. The counter converts the ultrasonic propagation time tU into a digital numerical value and inputs it to the calculator of the temperature / humidity correction means 8.

本装置では、上で述べたように超音波伝播時間tUとtDの測定を、一定周期Tごとに交互に繰り返しながら行い、tR=tU(i)+tD(i)もしくはtR=tU(i)+tD(i+1)を求め、温度湿度補正手段8である演算器にこれらの値を入力する。演算器では常に新しいtRの値を用いて、次式の計算を行ってその時々の超音波往復伝搬時間tRを温度・湿度補正する。   In this apparatus, as described above, the ultrasonic propagation times tU and tD are measured while being alternately repeated at regular intervals T, and tR = tU (i) + tD (i) or tR = tU (i) + tD. (I + 1) is obtained, and these values are input to the arithmetic unit which is the temperature / humidity correction means 8. The arithmetic unit always uses the new value of tR to calculate the following equation and correct the temperature / humidity of the ultrasonic round-trip propagation time tR at that time.

Figure 2012239690
Figure 2012239690

ここで、tCは温度湿度補正された伝搬時間であり、td30は相対湿度0%、温度30℃の気体中での伝搬時間であることを表している。そして、r、θは、それぞれtU、tDを測定した時の相対湿度r%、温度θ℃を表している。PS(θ)とH(θ)は、それぞれ温度θ℃での飽和水蒸気圧と大気圧を表している。すなわち、数(5)式により計算することで、任意の温度・湿度で測定された超音波伝搬時間tR=tU+tDを、相対湿度0%、温度30℃での値に変換したことになる。   Here, tC is a propagation time corrected for temperature and humidity, and td30 represents a propagation time in a gas having a relative humidity of 0% and a temperature of 30 ° C. R and θ represent the relative humidity r% and the temperature θ ° C. when tU and tD are measured, respectively. PS (θ) and H (θ) represent the saturated water vapor pressure and the atmospheric pressure at the temperature θ ° C., respectively. That is, by calculating with the equation (5), the ultrasonic propagation time tR = tU + tD measured at an arbitrary temperature / humidity is converted into a value at a relative humidity of 0% and a temperature of 30 ° C.

ただし、このときの温度と相対湿度の値は、測定管4(図1参照)に埋め込まれた温度センサST5と湿度センサSH6の出力から読み取った値を温度湿度補正手段8(図2参照)でデジタル数値に変換したものを用いて、上で述べた補正計算を行っている。   However, the temperature and relative humidity values at this time are values read from the outputs of the temperature sensor ST5 and the humidity sensor SH6 embedded in the measurement tube 4 (see FIG. 1) by the temperature / humidity correction means 8 (see FIG. 2). The correction calculation described above is performed using the digital value.

また、温度と相対湿度の値は、測定管4に埋め込まれた温度センサST5と湿度センサSH6で測定された値を用いるのが最良であるが、超音波流量計が使用されている環境の温度または湿度がしっかり管理されているか、もしくは、殆ど同等の精度で、測定管4の近くで測定されている場合は、それらの値を用いて、温度湿度補正を行うことも可能である。このような数値は、温度湿度入力手段23(図2参照)に手動または自動で入力することにより、温度湿度入力手段23から、これらの数値をデジタル数値に変換したものが温度湿度補正手段8に送付され、温度湿度補正計算に利用される。   As the values of temperature and relative humidity, it is best to use values measured by the temperature sensor ST5 and the humidity sensor SH6 embedded in the measurement tube 4, but the temperature of the environment where the ultrasonic flowmeter is used. Alternatively, when the humidity is well controlled or measured near the measuring tube 4 with almost the same accuracy, temperature and humidity correction can be performed using those values. Such numerical values are manually or automatically input to the temperature / humidity input means 23 (see FIG. 2), and the numerical values converted from the temperature / humidity input means 23 into digital numerical values are transferred to the temperature / humidity correction means 8. Sent and used for temperature and humidity correction calculation.

温度湿度補正された超音波往復伝搬時間tCの値は、気体中だけを伝搬する時間の算出手段、気体中伝搬時間算出手段24(図2参照)に送付される。温度湿度補正された伝搬時間tCは、気体以外の伝搬時間Δtを含んでいる。一般に超音波送受波器(図1参照)は、圧電振動子(振動板)13と気体の間にケース前面14a(保護板あるいは音響整合層)のようなものが介在している。この前面14a部分を超音波が通過している時間が、気体以外の伝搬時間Δtを構成する代表的な要素である。気体の音速Cを求める場合は、伝搬時間tCからこれを減じたもので求める。すなわち、次式によって、気体中だけを伝搬する時間tGを求める。   The value of the ultrasonic reciprocating propagation time tC corrected for temperature and humidity is sent to the time calculating means for propagating only in the gas, and the in-gas propagation time calculating means 24 (see FIG. 2). The temperature / humidity corrected propagation time tC includes a propagation time Δt other than gas. In general, an ultrasonic transducer (see FIG. 1) has a case front surface 14a (protective plate or acoustic matching layer) interposed between a piezoelectric vibrator (vibrating plate) 13 and a gas. The time during which the ultrasonic wave passes through the front surface 14a is a typical element constituting the propagation time Δt other than gas. When the sound velocity C of the gas is obtained, it is obtained by subtracting this from the propagation time tC. That is, the time tG for propagating only in the gas is obtained by the following equation.

Figure 2012239690
Figure 2012239690

気体以外の伝搬時間Δtは超音波送受波器2、3によって異なることが一般的である。したがって、予め出荷時に求めておいて、演算器には定数として入力しておくなどの方法が取られる。
気体以外の伝搬時間Δtは、工場で予め定められた温度と相対湿度の条件での超音波往復伝搬時間、例えばtd30を求めておき、これから同じ条件での理論的伝搬時間tTを差し引くことで求められる。すなわち次式によって算出される。この値は、基本的に一度求めておけば、以後同じ値を計算に使用できる。
The propagation time Δt other than gas is generally different depending on the ultrasonic transducers 2 and 3. Therefore, a method of obtaining in advance at the time of shipment and inputting as a constant to the arithmetic unit is taken.
The propagation time Δt other than gas is obtained by obtaining an ultrasonic round-trip propagation time, for example, td30, under conditions of temperature and relative humidity predetermined in the factory, and subtracting the theoretical propagation time tT under the same conditions from this. It is done. That is, it is calculated by the following formula. Basically, once this value is obtained, the same value can be used for calculation thereafter.

Figure 2012239690
Figure 2012239690

ただし、気体以外の伝搬時間Δtが温度や湿度等外部環境の影響を受けやすい場合は、これを測定して適宜に適切な値を使用する必要がある。そのために、装置には気体以外の伝搬時間Δtを外部から手動または自動で入力できる気体以外の伝搬時間Δtの入力手段25(図2参照)を備えることもできる。   However, when the propagation time Δt other than gas is easily affected by the external environment such as temperature and humidity, it is necessary to measure this and use an appropriate value appropriately. For this purpose, the apparatus can also be provided with an input means 25 (see FIG. 2) for a non-gas propagation time Δt that allows manual or automatic input of a non-gas propagation time Δt.

この気体中だけを伝搬する時間tGの値が次の音速Cの音速演算手段10(図2参照)に送付される。気体の音速Cは次の式によって算出される。
ここで、Lは超音波送受波器SU2とSD3の間の直線距離であり、通常圧電振動子(振動板13)と気体の間に介在する保護板の前面14aどうしの間の距離となる。この値は設計値によって分かっており、定数として演算器に予め入力される。
The value of the time tG propagating only in the gas is sent to the next sound speed calculation means 10 (see FIG. 2) for the sound speed C. The sound velocity C of gas is calculated by the following formula.
Here, L is a linear distance between the ultrasonic transducers SU2 and SD3, and is usually a distance between the front surfaces 14a of the protective plates interposed between the piezoelectric vibrator (vibrating plate 13) and the gas. This value is known from the design value, and is previously input as a constant into the arithmetic unit.

Figure 2012239690
Figure 2012239690

上で求められた気体の音速Cの値は、次のガス濃度演算手段12に送付される。ガス濃度演算手段12においては、まず、次の式で気体の分子量Mが計算される。
ここで、γは気体の比熱比である。気体が窒素と酸素の混合気体である場合は、γ=1.4となる。Rは気体定数であり、R=8314である。Tは気体の温度であるが、この場合は絶対温度(°K)を用いる。
The value of the gas sound velocity C obtained above is sent to the next gas concentration calculation means 12. In the gas concentration calculation means 12, first, the molecular weight M of the gas is calculated by the following equation.
Here, γ is the specific heat ratio of the gas. When the gas is a mixed gas of nitrogen and oxygen, γ = 1.4. R is a gas constant, and R = 8314. T is the temperature of the gas. In this case, absolute temperature (° K) is used.

Figure 2012239690
Figure 2012239690

ただし、気体が二酸化炭素(3分子気体)やヘリウムガス(単分子気体)を含む場合は、その混合比率によって比熱比γの値が1.4ではなく適切な値を用いることになる。それらの情報を、各気体の諸元(名称、分子量、構成原子数等)として予め入力しておき、(9)式の計算で用いることとなる。これが、気体の諸元の入力手段として備えられる。   However, when the gas contains carbon dioxide (trimolecular gas) or helium gas (monomolecular gas), the specific heat ratio γ is not 1.4 but an appropriate value depending on the mixing ratio. Such information is input in advance as specifications (name, molecular weight, number of constituent atoms, etc.) of each gas and used in the calculation of equation (9). This is provided as an input means for gas specifications.

次に、求めた混合気体の分子量Mから気体のガス濃度(混合比率)を、下式を用いて算出する。今、2種類の気体A,Bの分子量をそれぞれMA、MBとし、ガス濃度をαA、αBとすると、これらについては、次の式が成立する。   Next, the gas concentration (mixing ratio) of the gas is calculated from the obtained molecular weight M of the mixed gas using the following equation. Now, assuming that the molecular weights of the two types of gases A and B are MA and MB, respectively, and the gas concentrations are αA and αB, the following equations are established.

Figure 2012239690
Figure 2012239690

ここで、求めたいガス濃度が気体Aのものだとすると、ガス濃度αAは次の式で求められる。   Here, if the gas concentration to be obtained is that of gas A, the gas concentration αA is obtained by the following equation.

Figure 2012239690
Figure 2012239690

したがって、混合気体が窒素と酸素で構成されていて、今、酸素のガス濃度αを求めたい場合は、MA=32、MB=28なので次式で計算できる。   Therefore, if the gas mixture is composed of nitrogen and oxygen and it is desired to obtain the gas concentration α of oxygen now, since MA = 32 and MB = 28, it can be calculated by the following equation.

Figure 2012239690
Figure 2012239690

ガス濃度をデータとして出力する場合は、データ出力手段により出力される。データの形式はデジタルの数値データやアナログの電圧または電流などのデータが目的によって適宜選択されることになる。   When the gas concentration is output as data, it is output by data output means. As the data format, digital numerical data and data such as analog voltage or current are appropriately selected depending on the purpose.

なお、先に述べた超音波伝搬時間の測定値tU、tDやそれらの和tRは、毎回の測定の値をその都度用いて、温度湿度補正した伝搬時間tCや気体の音速Cを求めることとして説明しているが、もちろん各々の複数個のデータの平均値を使用するなどは、通常考えられる方式である。   The ultrasonic propagation time measured values tU and tD and their sum tR described above are used to obtain the temperature / humidity corrected propagation time tC and gas sound velocity C by using the measured values each time. Although described, of course, using an average value of each of a plurality of data is a method that is usually conceivable.

さらに、温度湿度補正をtU、tDの和であるtRに対して行うとして説明してきたが、tU、tDの各々の値に対して温度湿度補正を行うことを先にして、しかる後に温度湿度補正されたtU、tDの和としてtRを求めても効果は同じである。
また、気体以外の伝搬時間Δtを温度湿度補正された超音波往復伝搬時間tCから差し引いて気体中の伝搬時間tGを求めると説明してきたが、温度湿度補正を実施する前に先行して、超音波往復伝搬時間tRから差し引き、その値に対して温度湿度補正を行って、気体中の伝搬時間tGを求めたとしても殆ど同等の効果を有する。
Further, the temperature / humidity correction has been described as being performed on tR, which is the sum of tU and tD. However, the temperature / humidity correction is performed on each value of tU and tD first, and then the temperature / humidity correction is performed. The effect is the same even if tR is obtained as the sum of tU and tD.
In addition, it has been described that the propagation time tG in the gas is obtained by subtracting the propagation time Δt other than the gas from the ultrasonic reciprocation propagation time tC corrected for the temperature and humidity. Even if the propagation time tG in the gas is obtained by subtracting from the acoustic round-trip propagation time tR and correcting the temperature and humidity for the value, it has almost the same effect.

(気体以外の伝搬時間Δtについて)
ここで、気体以外の伝搬時間Δtについて補足説明をする。上で述べた説明では、Δtは正の値をとるかのように述べたが、実際には、それは超音波送受波器の構造に依存し、負の値をとることもある。図4に典型的な2種類の超音波送受波器の構造とそれらの設置例を示して、このことを詳しく説明する。
(About propagation time Δt other than gas)
Here, a supplementary explanation will be given regarding the propagation time Δt other than the gas. In the above description, Δt is described as if it takes a positive value. However, in practice, it depends on the structure of the ultrasonic transducer and may take a negative value. FIG. 4 shows the structure of two typical types of ultrasonic transducers and examples of their installation, and this will be described in detail.

まず、超音波送受波器が図4(a)に示す構造の場合について述べる。超音波送受波器は対向して一対が設置される。高精度の測定が要求される場合、超音波伝搬距離Lは測定管に精度よく準備した段差間の距離Lで定義されることが一般的である。前面層の厚さlは、実際は二つの送受波器で微妙に異なるが、ここでの説明では等しいものとしても差し支えない。 First, the case where the ultrasonic transducer has the structure shown in FIG. A pair of ultrasonic transducers are installed facing each other. When high-accuracy measurement is required, the ultrasonic propagation distance L is generally defined as the distance L between steps prepared with high accuracy in the measurement tube. Although the thickness l 1 of the front layer is actually slightly different between the two transducers, it may be equal in the description here.

気体中の音速をC、気体以外すなわち前面層を通過する音速をC’とすると超音波往復伝搬時間tは次の式で表される。   When the sound velocity in the gas is C and the sound velocity other than the gas, that is, the sound velocity passing through the front surface layer is C ′, the ultrasonic round-trip propagation time t is expressed by the following equation.

Figure 2012239690
Figure 2012239690

ここで、理論的な気体中の伝搬時間tTは上式の第一項で表される。したがって、気体以外の伝搬時間Δtは次式で表され、正の値で求められる。   Here, the theoretical propagation time tT in the gas is expressed by the first term of the above equation. Therefore, the propagation time Δt other than the gas is expressed by the following equation and is obtained as a positive value.

Figure 2012239690
Figure 2012239690

ここで、Lは製作過程で精度良く管理されている値であるが、lとC’はやや不確かな値である。特に、前面層がプラスチックスなど材料個々のバラツキが大きい材料の場合は、C’は不確かさが大きくなる。したがって、Δtは伝搬時間の中の不確かな部分を一括して扱っている数値である。
しかし、超音波送受波器が図4(b)に示す構造の場合には様子が異なる。それについて述べる。ここでも超音波送受波器間の距離はLである。前面層の厚さは l+lであり、そのうちlの部分は、測定管の基準である段差より内側に飛び出している。したがって、超音波往復伝搬時間tは次の式で表される。
Here, L is a value that is accurately controlled in the manufacturing process, but l 1 and C ′ are somewhat uncertain values. In particular, in the case where the front layer is a material having a large variation in individual materials such as plastics, C ′ has a large uncertainty. Therefore, Δt is a numerical value that collectively handles uncertain portions in the propagation time.
However, the situation is different when the ultrasonic transducer has the structure shown in FIG. Describe that. Again, the distance between the ultrasonic transducers is L. The thickness of the front layer is l 1 + l 2 , and the portion of l 2 protrudes inward from the step that is the reference of the measurement tube. Therefore, the ultrasonic round-trip propagation time t is expressed by the following equation.

Figure 2012239690
Figure 2012239690

ここでも、l、l、C’はやや不確かな値であり、Lだけが精度良く管理されている値である。そこで、ここでも、理論的な気体中の伝搬時間tTは上式の第一項で表すことになる。そして、気体以外の伝搬時間Δtは次式で表され、伝搬時間の中の不確かな部分を一括して扱っている数値である。 Here, l 1 , l 2 , and C ′ are somewhat uncertain values, and only L is a value that is managed with high accuracy. Therefore, also here, the theoretical propagation time tT in the gas is expressed by the first term of the above equation. The propagation time Δt other than gas is represented by the following equation, and is a numerical value that handles uncertain portions in the propagation time in a lump.

Figure 2012239690
Figure 2012239690

気体が空気の場合、気体中の音速はおよそC=350m/sであり、前面層の音速は、C’=3000m/s程度である。前面層の典型的な厚さは、l=2mm、l=1mmである。これらの数値を代入して計算するとΔt=−7.4μsと負の値になる。これは、気体中の音速Cと前面層の音速C’が10倍近くも差があることによっている。 When the gas is air, the sound velocity in the gas is approximately C = 350 m / s, and the sound velocity in the front layer is approximately C ′ = 3000 m / s. Typical thickness of the front layer is l 1 = 2 mm, l 2 = 1 mm. When these numerical values are substituted and calculated, Δt = −7.4 μs, which is a negative value. This is because the sound velocity C in the gas and the sound velocity C ′ of the front layer are almost 10 times different.

(3種類以上の気体の混合気体)
ここでは、被測定気体が3種類以上の気体が混合された気体である場合に、2種類の気体についてはその混合比が未知であり、その他の気体について名称、分子量、構成原子数および混合比が既知または別途計測値が入手できるときに、それらを予め入力する場合は、未知の2種類の気体の混合比を求めることができることについて述べる。ここでは一つの例を用いて説明する。
(A mixture of three or more gases)
Here, when the gas to be measured is a gas in which three or more kinds of gases are mixed, the mixing ratio is unknown for the two kinds of gases, and the name, molecular weight, number of constituent atoms and mixing ratio for the other gases. When the measurement values are known or separately available, and they are input in advance, it will be described that the mixing ratio of two unknown gases can be obtained. Here, an example will be described.

例として、比較的単純な場合の呼気について述べる。今、吸気で患者が吸い込んだ気体が酸素と窒素の混合気体であり、それらの濃度と分子量は、それぞれαA、αB、MA、MBとして知られているとすると吸気の分子量Mと音速Cは、上で述べたように次の式で表される。ただし、γは比熱比、Rは気体定数、Tは絶対温度である。   As an example, let us describe expiration in a relatively simple case. Now, if the gas inhaled by the patient by inspiration is a mixed gas of oxygen and nitrogen, and their concentrations and molecular weights are known as αA, αB, MA, and MB, respectively, the molecular weight M and sound velocity C of inspiration are As described above, it is expressed by the following equation. Where γ is a specific heat ratio, R is a gas constant, and T is an absolute temperature.

Figure 2012239690
Figure 2012239690

Figure 2012239690
Figure 2012239690

Figure 2012239690
Figure 2012239690

比較的単純な場合の呼気については、酸素の一部が二酸化炭素となると考えることができる。すると、窒素の濃度は変らずに酸素の濃度がα’Aに変り、二酸化炭素の濃度がα’C、そして窒素の濃度はα’B=αBとなる。すなわち、呼気は3種類の気体の混合気体であり、窒素の濃度は分かっているが、残りの2種類の気体である酸素と二酸化炭素の濃度が未知の例である。   For exhalation in a relatively simple case, it can be considered that a part of oxygen becomes carbon dioxide. Then, the nitrogen concentration does not change but the oxygen concentration changes to α′A, the carbon dioxide concentration becomes α′C, and the nitrogen concentration becomes α′B = αB. That is, exhaled breath is a mixed gas of three types of gas, and the concentration of nitrogen is known, but the concentrations of oxygen and carbon dioxide, which are the remaining two types of gas, are unknown.

酸素、二酸化炭素、および窒素の分子量は、MA、MC、MBとすると、呼気の分子量と音速は次式で表される。   Assuming that the molecular weights of oxygen, carbon dioxide, and nitrogen are MA, MC, and MB, the molecular weight and sound speed of exhaled air are expressed by the following equations.

Figure 2012239690
Figure 2012239690

Figure 2012239690
Figure 2012239690

Figure 2012239690
Figure 2012239690

Figure 2012239690
Figure 2012239690

ここで、比熱比がγ’に変化することに注意を要する。窒素や酸素のように2原子分子の比熱比は 1.4、二酸化炭素のような3原子分子の比熱比は 1.333となる。このような2原子分子と3原子分子が混合した気体の比熱比は、それらの濃度分の寄与となり次の式で表される。   Note that the specific heat ratio changes to γ '. The specific heat ratio of diatomic molecules such as nitrogen and oxygen is 1.4, and the specific heat ratio of triatomic molecules such as carbon dioxide is 1.333. The specific heat ratio of such a mixture of diatomic and triatomic molecules contributes to their concentration and is expressed by the following equation.

Figure 2012239690
Figure 2012239690

したがって、(17)〜(21)式は次のように展開される。   Therefore, the equations (17) to (21) are expanded as follows.

Figure 2012239690
Figure 2012239690

ここで、次のようにおいて式を整理する。   Here, the equations are organized as follows.

Figure 2012239690
Figure 2012239690

Figure 2012239690
Figure 2012239690

最終的に、呼気の酸素濃度は、呼気の音速Cと温度T、気体定数Rで定まるkの値と各気体の分子量と、吸気中の酸素濃度を用いて次式で求められる。   Finally, the oxygen concentration in the exhalation can be obtained by the following equation using the value of k determined by the sound velocity C and temperature T of the exhalation, the gas constant R, the molecular weight of each gas, and the oxygen concentration in the inspiration.

Figure 2012239690
Figure 2012239690

上で述べた手順は、4種類以上の混合気体であっても、ヘリウムのような1原子分子の気体が混合されていても、未知の気体が2種類に限定されているとすると、ほとんど同じものになる。   The procedure described above is almost the same if the number of unknown gases is limited to two, even if there are four or more types of mixed gases, or even if one atom molecule gas such as helium is mixed. Become a thing.

(埋め込み型温度センサ、湿度センサ)
ここでは、温度センサと湿度センサを流量計の測定管内部に設置し、管壁に埋め込む方式にしたことについて、図5を用いて補足説明する。
(Embedded temperature sensor, humidity sensor)
Here, a supplementary explanation will be given with reference to FIG. 5 that the temperature sensor and the humidity sensor are installed inside the measurement tube of the flow meter and embedded in the tube wall.

図5は、超音波流量計の測定管の上部の管壁断面だけを示している。図1の上部だけに相当するものである。中央に超音波送受波器とそれが設置される枝管部が示されている。この図では、その右側に温度センサ5が配置されている。温度センサ5は、サーミスタで構成されている。設置方式の特徴は、管壁の一部にほぼ完全に埋め込まれており、サーミスタは管壁の薄いプラスチックス壁1cを介して測定管内の温度を測定している。管内に飛び出す部分がないことが特徴である。   FIG. 5 shows only the tube wall cross section at the top of the measurement tube of the ultrasonic flowmeter. This corresponds to only the upper part of FIG. In the center, an ultrasonic transducer and a branch pipe portion where it is installed are shown. In this figure, the temperature sensor 5 is arranged on the right side. The temperature sensor 5 is a thermistor. The feature of the installation method is almost completely embedded in a part of the tube wall, and the thermistor measures the temperature in the measuring tube through the thin plastic wall 1c of the tube wall. The feature is that there is no part protruding into the tube.

この図では、湿度センサ6は、超音波送受波器の左側に設置されている。くし型電極で、電極間の静電容量を測定することで水蒸気量を算定する方式である。こちらは、水蒸気に対する感度を鋭敏にするため、センサ前面が管内の気体に対して露出させているが、前面は、ほぼ管壁面と同一面になっており、管内への飛び出し部分はなく、さらに測定管流路1に対して窪みをなさない構造としている。   In this figure, the humidity sensor 6 is installed on the left side of the ultrasonic transducer. This is a method of calculating the amount of water vapor by measuring the capacitance between electrodes with a comb-type electrode. Here, in order to make the sensitivity to water vapor sensitive, the front surface of the sensor is exposed to the gas in the tube, but the front surface is almost flush with the wall surface of the tube, and there is no part protruding into the tube. The measurement tube channel 1 has a structure that is not recessed.

(記号の説明)
t:超音波伝搬時間を一般的に示すときに用いている。
tU:下流側超音波送受波器SDから超音波を流路に放射してから該超音波が上流側超音波送受波器SUに到達するまでの超音波伝搬時間であり、本文中では実測値を示している場合が多い。
tD:上流側超音波送受波器SUから超音波を流路に放射してから該超音波が下流側超音波送受波器SDに到達するまでの超音波伝搬時間であり、本文中では実測値を示している場合が多い。
tR:測定された伝搬時間tU、tDの和であり、超音波往復伝搬時間である。
tR=tU+tD
tC:tRを特定の温度および湿度での値に補正された値である。
Δt:気体以外を伝搬する時間であり、温度湿度補正されたものになる。
すなわちtCから、その特定の温度湿度での理論的な伝搬時間tTを差し引き、
Δt=tC−tTで求める
例えば、工場で出荷時にΔtを求める場合、予め濃度が調整された混合気体に対して、工場で予め定められた温度と相対湿度の条件での超音波往復伝搬時間tRから、
(5)式でtC=td30を求めておく。
tT:、理論的伝搬時間であり、乾燥気体で温度T°K、分子量Mの場合は、次の式で求められる。tG:気体中だけを伝搬する時間であり、tG=tC−Δt となる。
(Explanation of symbols)
t: Used to generally indicate the ultrasonic propagation time.
tU: Ultrasonic propagation time from when an ultrasonic wave is emitted from the downstream ultrasonic transducer SD to the flow path until the ultrasonic wave reaches the upstream ultrasonic transducer SU. Is often indicated.
tD: Ultrasonic propagation time from when the ultrasonic wave is emitted from the upstream ultrasonic transducer SU to the flow path until the ultrasonic wave reaches the downstream ultrasonic transducer SD. Is often indicated.
tR: the sum of the measured propagation times tU and tD, and the ultrasonic round-trip propagation time.
tR = tU + tD
tC: a value obtained by correcting tR to a value at a specific temperature and humidity.
Δt is the time for propagation other than gas, and is corrected for temperature and humidity.
That is, the theoretical propagation time tT at the specific temperature and humidity is subtracted from tC,
Δt = tC−tT For example, when Δt is obtained at the time of shipment in a factory, the ultrasonic round-trip propagation time tR under the conditions of temperature and relative humidity predetermined in the factory for a mixed gas whose concentration has been adjusted in advance. From
TC = td30 is obtained from equation (5).
tT: is a theoretical propagation time. When the temperature is T ° K and the molecular weight is M in a dry gas, it is obtained by the following equation. tG: Time to propagate only in the gas, and tG = tC−Δt.

Figure 2012239690
Figure 2012239690

1 測定管流路
1a 上流側
1b 下流側
2 超音波送受波器SU
3 超音波送受波器SD
4 測定管
5 温度センサST
6 湿度センサSH
7 伝搬時間測定手段
8 温度湿度補正手段
9 気体伝搬時間測定手段
10 音速演算手段
11 諸元入力手段
12 ガス濃度演算手段
13 振動板
14 ケース
14a 前面
15 リード線
16 制御部
17 送信回路TD
18 受信回路RD
19 切換器
20 比較器
21 送信回路TU
22 受信回路RU
23 温度湿度入力手段
24 気体中伝搬時間算出手段
25 気体以外の伝搬時間Δtの入力手段
1 Measurement Tube Channel 1a Upstream Side 1b Downstream Side 2 Ultrasonic Transceiver S U
3 Ultrasonic transducer S D
4 Measuring tube 5 Temperature sensor S T
6 Humidity sensor SH
7 Propagation time measurement means 8 Temperature / humidity correction means 9 Gas propagation time measurement means 10 Sonic speed calculation means 11 Specification input means 12 Gas concentration calculation means 13 Diaphragm 14 Case 14a Front
15 Lead wire 16 Control unit 17 Transmitter circuit T D
18 Receiver circuit R D
19 switch 20 comparator 21 transmitter circuit T U
22 Receiver circuit R U
23 Temperature / humidity input means 24 Gas propagation time calculation means 25 Input means for propagation time Δt other than gas

Claims (6)

酸素を含む2種類の混合気体が流れる系に組み込まれる超音波流量計を用いた酸素濃度計に於いて、
a)超音波流量計の測定管流路の上流側と下流側に対向させて配置された一対の超音波送受波器SU,SDと、
b)前記測定管流路中の温度および湿度を測定するための温度センサSTおよび湿度センサSHと、
c)上流側超音波送受波器SUから超音波を前記測定管流路に放射してから該超音波が下流側超音波送受波器SDに到達するまでの超音波伝搬時間tDと、前記下流側超音波送受波器SDから超音波を前記測定管流路に放射してから前記超音波が前記上流側超音波送受波器SUに到達するまでの超音波伝搬時間tUとを測定する伝搬時間測定手段と、
d)測定された伝搬時間tU、tDの和tR=tU+tDに対して、これを特定の温度および湿度での値tCに変換する温度湿度補正手段と、
e)前記d)で温度湿度補正された伝搬時間tCから気体以外を伝搬する時間Δtを減じて、気体中だけを伝搬する時間tGを算出する気体伝搬時間測定手段と、
f)前記e)で算出された伝搬時間tG等を用いて前記測定管流路を流れる混合気体の音速Cを算出する音速演算手段と、
g)被測定気体である2種類の気体の諸元(名称、分子量、構成原子数等)を予め入力する諸元入力手段と、
h)算出された混合気体の音速Cから、混合気体中の2種類の気体のガス濃度(混合比率)を演算するガス濃度演算手段と、
から構成されることで、2種類の混合気体中の各気体のガス濃度を測定できることを特徴とする超音波流量計を用いた酸素濃度計。
In an oxygen concentration meter using an ultrasonic flow meter incorporated in a system in which two types of mixed gas containing oxygen flow.
a) a pair of ultrasonic transducers SU and SD arranged to face the upstream side and the downstream side of the measurement pipe flow path of the ultrasonic flowmeter;
b) a temperature sensor ST and a humidity sensor SH for measuring the temperature and humidity in the measuring tube flow path;
c) Ultrasonic propagation time tD from when the ultrasonic wave is radiated from the upstream ultrasonic transducer SU to the measurement tube flow path until the ultrasonic wave reaches the downstream ultrasonic transducer SD, and the downstream Propagation time for measuring the ultrasonic wave propagation time tU from when the ultrasonic wave is emitted from the side ultrasonic transducer SD to the measurement tube flow path until the ultrasonic wave reaches the upstream ultrasonic transducer SU Measuring means;
d) a temperature / humidity correction means for converting the measured propagation time tU, tD sum tR = tU + tD into a value tC at a specific temperature and humidity;
e) a gas propagation time measuring means for subtracting the time Δt for propagating other than the gas from the propagation time tC corrected for temperature and humidity in d) to calculate the time tG for propagating only in the gas;
f) sound speed calculation means for calculating the sound speed C of the mixed gas flowing through the measurement pipe channel using the propagation time tG calculated in e), and the like;
g) Specification input means for inputting in advance specifications (name, molecular weight, number of constituent atoms, etc.) of two kinds of gases that are gases to be measured;
h) Gas concentration calculating means for calculating the gas concentrations (mixing ratios) of two kinds of gases in the mixed gas from the calculated sound velocity C of the mixed gas;
The oxygen concentration meter using the ultrasonic flowmeter characterized by being able to measure the gas concentration of each gas in two types of mixed gas by comprising.
前記温度センサSTあるいは湿度センサSHの替わりに、温度あるいは湿度の値として、既設の他の装置での測定値を自動的にあるいは手動的に入力する手段で代替することを特徴とする請求項1に記載の超音波流量計を用いた酸素濃度計。   2. Instead of the temperature sensor ST or the humidity sensor SH, a means for automatically or manually inputting a measured value in another existing apparatus as a temperature or humidity value is substituted. An oxygen concentration meter using the ultrasonic flowmeter described in 1. 気体以外の伝搬時間Δtとして、同時並行に他の手段で別途計測した値を、自動的にあるいは手動的に入力する手段を備えることを特徴とする請求項1または2に記載の超音波流量計を用いた酸素濃度計。   The ultrasonic flowmeter according to claim 1, further comprising means for automatically or manually inputting a value separately measured by other means simultaneously as the propagation time Δt other than gas. Oxygen concentration meter using. 被測定気体が3種類以上の気体が混合された気体である場合に、その中の2種類の気体についてはその混合比が未知であり、その他の気体について名称、分子量、構成原子数および混合比率が既知または別途計測値が入手できるときに、それらを予め入力する手段を備え、温度湿度補正手段や未知の2種類の気体のガス濃度(混合比率)を算出する手段に情報を提供し、これら2種類の気体のガス濃度(混合比率)求めることを特徴とする請求項1〜3の何れか1に記載の超音波流量計を用いた酸素濃度計。   When the gas to be measured is a mixture of three or more gases, the mixing ratio is unknown for the two gases, and the name, molecular weight, number of constituent atoms and mixing ratio for the other gases Is provided with means to input them in advance when known or separately measured values are available, providing information to temperature / humidity correction means and means for calculating the gas concentration (mixing ratio) of two unknown gases, The oxygen concentration meter using the ultrasonic flowmeter according to any one of claims 1 to 3, wherein gas concentrations (mixing ratios) of two kinds of gases are obtained. 前記温度センサST及び前記湿度センサSHを超音波流量計の管壁内部に埋め込んだことを特徴とする請求項1〜4の何れか1に記載の超音波流量計を用いた酸素濃度計。   The oxygen concentration meter using the ultrasonic flowmeter according to claim 1, wherein the temperature sensor ST and the humidity sensor SH are embedded in a tube wall of the ultrasonic flowmeter. 前記気体以外の伝搬時間Δtを、測定された超音波往復伝搬時間tRを予め定めた特定の温度湿度での値に補正した値tCから、この特定の温度湿度での理論的な伝搬時間tTを差し引くこと、すなわちΔt=tC−tTで求めることを特徴とする請求項3〜5の何れか1に記載の超音波流量計を用いた酸素濃度計。   The theoretical propagation time tT at this specific temperature and humidity is obtained from the value tC obtained by correcting the propagation time Δt other than the gas to a value obtained by correcting the measured ultrasonic round-trip propagation time tR at a predetermined specific temperature and humidity. The oxygen concentration meter using the ultrasonic flowmeter according to any one of claims 3 to 5, wherein the oxygen concentration meter is obtained by subtraction, that is, Δt = tC−tT.
JP2011113374A 2011-05-20 2011-05-20 Oxygen concentration meter using ultrasonic flowmeter Active JP5938597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011113374A JP5938597B2 (en) 2011-05-20 2011-05-20 Oxygen concentration meter using ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011113374A JP5938597B2 (en) 2011-05-20 2011-05-20 Oxygen concentration meter using ultrasonic flowmeter

Publications (2)

Publication Number Publication Date
JP2012239690A true JP2012239690A (en) 2012-12-10
JP5938597B2 JP5938597B2 (en) 2016-06-22

Family

ID=47462041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011113374A Active JP5938597B2 (en) 2011-05-20 2011-05-20 Oxygen concentration meter using ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JP5938597B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017517319A (en) * 2014-05-27 2017-06-29 フィッシャー アンド ペイケル ヘルスケア リミテッド Gas mixing and measurement for medical devices
CN109738515A (en) * 2019-03-22 2019-05-10 湖北谱芯智能科技有限公司 Ultrasonic ozone concentration analyzer
WO2019214924A1 (en) * 2018-05-09 2019-11-14 Imko Micromodultechnik Gmbh Tdr measuring apparatus for determining the dielectric constant
GB2584206B (en) * 2017-10-06 2022-06-15 Fisher & Paykel Healthcare Ltd Closed loop oxygen control

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6305209B2 (en) * 2014-05-26 2018-04-04 株式会社ホクシンエレクトロニクス Ultrasonic gas measuring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843359A (en) * 1994-07-29 1996-02-16 Suzuki Motor Corp Sensor for ultrasonic concentration meter and the like and ultrasonic concentration measuring method using the sensor
JP2004325297A (en) * 2003-04-25 2004-11-18 Nissan Motor Co Ltd Apparatus and method for measuring gas concentration
WO2011004286A1 (en) * 2009-07-07 2011-01-13 Koninklijke Philips Electronics N. V. Multifunction sensor system and method comprising an ultrasonic sensor for supervising room conditions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843359A (en) * 1994-07-29 1996-02-16 Suzuki Motor Corp Sensor for ultrasonic concentration meter and the like and ultrasonic concentration measuring method using the sensor
JP2004325297A (en) * 2003-04-25 2004-11-18 Nissan Motor Co Ltd Apparatus and method for measuring gas concentration
WO2011004286A1 (en) * 2009-07-07 2011-01-13 Koninklijke Philips Electronics N. V. Multifunction sensor system and method comprising an ultrasonic sensor for supervising room conditions

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017517319A (en) * 2014-05-27 2017-06-29 フィッシャー アンド ペイケル ヘルスケア リミテッド Gas mixing and measurement for medical devices
JP2022091902A (en) * 2014-05-27 2022-06-21 フィッシャー アンド ペイケル ヘルスケア リミテッド Mixing and measurement of gases for medical device
GB2584206B (en) * 2017-10-06 2022-06-15 Fisher & Paykel Healthcare Ltd Closed loop oxygen control
WO2019214924A1 (en) * 2018-05-09 2019-11-14 Imko Micromodultechnik Gmbh Tdr measuring apparatus for determining the dielectric constant
US11656194B2 (en) 2018-05-09 2023-05-23 Imko Micromodultechnik Gmbh TDR measuring apparatus for determining the dielectric constant
CN109738515A (en) * 2019-03-22 2019-05-10 湖北谱芯智能科技有限公司 Ultrasonic ozone concentration analyzer

Also Published As

Publication number Publication date
JP5938597B2 (en) 2016-06-22

Similar Documents

Publication Publication Date Title
JP5938597B2 (en) Oxygen concentration meter using ultrasonic flowmeter
JP2022071173A (en) Detection of flow channel for flow therapy device
EP2496136B1 (en) Apparatus for measuring a level of a specific gas in exhaled breath
EP0145384B1 (en) Measuring conduit for flow rate and concentration of fluid
JP7368015B2 (en) Oxygen therapy monitoring device and oxygen therapy monitoring method
JP2008507693A (en) Acoustic flow meter calibration method
JP2017517319A5 (en)
Buess et al. A pulsed diagonal-beam ultrasonic airflow meter
CN104970795A (en) Device for measurement and analysis of multiple breath nitrogen washout process
EP2322917B1 (en) Method for the signal linearization of a gas sensor output signal
JP2014106225A (en) Ultrasonic wave compact gas content meter
JPH1133119A (en) Breath circuit
EP1764036B1 (en) Method for the determination of the time-delay between a main-stream ultrasonic flow sensor and a side-stream gas analyzer
JP2003247985A (en) Acoustic gas meter
US20100152580A1 (en) Lung diagnosis apparatus with four ultrasound elements
US20060144163A1 (en) Gas flow measuring device
Begin et al. Respiratory bidirectional ultrasonic TOF flow sensor resilience to ambient temperature fluctuations
JP2004294434A (en) Acoustic type gas analyzer
WO2022027091A1 (en) Ultrasonic gas flow calibration device
JP2014071109A (en) Ultrasonic gas concentration meter
JP2009058444A (en) Flowmeter for artificial respirator
WO2007065476A1 (en) Apparatus and method for measuring a gas flow
RU193583U1 (en) SPIROMETER
Vasilchenko et al. Analysis of methods and equipment for inhaled/exhaled airflow rate measurement
JP2022014433A (en) Flow sensor for respiration function test

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140519

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160404

R150 Certificate of patent or registration of utility model

Ref document number: 5938597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250