JPH0634008B2 - Component flow rate measuring device - Google Patents

Component flow rate measuring device

Info

Publication number
JPH0634008B2
JPH0634008B2 JP58226130A JP22613083A JPH0634008B2 JP H0634008 B2 JPH0634008 B2 JP H0634008B2 JP 58226130 A JP58226130 A JP 58226130A JP 22613083 A JP22613083 A JP 22613083A JP H0634008 B2 JPH0634008 B2 JP H0634008B2
Authority
JP
Japan
Prior art keywords
flow rate
light
gas
center line
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58226130A
Other languages
Japanese (ja)
Other versions
JPS60117149A (en
Inventor
一郎 小倉
薫 町田
宗重 倉橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Koden Corp
Original Assignee
Toshiba Corp
Nippon Koden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Koden Corp filed Critical Toshiba Corp
Priority to JP58226130A priority Critical patent/JPH0634008B2/en
Publication of JPS60117149A publication Critical patent/JPS60117149A/en
Publication of JPH0634008B2 publication Critical patent/JPH0634008B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/087Measuring breath flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02836Flow rate, liquid level

Description

【発明の詳細な説明】 [発明の技術分野] この発明は、呼吸気体等の気体に含まれている特定の成
分の流量(成分流量)を測定する成分流量測定装置に関
する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a component flow rate measuring device for measuring a flow rate (component flow rate) of a specific component contained in a gas such as a respiratory gas.

[発明の技術的背景とその問題点] 流体が単一成分でなく種々の成分で構成されている場
合、特定の成分の流量を測定する要求がしばしば生ず
る。例えば呼吸気体のような、空気または空気に酸素を
人工的に付加した気体を吸入し炭酸ガスを含む気体を呼
出する場合、呼出気体(呼気)の炭酸ガス流量を測定し
て得られたデータは炭酸ガス産生量として呼吸機能の評
価に利用される。
[Technical Background of the Invention and Problems Thereof] When a fluid is composed of various components instead of a single component, it is often necessary to measure the flow rate of a specific component. For example, in the case of inhaling air or a gas in which oxygen is artificially added to air, such as breathing gas, and exhaling a gas containing carbon dioxide, the data obtained by measuring the carbon dioxide gas flow rate of exhaled gas (exhalation) is It is used to evaluate respiratory function as carbon dioxide production.

一般に、従来行なわれている炭酸ガス産生量の測定はダ
グラスバッグ法と呼ばれるもので、気密バッグに呼出気
体を収集し、その体積Vと炭酸ガス濃度Fcoとの席を
求め、炭酸ガス産生量を数回の呼吸にわたる平均値とし
て測定する方法である。
In general, the conventional measurement of carbon dioxide production is called the Douglas bag method, in which exhaled gas is collected in an airtight bag, the volume V and the carbon dioxide concentration Fco 2 are measured, and the carbon dioxide production is calculated. Is a method of measuring as an average value over several breaths.

一方、流体の流量測定,成分分析法の進歩により成分流
量についても実時間測定が可能となっており、例えば炭
酸ガス産生量を測定する場合、呼出気体(流体)の流量
の瞬時値v(t)と炭酸ガスについての成分分析結果で
ある濃度の瞬時値fco(t)を同時に測定し、これら
の積を求めて vco(t)=v(t)・fco(t) の形で炭酸ガス産生量を測定することが行なわれてい
る。
On the other hand, due to the progress of fluid flow rate measurement and component analysis methods, it is possible to measure the component flow rate in real time. For example, when measuring the carbon dioxide production amount, the instantaneous value v (t) of the flow rate of the exhaled gas (fluid) is measured. ) And the instantaneous value fco 2 (t) of the concentration, which is the component analysis result for carbon dioxide, are simultaneously measured, and the product of them is obtained in the form of vco 2 (t) = v (t) · fco 2 (t) Carbon dioxide production is measured.

ところで、流量測定と濃度測定はいずれも流体を測定管
に通流させながら行なわれるのであるが、従来において
はこれら流量測定用の測定管と濃度測定用の測定管とを
直列に接続して測定を行なっていた。しかしながら、こ
のように2つの測定管を直列に接続することは呼吸気体
に対する測定系の容量、いわゆる死腔量がそれぞれの測
定管における値の和となってかなり大きなものとなる。
このため被検者の呼吸能力の負担が大となり、重症患者
等への適用が難しくなるという問題があった。
By the way, both the flow rate measurement and the concentration measurement are performed while flowing the fluid through the measurement tube, but in the past, the measurement tube for flow rate measurement and the measurement tube for concentration measurement were connected in series. Was being done. However, connecting two measuring tubes in series in this way is considerably large because the capacity of the measuring system for respiratory gas, the so-called dead space, is the sum of the values in the respective measuring tubes.
For this reason, there is a problem that the burden on the subject's respiratory ability becomes heavy and it is difficult to apply it to critically ill patients.

また、このように流量測定および濃度測定用の測定管を
直列に設けることは、測定精度の面でも問題がある。こ
れは2つの測定管の間の距離により両測定のタイミング
に時間ずれが生じるのが原因である。すなわち、流量測
定用測定管から濃度測定用測定管までの距離をLとし流
体の流速をVとすれば、流量測定がなされたある流塊が
濃度測定用の測定管に到達するのに要する時間td(時
間ずれ)は td=L/V となり、流速に応じて変化することになる。この時間ず
れtdの影響を除去するため、従来ではこのtdの値を
記憶しておき vco(t)=v(t)・fco(t+td) の形で炭酸ガス生産量を求めていた。しかし、特に呼吸
気体のような圧縮性の流体では1呼吸の間に流速が多様
に変化するとともに、その圧力変化による流速変化も生
じるため時間ずれtdの変化が複雑であり、上記式に示
されるような補正を厳密に行なうことは極めて困難であ
った。
Further, providing the measuring tubes for the flow rate measurement and the concentration measurement in series in this way has a problem in terms of measurement accuracy. This is because there is a time lag in the timing of both measurements due to the distance between the two measuring tubes. That is, if the distance from the flow rate measuring tube to the concentration measuring tube is L and the flow velocity of the fluid is V, the time required for a certain mass of flow to reach the concentration measuring tube. The td (time lag) is td = L / V, which changes according to the flow velocity. In order to eliminate the effect of this time lag td, conventionally, the value of this td is stored and the carbon dioxide gas production amount is obtained in the form of vco 2 (t) = v (t) · fco 2 (t + td). However, particularly in a compressible fluid such as a breathing gas, the flow velocity changes variously during one breath and the flow velocity also changes due to the pressure change, so that the change of the time lag td is complicated, and is represented by the above equation. It was extremely difficult to make such a correction exactly.

さらに、上述した従来の成分流量測定装置では、特に流
体が気体である場合、気体が液化して測定管内に液体が
溜まると、その液体が流量や濃度の測定に悪影響を与え
るという問題があった。
Further, in the above-mentioned conventional component flow rate measuring device, particularly when the fluid is a gas, when the gas is liquefied and the liquid is accumulated in the measuring tube, the liquid has a problem that the flow rate and the concentration are adversely affected. .

[発明の目的] この発明の目的は、気体の特定成分の流量測定を、でき
るだけ少ない死腔量で、しかも測定管内での気体の流速
変化の影響を受けることなく高精度に、かつ複雑な補正
処理を必要とせず、さらに気体の液化により生じた液体
の影響を受けることなく行なえるようにした成分流量測
定装置を提供することにある。
[Object of the Invention] An object of the present invention is to accurately measure the flow rate of a specific component of a gas with a minimum dead space amount and with high accuracy without being affected by a change in the flow velocity of the gas in the measuring tube. It is an object of the present invention to provide a component flow rate measuring device that does not require treatment and can be performed without being affected by a liquid generated by gas liquefaction.

[発明の構成] この発明は、流量測定は超音波を用いて行ない、成分濃
度測定は光学的に行なう成分流量測定装置であって、気
体が通流する管体に気体の流れ方向を横切る線上で相対
向させて一対の超音波振動子を取付けるとともに、管体
の一対の超音波振動子間領域の壁面に相対向させて一対
の光透過窓を気密に取付けてなり、これら超音波振動子
および光透過窓は、管体の管軸中心線と一対の超音波振
動子間で送受される超音波のビーム中心線との交点と、
一対の光透過窓を透過する光の光束中心線または光束の
一部とが交わり、さらに前記管軸中心線とビームと中心
線とを通る面と、前記管軸中心線と光束中心線または光
束の一部とを通る面とが一つの水平面上でほぼ一致する
ように配置されている測定管と、前記一対の超音波振動
子を駆動し、これら各超音波振動子によって送信され他
の超音波振動子により互いに受信された超音波信号から
前記気体の流量を測定する流量測定手段と、前記一対の
光透過窓の一方から前記管体内に照射され、前記管体内
の気体を透過して前記一対の光透過窓の他方から外部に
導き出された光のうち、少なくとも前記気体の特定成分
によって吸収される波長の光の光量を検出して前記気体
の前記特定成分の濃度を測定する成分濃度測定手段と、
これら流量測定手段および成分濃度測定手段により測定
された流量と濃度から前記気体の前記特定成分の流量を
算出する手段とを備えたことを特徴とする。
[Configuration of the Invention] The present invention is a component flow rate measuring device that performs flow rate measurement using ultrasonic waves and optically performs component concentration measurement, and is on a line that traverses the gas flow direction in a tubular body through which gas flows. And a pair of ultrasonic transducers are mounted to face each other, and a pair of light transmission windows are hermetically attached to the wall surface of the region between the pair of ultrasonic transducers of the tubular body. And the light transmission window, the intersection of the tube axis center line of the tube and the beam center line of the ultrasonic waves transmitted and received between the pair of ultrasonic transducers,
A plane intersecting with the light flux center line or a part of the light flux of the light transmitted through the pair of light transmission windows, and a plane passing through the tube axis center line, the beam and the center line, and the tube axis center line and the light flux center line or the light flux. Of the ultrasonic transducers, which are arranged so that the surface passing through a part of the ultrasonic transducers and one of the ultrasonic transducers are substantially aligned on one horizontal plane, and are transmitted by these ultrasonic transducers. A flow rate measuring unit that measures a flow rate of the gas from ultrasonic signals received by a sound wave transducer, and the tube is irradiated from one of the pair of light transmission windows, the gas in the tube is transmitted, and Component concentration measurement for measuring the concentration of the specific component of the gas by detecting the amount of light having a wavelength that is absorbed by at least the specific component of the gas among the lights guided to the outside from the other of the pair of light transmission windows. Means and
It is characterized in that it is provided with means for calculating the flow rate of the specific component of the gas from the flow rate and concentration measured by the flow rate measuring means and the component concentration measuring means.

[発明の効果] この発明によれば、流量測定と濃度測定とを1つの管体
内で行なうことができるため、それぞれの測定のための
測定管を個別に用意して直列に配置した場合に比べ、測
定すべき気体に対する測定系の容量、つまり死腔量が低
減され、被検者に与える負担を著しく軽減することがで
きる。
[Effect of the Invention] According to the present invention, since the flow rate measurement and the concentration measurement can be performed in one tube, compared to the case where the measurement tubes for each measurement are individually prepared and arranged in series. The volume of the measurement system for the gas to be measured, that is, the dead space amount is reduced, and the burden on the subject can be significantly reduced.

また、流量測定と濃度測定とがほぼ同一位置で行なわれ
るので、これらの測定の時間ずれは零または極めて微少
な時間となる。従って、この時間ずれの影響を除去する
ために従来必要とした複雑な補正が不要となるか、ある
いは補正を行なう場合でもその時間ずれはもともと小さ
いことと、流量測定位置と濃度測定位置との間の距離が
微少で、この間における流速の変化が実質的になく、こ
の時間ずれは常に一定と見なせることから、非常に簡単
な処理で済むという利点がある。この結果、測定管部分
が小形化されることと相まって、測定装置全体の構成を
簡略化することが可能であり、また測定管内での気体の
流速変化の影響による測定誤差がなく、非常に高精度な
成分流量の測定が可能となる。
Further, since the flow rate measurement and the concentration measurement are performed at substantially the same position, the time lag between these measurements is zero or an extremely small time. Therefore, in order to eliminate the influence of this time lag, the complicated correction conventionally required becomes unnecessary, or even when the correction is performed, the time lag is originally small, and the difference between the flow rate measurement position and the concentration measurement position is small. Is very small, there is substantially no change in the flow velocity during this period, and this time lag can be regarded as always constant, which is an advantage that a very simple process can be performed. As a result, it is possible to simplify the structure of the entire measuring device in combination with the downsizing of the measuring tube, and there is no measurement error due to the influence of the gas flow velocity change in the measuring tube, which is extremely high. It is possible to accurately measure the component flow rate.

さらに、この発明では管体の管軸中心線と超音波のビー
ム中心線とを通る面と、管軸中心線と光の光束中心線と
を通る面とが一つの水平面上でほぼ一致するように配置
されていることにより、管体内で気体が液化して管体の
底部に液体が溜まっても、超音波振動子の前面や光透過
窓がその液体により塞がれることがないので、超音波の
伝搬や光の透過状態が悪くなることがなく、安定した測
定が可能となる。
Further, in the present invention, the plane passing through the tube axis center line of the tubular body and the ultrasonic beam center line and the plane passing through the tube axis center line and the light flux center line of the light are substantially coincident with each other on one horizontal plane. Since it is arranged in the tube, even if the gas is liquefied inside the tube and the liquid accumulates at the bottom of the tube, the front surface of the ultrasonic transducer and the light transmission window are not blocked by the liquid. Stable measurement is possible without deterioration of sound wave propagation or light transmission.

[発明の実施例] 第1図は、この発明の一実施例の成分流量測定装置の構
成図である。
[Embodiment of the Invention] FIG. 1 is a configuration diagram of a component flow rate measuring apparatus according to an embodiment of the present invention.

図において、1は流量・濃度同時測定用測定管であり、
被測定気体、例えば呼吸気体が通流する1つの管体2
に、流量測定用の超音波トランスデューサと濃度測定用
の光学センサとを取付けた構成となっている。すなわ
ち、管体2の長さ方向に所定距離隔てた位置に、この管
体2内を通流する流体の流れ方向を斜めに横切る線上で
相対向するように一対の超音波振動子4a,4bが取付
けられている。なお、超音波振動子4a,4bは管体2
内に突出して設けられてもよいが、この実施例では流体
の流れに極力影響を与えないように、管体2の内側に凹
所3a,3bを形成し、ここに超音波振動子4a,4b
を配置している。
In the figure, 1 is a measuring tube for simultaneous measurement of flow rate and concentration,
One tube body 2 through which a measured gas, for example, a respiratory gas flows
In addition, an ultrasonic transducer for flow rate measurement and an optical sensor for concentration measurement are attached. That is, a pair of ultrasonic transducers 4a and 4b are provided at positions separated by a predetermined distance in the length direction of the pipe body 2 so as to face each other on a line diagonally crossing the flow direction of the fluid flowing through the pipe body 2. Is installed. The ultrasonic transducers 4a and 4b are the tube 2
Although it may be provided so as to project inward, in this embodiment, the recesses 3a and 3b are formed inside the tube body 2 so as not to affect the flow of the fluid as much as possible, and the ultrasonic transducers 4a and 4b
Are arranged.

一方、管体2の超音波振動子4a,4b間の領域の壁面
に、一対の光透過窓5a,5bが相対向して気密に取付
けられている。これらの光透過窓5a,5bは濃度測定
用の光を透過させるためのものである。ここで、この実
施例では管体2の管軸中心線と超音波振動4a,4b間
で送受される超音波のビーム中心線との交点Pと、光透
過窓5a,5bを通る光の光束中心線とが交わり、さら
に管軸中心線とビーム中心線とを通る面と、管軸中心線
と光束中心線または光束の一部とを通る面とが一つの水
平面上でほぼ一致するように超音波振動子4a,4bお
よび光透過窓5a,5bが配置されている。
On the other hand, on the wall surface of the region between the ultrasonic transducers 4a and 4b of the tubular body 2, a pair of light transmission windows 5a and 5b are airtightly attached to face each other. These light transmission windows 5a and 5b are for transmitting the light for density measurement. Here, in this embodiment, the intersection point P between the tube axis center line of the tube body 2 and the beam center line of the ultrasonic waves transmitted and received between the ultrasonic vibrations 4a and 4b and the light flux of the light passing through the light transmission windows 5a and 5b. In such a manner that the center line intersects with each other and the plane passing through the tube axis center line and the beam center line and the plane passing through the tube axis center line and the light flux center line or a part of the light flux are substantially coincident with each other on one horizontal plane. Ultrasonic transducers 4a and 4b and light transmission windows 5a and 5b are arranged.

このように構成された測定管1に対し、次に説明する要
素が組合わされることによって、成分流量測定装置が構
成される。すなわち、一対の超音波振動子4a,4bに
は流量測定回路6が接続される。この流量測定回路6は
例えば伝搬時間差法によるものが用いられる。
A component flow rate measuring device is configured by combining the elements described below with the measuring tube 1 configured as described above. That is, the flow rate measuring circuit 6 is connected to the pair of ultrasonic transducers 4a and 4b. As the flow rate measuring circuit 6, for example, a circuit based on the propagation time difference method is used.

第2図は伝搬時間差法による流量測定回路の基本構成を
示すもので、超音波振動子4a,4bを駆動回路21
a,21bにより同時に駆動し、そのとき各超音波振動
子4a,4bで受信される他の超音波振動子4b,4a
からの超音波信号を受信回路22a,22bで電気信号
に変換し波形整形回路23a,23bを通して時間差演
算回路24に導いて、超音波振動子4aから超音波振動
子4bへの超音波伝搬時間と超音波振動子4bから超音
波振動子4aへの超音波伝搬時間との差を求め、これに
所定の定数を乗じることによって流量信号v(t)を得
るものである。なお、第2図はあくまで原理的な構成を
示すものであって、例えば特開昭57−77914号公
報,特開昭57−77915号公報等に記載されたよう
な、より改良された構成をとることも可能である。
FIG. 2 shows a basic configuration of a flow rate measuring circuit using the propagation time difference method. The ultrasonic transducers 4a and 4b are connected to the drive circuit 21.
a, 21b simultaneously drive the other ultrasonic transducers 4b, 4a, which are then received by the respective ultrasonic transducers 4a, 4b.
From the ultrasonic transducer 4a to the ultrasonic transducer 4b, and the ultrasonic signals from the ultrasonic transducer 4a to the ultrasonic transducer 4b are converted into electric signals by the receiving circuits 22a and 22b and guided to the time difference calculation circuit 24 through the waveform shaping circuits 23a and 23b. The flow rate signal v (t) is obtained by obtaining the difference from the ultrasonic wave propagation time from the ultrasonic wave oscillator 4b to the ultrasonic wave oscillator 4a and multiplying it by a predetermined constant. It should be noted that FIG. 2 shows only the principle configuration, and a more improved configuration such as that described in, for example, JP-A-57-77914 and JP-A-57-77915 is shown. It is also possible to take.

一方、濃度測定は例えば特開昭57−23843号公報
に記載された原理に従い、次のようにして行なわれる。
すなわち、一方の光透過窓5aの外側に電源7により点
灯される光源8が設けられ、この光源8からの光が光透
過窓5aを通して管体2内に導入される。管体2内に導
入された光は管体2内を通流する気体を透過した後、他
方の光透過窓5bを通して外部に導き出される。外部に
導き出された光は、モータ9により一定回転数で駆動さ
れるチョッパ用回転板10に到達する。この回転板10
には被測定気体に含まれる特定の成分、例えば炭酸ガス
によって吸収される波長の光のみを通過させる第1のフ
ィルタ11と、被測定気体に含まれるいかなる成分にも
吸収されない波長の光を通過させる第2のフィルタ12
とを円周方向の異なる位置に配設したものである。そし
てこれらのフィルタ11,12を透過した光は光検出器
13に導かれ、電気信号に変換された後、成分濃度測定
回路14に供給される。
On the other hand, the concentration measurement is performed as follows, for example, according to the principle described in JP-A-57-23843.
That is, the light source 8 which is turned on by the power source 7 is provided outside one of the light transmitting windows 5a, and the light from the light source 8 is introduced into the tube body 2 through the light transmitting window 5a. The light introduced into the tube body 2 passes through the gas flowing through the tube body 2 and is then guided to the outside through the other light transmitting window 5b. The light guided to the outside reaches the chopper rotating plate 10 driven by the motor 9 at a constant rotation speed. This rotating plate 10
Includes a first filter 11 that passes only a specific component contained in the gas to be measured, for example, light having a wavelength absorbed by carbon dioxide gas, and a light having a wavelength not absorbed by any component contained in the gas to be measured. Second filter 12
And are arranged at different positions in the circumferential direction. The light transmitted through the filters 11 and 12 is guided to the photodetector 13, converted into an electric signal, and then supplied to the component concentration measuring circuit 14.

濃度測定回路14は例えば第3図に示すように構成され
る。この構成は特開昭57−23843号公報に記載さ
れたもので、光検出器13の出力を増幅器31で増幅し
た後、前記チッヨッパ用回転板10の回転に同期して第
1のフィルタ11を透過した波長の光に起因する成分
と、第2のフィルタ12を透過した波長の光に起因する
成分とを第1,第2の検波器32a,32bにより同期
検波し、その各検波出力の比(第1の検波器出力/第2
の検波器出力)を割算回路33で求め、さらにこの比を
対数増幅器34で対数変換することにより、特定成分、
例えば炭酸ガスについての濃度信号fco(t)を得る
構成となっている。なお、成分濃度測定回路14の構成
はあくまで一例であって、要するに光学的に特定成分の
濃度を測定するものであれば基本的にどのような構成で
もよい。ここで、流量測定回路6と成分濃度測定回路1
4とは、同期信号16によってチョッパ用回転板10の
回転による光のサンプリングと超音波振動子4a,4b
からの超音波の放射とが同期して行なわれるように動作
する。すなわち、例えば第1のフィルタ11を透過した
光の検出と、超音波振動子4a,4bからの超音波の放
射とが同時に行なわれる。これにより流量の測定と成分
濃度の測定は被測定気体の同一流塊に対して行なわれる
ことになる。
The concentration measuring circuit 14 is constructed, for example, as shown in FIG. This configuration is disclosed in Japanese Patent Application Laid-Open No. 57-23843. After the output of the photodetector 13 is amplified by the amplifier 31, the first filter 11 is activated in synchronization with the rotation of the rotation plate 10 for the chiyhopper. The component caused by the light of the transmitted wavelength and the component caused by the light of the wavelength transmitted by the second filter 12 are synchronously detected by the first and second detectors 32a and 32b, and the ratio of the respective detection outputs is detected. (First detector output / second
The detector output) is obtained by the division circuit 33, and this ratio is logarithmically converted by the logarithmic amplifier 34 to obtain a specific component,
For example, the concentration signal fco 2 (t) for carbon dioxide is obtained. Note that the configuration of the component concentration measuring circuit 14 is merely an example, and basically any configuration may be used as long as it optically measures the concentration of the specific component. Here, the flow rate measuring circuit 6 and the component concentration measuring circuit 1
Reference numeral 4 denotes sampling of light by rotation of the chopper rotating plate 10 by means of a synchronization signal 16 and ultrasonic transducers 4a and 4b.
It operates so that the emission of ultrasonic waves from the equipment is synchronized. That is, for example, the detection of light transmitted through the first filter 11 and the emission of ultrasonic waves from the ultrasonic transducers 4a and 4b are performed simultaneously. As a result, the measurement of the flow rate and the measurement of the component concentration are performed for the same mass of the gas to be measured.

このようにして流量測定回路6および成分濃度測定回路
14からそれぞれ得られた流量信号v(t)および成分
濃度信号fco(t)は演算処理回路15に供給され、
ここで例えば ∫v(t)・fco(t) なる演算が行なわれることにより、特定成分についての
成分流量、例えば炭酸ガス産生量が求められることにな
る。すなわち、上記のようにして得られる流量信号v
(t)および成分濃度信号fco(t)は被測定気体の
同一流塊に対応しており時間ずれがないため、演算処理
回路15でこれらを直接演算処理できるものである。
The flow rate signal v (t) and the component concentration signal fco 2 (t) thus obtained from the flow rate measuring circuit 6 and the component concentration measuring circuit 14 respectively are supplied to the arithmetic processing circuit 15,
Here, for example, the calculation of ∫v (t) · fco 2 (t) is performed, so that the component flow rate for the specific component, for example, the carbon dioxide gas production amount is obtained. That is, the flow rate signal v obtained as described above
Since (t) and the component concentration signal fco 2 (t) correspond to the same flow mass of the gas to be measured and there is no time lag, the arithmetic processing circuit 15 can directly perform arithmetic processing on these.

以上説明したように、この発明によれば同一の測定管を
用いて流量と特定成分の濃度とを同時に測定できるの
で、これらの測定に直列接続した個別の測定管を用いる
場合に比べて、被測定気体に対する測定系全体の容量を
小さくすることができ、被検者に与える負担が大きく軽
減される。これは特に重症患者の呼吸管理を行なう場合
等において、大きな効果となる。
As described above, according to the present invention, since the flow rate and the concentration of the specific component can be simultaneously measured using the same measuring tube, compared to the case where individual measuring tubes connected in series are used for these measurements, The volume of the entire measurement system for the measurement gas can be reduced, and the burden on the subject is greatly reduced. This is a great effect especially in the case of respiratory management of critically ill patients.

また、同一の測定管において流量と成分濃度の測定が行
なわれることは、これらの測定位置が近接しているとい
うことであり、従って同じ流塊に対するこれら両測定の
時間的なずれが非常に少なくなるため、測定のための信
号処理が簡単となるという利点がある。特に、上記実施
例では流量測定点と成分濃度測定点とが、測定管を構成
する管体の管軸中心線と一対の超音波振動子間で送受さ
れる超音波ビーム中心線との交点で一致していることか
ら、この時間ずれはほぼ完全に零となるので、その補正
のための処理は全く不要となる。これにより、従来に比
べより高精度な成分流量の測定が可能となる。
Further, the fact that the flow rate and the component concentration are measured in the same measuring tube means that these measurement positions are close to each other, so that there is very little time lag between these two measurements for the same stream. Therefore, there is an advantage that the signal processing for measurement becomes simple. In particular, in the above embodiment, the flow rate measurement point and the component concentration measurement point are the intersections of the center line of the tube axis of the tube body forming the measurement tube and the center line of the ultrasonic beam transmitted and received between the pair of ultrasonic transducers. Since they coincide with each other, this time shift becomes almost completely zero, so that the process for the correction is completely unnecessary. As a result, it becomes possible to measure the component flow rate with higher accuracy than in the past.

なお、流量測定点と成分濃度測定点とは必ずしも正確に
一致している必要はなく、管体の管軸中心線と超音波振
動子間で送受される超音波のビーム中心線との交点と、
光透過窓を透過する光の光束の一部とが交わる程度であ
っても、ほぼ同様な効果が得られる。
It should be noted that the flow rate measurement point and the component concentration measurement point do not necessarily have to match exactly, and the intersection point between the center line of the tube axis of the tubular body and the center line of the ultrasonic wave transmitted and received between the ultrasonic transducers ,
Even if it intersects with a part of the light flux passing through the light transmission window, substantially the same effect can be obtained.

さらに、上記実施例では、図に示すように管体2の管軸
中心線と超音波振動子4a,4b間で送受される超音波
のビーム中心線とを通る面と、光透過窓5a,5bを透
過する光の光軸中心線と管体2の管軸中心線とを通る面
とがほぼ一致している、換言すれば超音波振動子4a,
4bおよび光透過窓5a,5bが、管体2の管軸中心線
を通る一つの面上に位置している。従って、この面が水
平となるように測定管1を配置することにより、管体2
内を通流する呼吸気体等の気体が液化し、その液体が底
部に溜ることがあっても、超音波振動子4a,4bが設
けられてい凹所3a,3bや光透過窓5a,5bがその
液体により塞がれることはないので、超音波の伝搬や光
の透過状態が悪くなることがなく、安定な測定が可能で
ある。
Further, in the above-described embodiment, as shown in the drawing, a surface passing through the tube axis center line of the tube body 2 and the beam center line of the ultrasonic waves transmitted and received between the ultrasonic transducers 4a and 4b, and the light transmission window 5a, The optical axis center line of the light passing through 5b and the plane passing through the tube axis center line of the tube body 2 are substantially coincident with each other, in other words, the ultrasonic transducer 4a,
4b and the light transmission windows 5a and 5b are located on one surface passing through the tube axis center line of the tube body 2. Therefore, by disposing the measuring tube 1 so that this surface is horizontal,
Even if a gas such as a breathing gas flowing through the inside liquefies and the liquid accumulates at the bottom, the ultrasonic transducers 4a and 4b are provided and the recesses 3a and 3b and the light transmission windows 5a and 5b are formed. Since it is not blocked by the liquid, stable measurement is possible without deterioration of ultrasonic wave propagation or light transmission state.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例の成分流量測定装置の構成
図、第2図は同実施例における流量測定回路の具体的構
成例を示す図、第3図は同じく成分濃度測定回路の具体
的構成例を示す図である。 1……測定管、2……管体、3a,3b……凹所、4
a,4b……超音波振動子、5a,5b……光透過窓、
6……流量測定回路、7……電源、8……光源、9……
モータ、10……チョッパ用回転板、11,12……フ
ィルタ、13……光検出器、14……成分濃度測定回
路。
FIG. 1 is a configuration diagram of a component flow rate measuring device according to an embodiment of the present invention, FIG. 2 is a diagram showing a concrete configuration example of a flow rate measuring circuit in the same embodiment, and FIG. It is a figure which shows a structural example. 1 ... Measuring tube, 2 ... Tube body, 3a, 3b ... Recess, 4
a, 4b ... Ultrasonic transducer, 5a, 5b ... Light transmission window,
6 ... Flow rate measuring circuit, 7 ... Power supply, 8 ... Light source, 9 ...
Motor, 10 ... Rotating plate for chopper, 11, 12 ... Filter, 13 ... Photodetector, 14 ... Component concentration measuring circuit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 町田 薫 栃木県大田原市下石上1385番の1 東京芝 浦電気株式会社那須工場内 (72)発明者 倉橋 宗重 東京都新宿区西落合1丁目31番4号 日本 光電工業株式会社内 (56)参考文献 特開 昭57−119240(JP,A) 特開 昭57−16339(JP,A) 実開 昭55−148640(JP,U) 実開 昭58−65526(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kaoru Machida Inventor 1385-1385 Shimoishigami, Otawara, Tochigi Prefecture Tokyo Shibaura Electric Co., Ltd. Nasu factory (72) Inventor Soju Kurahashi 1-31 Nishiochiai, Shinjuku-ku, Tokyo No. 4 in Nippon Koden Kogyo Co., Ltd. (56) Reference JP 57-119240 (JP, A) JP 57-16339 (JP, A) Actual development 55-148640 (JP, U) Actual development Sho 58 -65526 (JP, U)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】気体が通流する管体に気体の流れ方向を横
切る線上で相対向させて一対の超音波振動子を取付ける
とともに、管体の一対の超音波振動子間領域の壁面に相
対向させて一対の光透過窓を気密に取付けてなり、これ
ら超音波振動子および光透過窓は、管体の管軸中心線と
一対の超音波振動子間で送受される超音波のビーム中心
線との交点と、一対の光透過窓を透過する光の光束中心
線または光束の一部とが交わり、さらに前記管軸中心線
とビーム中心線とを通る面と、前記管軸中心線と光束中
心線または光束の一部とを通る面とが一つの水平面上で
ほぼ一致するように配置されている測定管と、 前記一対の超音波振動子を駆動し、これら各超音波振動
子によって送信され他の超音波振動子により互いに受信
された超音波信号から前記気体の流量を測定する流量測
定手段と、 前記一対の光透過窓の一方から前記管体内に照射され、
前記管体内の気体を透過して前記一対の光透過窓の他方
から外部に導き出された光のうち、少なくとも前記気体
の特定成分によって吸収される波長の光の光量を検出し
て前記気体の前記特定成分の濃度を測定する成分濃度測
定手段と、 これら流量測定手段および成分濃度測定手段により測定
された流量と濃度から前記気体の前記特定成分の流量を
算出する手段と を備えたことを特徴とする成分流量測定装置。
1. A pair of ultrasonic transducers are attached to a tubular body through which gas flows, facing each other on a line transverse to the flow direction of the gas, and relative to the wall surface of a region between the pair of ultrasonic transducers of the tubular body. The pair of light-transmitting windows facing each other are airtightly attached, and these ultrasonic transducers and light-transmitting windows are the center of the ultrasonic beam transmitted and received between the center line of the tube axis and the pair of ultrasonic transducers. A point of intersection with the line and a center line of the light beam or a part of the light beam that passes through the pair of light transmission windows intersects each other, and a surface that passes through the tube axis center line and the beam center line, and the tube axis center line. A measuring tube arranged so that the plane passing through the light flux center line or a part of the light flux is substantially aligned on one horizontal plane, and drives the pair of ultrasonic transducers. From the ultrasonic signals transmitted and received by other ultrasonic transducers, Flow rate measuring means for measuring the flow rate of gas, the tube is irradiated from one of the pair of light transmission windows,
Of the light led out from the other of the pair of light transmission windows through the gas in the tube, at least the light amount of the wavelength of the light absorbed by the specific component of the gas is detected to detect the gas. And a means for calculating the flow rate of the specific component of the gas from the flow rate and the concentration measured by the flow rate measuring means and the component concentration measuring means. Component flow rate measuring device.
JP58226130A 1983-11-30 1983-11-30 Component flow rate measuring device Expired - Lifetime JPH0634008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58226130A JPH0634008B2 (en) 1983-11-30 1983-11-30 Component flow rate measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58226130A JPH0634008B2 (en) 1983-11-30 1983-11-30 Component flow rate measuring device

Publications (2)

Publication Number Publication Date
JPS60117149A JPS60117149A (en) 1985-06-24
JPH0634008B2 true JPH0634008B2 (en) 1994-05-02

Family

ID=16840312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58226130A Expired - Lifetime JPH0634008B2 (en) 1983-11-30 1983-11-30 Component flow rate measuring device

Country Status (1)

Country Link
JP (1) JPH0634008B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4222286C1 (en) * 1992-06-03 1994-05-11 Reutter Georg Dr Ultrasound spirometer
DE4318690A1 (en) * 1993-06-04 1995-01-05 Ndd Medizintechnik Gmbh Method for measuring the molar mass of gases or gas mixtures and device for carrying out this method
JP6228772B2 (en) * 2013-07-25 2017-11-08 株式会社東京建設コンサルタント measuring device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55148640U (en) * 1980-04-23 1980-10-25
JPS5865526U (en) * 1981-10-27 1983-05-04 株式会社 西原環境衛生研究所 Flow rate and concentration meter using single wavelength electromagnetic waves

Also Published As

Publication number Publication date
JPS60117149A (en) 1985-06-24

Similar Documents

Publication Publication Date Title
JPS60117131A (en) Measuring tube for simultaneously measuring flow rate and concentration of fluid
US5479019A (en) Apparatus for determining the 13 CO2 /12 CO2 ratio of concentrations in a gas sample
US5645071A (en) Method for the measurement of the molar mass of gases or gas mixtures and an apparatus for the performance of the method
EP2496136B1 (en) Apparatus for measuring a level of a specific gas in exhaled breath
US7063667B1 (en) Isotopic gas analyzer
US5022406A (en) Module for determining diffusing capacity of the lungs for carbon monoxide and method
EP0551142B1 (en) Improved multichannel gas analyzer
US6493567B1 (en) Single light sensor optical probe for monitoring blood parameters and cardiovascular measurements
Clemensen et al. A modified photo-and magnetoacoustic multigas analyzer applied in gas exchange measurements
US20150238672A1 (en) Self calibrating blood chamber
GB1576141A (en) Method and apparatus for pulmonary function analysis
JPH03115955A (en) Method and apparatus for analyzing gas
US8352206B2 (en) Method for the signal linearization of a gas sensor output signal
JP5008362B2 (en) Apparatus for determining the time delay between a mainstream ultrasonic flow sensor and a sidestream gas analyzer.
JPH0634008B2 (en) Component flow rate measuring device
JP4158314B2 (en) Isotope gas measuring device
WO2023024665A1 (en) Blood ion concentration monitoring apparatus and method and calcium ion concentration monitoring method
JPS61194332A (en) Method and device for measuring gas concentration
US20040200266A1 (en) Acoustic analysis of gas mixtures
CN108956521A (en) A kind of medical respiration gas concentration lwevel acquisition methods and device
JPH05329132A (en) Breath by breath metabolism measuring apparatus
JP2945050B2 (en) Method for determining performance degradation of zero gas generator in ozone concentration measurement device
JPH0412822B2 (en)
CN113398347B (en) Guiding type artificial oropharynx channel sputum suction device and working method
RU1821138C (en) Device for measuring exhalation parameters