JPH05329132A - Breath by breath metabolism measuring apparatus - Google Patents

Breath by breath metabolism measuring apparatus

Info

Publication number
JPH05329132A
JPH05329132A JP4162263A JP16226392A JPH05329132A JP H05329132 A JPH05329132 A JP H05329132A JP 4162263 A JP4162263 A JP 4162263A JP 16226392 A JP16226392 A JP 16226392A JP H05329132 A JPH05329132 A JP H05329132A
Authority
JP
Japan
Prior art keywords
concentration
expired
breath
respiratory air
flow meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4162263A
Other languages
Japanese (ja)
Inventor
Kiyoshi Sato
潔 佐藤
Takao Nakajima
孝男 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anima Corp
Original Assignee
Anima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anima Corp filed Critical Anima Corp
Priority to JP4162263A priority Critical patent/JPH05329132A/en
Publication of JPH05329132A publication Critical patent/JPH05329132A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PURPOSE:To provide a breath by breath metabolism measuring apparatus which enables accurate computation of delay time in expired and inspired gases flowing into a gas density analyzer. CONSTITUTION:This apparatus is provided with an expired/inspired gas sampling mask 2 to be mounted about the mouth of a testee 1, a flow meter 5 which is connected to the expired/inspired gas sampling mask 2 to measure the flow rate of the expired and inspired gases, a sampling tube 3 whose one open end is held securely at the center position of laminar flows of the expired and inspired gases in the flowmeter 5 to introduce a part of the expired and inspired gases, a gas density analyzer 7 which is connected to the other open end of the sampling tube 3 to analyze the concentration of O2 and the concentration of CO2 in the expired and inspired gases and an arithmetic device 12 which adjusts and computes the concentrations of O2 and CO2 corresponding to the flow rates of the expired and inspired gases. Thus, the flow rates of the expired and inspired gases of the testee are made to correspond the concentration of O2 and the concentration of CO2 to be analyzed with the gas density analyzer 7 accurately to determine an activity of the body of the testee, thereby enabling the computing of various data useful for the management of health and motion accurately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被検者の呼吸気流量と
呼吸気中のO濃度及びCO濃度を測定し、酸素消費
量などの演算を行うブレスバイブレス代謝測定装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a breath-by-breath metabolism measuring apparatus for measuring a respiratory air flow rate, an O 2 concentration and a CO 2 concentration in the respiratory air of a subject, and calculating an oxygen consumption amount.

【0002】[0002]

【従来の技術】被検者の呼吸気流量と呼吸気中のO
度及びCO濃度を測定して、例えば酸素消費量を求め
被検者の身体活動量を把握することは、生理学上の貴重
なデータが得られるだけでなく、当該被検者の健康管理
や運動管理の面でも必要である。
2. Description of the Related Art It is physiologically important to measure the respiratory air flow rate of a subject and the O 2 concentration and CO 2 concentration in the respiratory air to obtain, for example, the oxygen consumption amount and to grasp the physical activity amount of the subject. Not only is it possible to obtain valuable data on the above, but it is also necessary in terms of health management and exercise management of the subject.

【0003】図3は被検者の呼吸気流量と呼吸気中のO
濃度及びCO濃度を測定する従来のブレスバイブレ
ス代謝測定装置の要部の構成を示す説明図であり、被検
者1の口元に装着される呼吸気採取マスク2に、フロー
メータ5が接続してあり、フローメータ5には増幅器6
が接続してある。また、フローメータの側壁の一部にサ
ンプリングチューブ3の一開口端が固定してあり、サン
プリングチューブ3の他開口端は、ガス濃度分析計7に
接続してある。
FIG. 3 shows the respiratory air flow rate of a subject and the O in the respiratory air.
Is an explanatory view showing an essential part of the structure of a conventional breath Vibe less metabolism measuring apparatus for measuring 2 concentration and CO 2 concentration, the breathing gas sampling mask 2 mounted on the mouth of the subject 1, the flow meter 5 Connected to the flow meter 5 and an amplifier 6
Is connected. One open end of the sampling tube 3 is fixed to a part of the side wall of the flow meter, and the other open end of the sampling tube 3 is connected to the gas concentration analyzer 7.

【0004】ここで、フローメータ5は被検者の呼吸気
流量を測定するもので、例えば熱線型のフローメータが
使用され、ガス濃度分析計7は被検者の呼吸気中のO
濃度とCO濃度を測定するもので、例えばポーラログ
ラフ型や赤外線吸収型のガス分析計が使用される。
Here, the flow meter 5 measures the flow rate of respiratory air of the subject. For example, a hot wire type flow meter is used, and the gas concentration analyzer 7 is an O 2 gas in the respiratory air of the subject.
For measuring the concentration and the CO 2 concentration, for example, a polarographic type or infrared absorption type gas analyzer is used.

【0005】この従来のブレスバイブレス代謝測定装置
では、口元に呼吸気採取マスク2を装着した被検者の呼
吸気が、呼吸気採取マスク2からフローメータ5内に送
り込まれ、熱線型のフローメータ5の図示せぬ白金線が
呼吸気に曝され、呼吸気の流量に対応して温度が低下す
ることを検出することにより、フローメータ5によって
被検者の呼吸気流量が測定される。当該検出信号が、フ
ローメータ5から出力されて増幅器6に入力し、増幅器
6からは被検者の呼吸気流量信号f(t)が出力され
る。
In this conventional breath-by-breath metabolism measuring device, the respiratory air of the subject whose respiratory air sampling mask 2 is attached to the mouth is sent from the respiratory air sampling mask 2 into the flow meter 5, and a heat-wire type flow is performed. The platinum wire (not shown) of the meter 5 is exposed to breathing air, and the flow meter 5 measures the breathing air flow rate of the subject by detecting that the temperature decreases corresponding to the flow rate of the breathing air. The detection signal is output from the flow meter 5 and input to the amplifier 6, and the amplifier 6 outputs the respiratory air flow rate signal f (t) of the subject.

【0006】一方、被検者の呼吸気の一部は、サンプリ
ングチューブ3を通ってガス分析計7に供給され、被検
者の呼吸気中のO濃度とCO濃度が測定され、ガス
分析計7からガス濃度信号O(t)、CO(t)が
出力される。
On the other hand, a part of the respiratory air of the subject is supplied to the gas analyzer 7 through the sampling tube 3, and the O 2 concentration and CO 2 concentration in the respiratory air of the subject are measured to obtain the gas. Gas concentration signals O 2 (t) and CO 2 (t) are output from the analyzer 7.

【0007】[0007]

【発明が解決しようとする課題】前述のブレスバイブレ
ス代謝測定装置では、被検者の各呼吸気ごとに当該呼吸
気に対応付けてO濃度とCO濃度を測定する必要が
ある。このために、サンプリングチューブ3の全長、呼
吸気採取マスクの形状、フローメータ5の直径d、容積
及び形状を考慮して、被検者の呼吸気のガス濃度分析計
7への到達時間を演算し、フローメータ5で測定される
呼吸気流量に対して、当該到達時間だけガス濃度分析計
7での分析値を遅延させて対応付けるように測定値を調
整演算することが必要である。
In the breath-by-breath metabolism measuring device described above, it is necessary to measure the O 2 concentration and the CO 2 concentration in association with each respiratory air of the subject. For this purpose, the arrival time of the respiratory air of the subject to the gas concentration analyzer 7 is calculated in consideration of the total length of the sampling tube 3, the shape of the respiratory air sampling mask, the diameter d, the volume and the shape of the flow meter 5. However, it is necessary to adjust and calculate the measured value such that the measured value in the gas concentration analyzer 7 is delayed by the arrival time and associated with the respiratory air flow measured by the flow meter 5.

【0008】この場合、サンプリングチューブ3での遅
延時間は精度よく演算することができるが、呼吸気採取
マスク2及びフローメータ5部分での遅延時間は、呼吸
毎に異なり、呼吸気採取マスク2及びフローメータ5の
容積、形状さらには装着の仕方でもそれぞれ異なり、こ
の部分での遅延時間の精度よい演算は困難である。この
部分の遅延時間の演算の精度が低下すると、フローメー
タ5で測定される呼吸気流量信号f(t)とガス分析計
7で測定されるO濃度及びCO濃度を示すガス濃度
信号O(t)、CO(t)とが対応付かず、適確な
相関性の上で例えば酸素消費量を演算することができな
くなる。
In this case, the delay time in the sampling tube 3 can be accurately calculated, but the delay time in the respiratory air sampling mask 2 and the flow meter 5 portion differs for each breath, and the respiratory air sampling mask 2 and The volume and shape of the flow meter 5 as well as the way of mounting the flow meter 5 are different, and it is difficult to accurately calculate the delay time in this portion. If the accuracy of the calculation of the delay time of this portion is reduced, the respiratory gas flow rate signal f (t) measured by the flow meter 5 and the gas concentration signal O indicating the O 2 concentration and the CO 2 concentration measured by the gas analyzer 7 are obtained. Since 2 (t) and CO 2 (t) do not correspond to each other, it becomes impossible to calculate, for example, the oxygen consumption amount with a proper correlation.

【0009】本発明は、前述したようなこの種のブレス
バイブレス代謝測定装置の現状に鑑みてなされたもので
あり、その目的はガス濃度分析計に流入する呼吸気の遅
延時間を精度よく演算することができるブレスバイブレ
ス代謝測定装置を提供することにある。
The present invention has been made in view of the present situation of the breath-by-breath metabolism measuring apparatus of this kind as described above, and its purpose is to accurately calculate the delay time of respiratory gas flowing into a gas concentration analyzer. Another object of the present invention is to provide a breath-by-breath metabolism measuring device capable of performing.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するため
に本発明は、被検者の口元に取り付けられる呼吸気採取
マスクと、この呼吸気採取マスクに接続され、前記被検
者の呼吸気流量を測定するフローメータと、前記フロー
メータ内の前記呼吸気流の中心位置に一開口端が保持固
定され、前記呼吸気の一部が導入されるサンプリングチ
ューブと、このサンプリングチューブの他開口端に接続
され、前記呼吸気中のO濃度及びCO濃度を分析す
るガス濃度分析計と、このガス濃度分析計と前記フロー
メータとに接続され、被検者の呼吸気流量に対応付けて
前記O濃度及びCO濃度を調整演算する演算手段と
を有する構成にしてある。
In order to achieve the above object, the present invention provides a respiratory air sampling mask attached to the mouth of a subject, and a respiratory air sampling mask connected to the respiratory air sampling mask. A flow meter for measuring a flow rate, a sampling tube in which one open end is held and fixed at the center position of the respiratory airflow in the flow meter, and a part of the respiratory air is introduced, and the other open end of the sampling tube. A gas concentration analyzer that is connected and analyzes the O 2 concentration and CO 2 concentration in the respiratory air, and is connected to the gas concentration analyzer and the flow meter, and is associated with the respiratory air flow of the subject. It is configured to have a calculation means for adjusting and calculating the O 2 concentration and the CO 2 concentration.

【0011】[0011]

【作用】このような構成なので、被検者の呼吸気は呼吸
気採取マスクから、フローメータ内の呼吸気流の中心位
置に保持固定されたサンプリングチューブの一開口端を
経てサンプリングチューブ内に送り込まれ、他開口端か
らガス濃度分析計に供給され、O濃度とCO濃度の
測定が行われる。
With this structure, the respiratory air of the subject is sent from the respiratory air sampling mask into the sampling tube through one open end of the sampling tube held and fixed at the center position of the respiratory airflow in the flow meter. , Is supplied to the gas concentration analyzer from the other opening end, and the O 2 concentration and the CO 2 concentration are measured.

【0012】このようにサンプリングチューブの一開口
端が、流速が最大となるフローメータ内の呼吸気流の中
心位置に保持固定されているので、演算手段によってガ
ス濃度分析計に到達する呼吸気の遅延時間の誤差が小さ
くなる。
As described above, since one open end of the sampling tube is held and fixed at the center position of the respiratory airflow in the flow meter where the flow velocity is maximized, the delay of the respiratory air reaching the gas concentration analyzer by the calculation means. Time error is reduced.

【0013】このために、呼吸気採取マスクに接続され
たフローメータで測定される被検者の呼吸気流量と、ガ
ス濃度分析計で分析されるO濃度及びCO濃度と
が、演算手段により精度よく対応付けられ調整演算され
て得られる。
Therefore, the respiratory air flow rate of the subject measured by the flow meter connected to the respiratory air sampling mask and the O 2 concentration and the CO 2 concentration analyzed by the gas concentration analyzer are calculated. Are accurately associated with each other and adjusted and obtained.

【0014】[0014]

【実施例】以下、本発明の一実施例を図1及び図2を参
照して説明する。ここで、図1は実施例の構成を示す説
明図、図2は実施例の要部の構成を示す説明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. Here, FIG. 1 is an explanatory diagram showing a configuration of the embodiment, and FIG. 2 is an explanatory diagram showing a configuration of a main part of the embodiment.

【0015】図1に示すように被検者1の口元に装着さ
れる呼吸気採取マスク2に、フローメータ5が接続して
あり、フローメータ5には増幅器6が接続してあり、増
幅器6の出力端子にはADコンバータ11が接続してあ
る。また、図2に示すように、フローメータ内の呼吸気
層流の中心位置にサンプリングチューブ3の一開口端3
aが固定してあり、サンプリングチューブ3の他開口端
3bは、ガス濃度分析計7に接続してあり、ガス濃度分
析計7には吸引ポンプ8が接続してある。
As shown in FIG. 1, a flow meter 5 is connected to a respiratory air sampling mask 2 attached to the mouth of the subject 1, an amplifier 6 is connected to the flow meter 5, and an amplifier 6 is connected. An AD converter 11 is connected to the output terminal of the. Further, as shown in FIG. 2, one open end 3 of the sampling tube 3 is located at the center position of the laminar flow in the flow meter.
a is fixed, the other open end 3b of the sampling tube 3 is connected to a gas concentration analyzer 7, and a suction pump 8 is connected to the gas concentration analyzer 7.

【0016】この場合、サンプリングチューブ3の一開
口端3aの固定位置は、呼吸気採取マスク2になるべく
近い位置に取り付け、図2の距離dは可能な限り小さく
取る。さらに、ガス濃度分析計7の出力端子には増幅器
10が接続してあり、増幅器10の出力端子にはADコ
ンバータ11が接続してある。そして、前述のように入
力端子に増幅器6及び増幅器10が接続されるADコン
バータ11の出力端子には、コンピュータを備えた演算
装置12が接続してある。
In this case, the fixed position of the one open end 3a of the sampling tube 3 is attached to a position as close as possible to the respiratory air sampling mask 2, and the distance d in FIG. 2 is made as small as possible. Further, an amplifier 10 is connected to the output terminal of the gas concentration analyzer 7, and an AD converter 11 is connected to the output terminal of the amplifier 10. Then, as described above, the arithmetic unit 12 including a computer is connected to the output terminal of the AD converter 11 to which the amplifier 6 and the amplifier 10 are connected to the input terminal.

【0017】次に、このような構成の実施例の動作を説
明する。
Next, the operation of the embodiment having such a configuration will be described.

【0018】被検者の呼吸気が呼吸気採取マスク2から
フローメータ5内に流れ込み、熱線型のフローメータ5
の図示せぬ白金線が呼吸気に曝され、呼吸気の流量に対
応して温度の低下が検出されて、フローメータ5によっ
て被検者の呼吸気流量が測定される。当該検出信号が、
フローメータ5から出力されて増幅器6に入力し、増幅
器6からは被検者の呼吸気流量信号f(t)が出力さ
れ、ADコンバータ11でAD変換されて演算装置12
に入力される。
The respiratory air of the subject flows into the flow meter 5 from the respiratory air sampling mask 2, and the hot wire type flow meter 5
The platinum wire (not shown) is exposed to breathing air, a decrease in temperature is detected corresponding to the flow rate of breathing air, and the flow meter 5 measures the breathing air flow rate of the subject. The detection signal is
It is output from the flow meter 5 and input to the amplifier 6, and the respiratory air flow rate signal f (t) of the subject is output from the amplifier 6 and is AD-converted by the AD converter 11 and then the arithmetic unit 12
Entered in.

【0019】一方、被検者の呼吸気の一部は、サンプリ
ングチューブ3を通ってガス分析計7に供給され、吸引
ポンプ8で吸引されて水銀の滴下電極と対極間に当該呼
吸気が送り込まれ、被検者の呼吸気中のO濃度とCO
濃度が測定され、ガス分析計7からガス濃度信号O
(t)、CO(t)が出力される。このガス濃度信号
は増幅器10で増幅され、ADコンバータ11でAD変
換された後に演算装置12に入力される。
On the other hand, a part of the respiratory air of the subject is supplied to the gas analyzer 7 through the sampling tube 3 and is sucked by the suction pump 8 to be sent between the mercury dropping electrode and the counter electrode. And O 2 concentration and CO in respiratory air of the subject
2 concentration is measured and the gas concentration signal O 2 is output from the gas analyzer 7.
(T) and CO 2 (t) are output. The gas concentration signal is amplified by the amplifier 10, AD-converted by the AD converter 11, and then input to the arithmetic unit 12.

【0020】この演算装置12では、サンプリングチュ
ーブ3の全長を考慮して、被検者の呼吸気のガス濃度分
析計7への到達時間を演算し、フローメータ5で測定さ
れる呼吸気流量に対して、演算装置12により当該到達
時間だけ遅延するガス濃度分析計7での分析値を対応付
けるように調整演算が行われる。
In the arithmetic unit 12, the arrival time of the respiratory air of the subject to the gas concentration analyzer 7 is calculated in consideration of the total length of the sampling tube 3 and the respiratory air flow rate measured by the flow meter 5 is calculated. On the other hand, the calculation device 12 performs the adjustment calculation so that the analysis values in the gas concentration analyzer 7 delayed by the arrival time are associated with each other.

【0021】この場合、円筒管であるフローメータ5内
の呼吸気の流速は、管壁で最も小さく中心線上で最も大
きいが、流れが層流であると中心線上の流速はフローメ
ータ5内の平均流速の2倍になることが知られている。
ところで、実施例ではフローメータ5内の呼吸気流の中
心線上に、サンプリングチューブ3の一開口端が保持固
定されているので、高速度の呼吸気がサンプリングチュ
ーブ3内に導入し、ガス濃度分析計7に到達するまでの
遅れ時間の誤差は、従来よりも大幅に短縮される。
In this case, the flow velocity of the respiratory gas in the flow meter 5 which is a cylindrical pipe is the smallest on the pipe wall and the largest on the center line, but when the flow is laminar, the flow velocity on the center line is in the flow meter 5. It is known to be twice the average flow velocity.
By the way, in the embodiment, since one open end of the sampling tube 3 is held and fixed on the center line of the respiratory airflow in the flow meter 5, high-velocity respiratory gas is introduced into the sampling tube 3 and the gas concentration analyzer The error of the delay time until reaching 7 is significantly shortened as compared with the conventional one.

【0022】また、実施例ではサンプリングチューブ3
の一開口端が、フローメータ5内の呼吸気層流の中心線
上にあるため、呼吸気採取マスク2の形状、フローメー
タ5の直径d、容積及び形状に基づく呼吸気の遅延時間
の誤差を低減することができ、サンプリングチューブ3
の長さに対応する遅延時間の演算のみで、極めて高精度
の酸素消費量などの演算が可能になる。このために、呼
吸気採取マスク2に接続されたフローメータ5で測定さ
れる被検者の呼吸気流量と、ガス濃度分析計7で分析さ
れるO濃度及びCO濃度とが、演算装置12により
精度よく対応付けられて調整演算され、被検者の身体活
動量を適確に把握し、健康管理や運動管理に有用な酸素
消費量などのデータを精度よく適確に演算することが可
能になる。
Further, in the embodiment, the sampling tube 3
Since one open end of the respiratory gas is on the center line of the laminar air flow in the flow meter 5, the error of the delay time of the respiratory air based on the shape of the respiratory air sampling mask 2, the diameter d of the flow meter 5, the volume, and the shape is Can be reduced, sampling tube 3
It is possible to calculate the oxygen consumption and the like with extremely high accuracy only by calculating the delay time corresponding to the length. For this reason, the respiratory air flow rate of the subject measured by the flow meter 5 connected to the respiratory air sampling mask 2 and the O 2 concentration and CO 2 concentration analyzed by the gas concentration analyzer 7 are calculated by an arithmetic unit. It is possible to accurately calculate the data such as the oxygen consumption amount that is useful for health management and exercise management, by accurately ascertaining the physical activity amount of the subject and accurately adjusting and correlating with 12 It will be possible.

【0023】[0023]

【発明の効果】以上に説明したように本発明では、フロ
ーメータ内の被検者の呼吸気流の中心位置に、呼吸気の
一部が導入されるサンプリングチューブの一開口端を保
持固定し、このサンプリングチューブの他開口端に、呼
吸気中のO濃度及びCO濃度を分析するガス濃度分
析計を接続している。このために、被検者の呼吸気のガ
ス濃度分析計への到達遅延時間が短くなると共に、フロ
ーメータ5で測定される被検者の呼吸気流量と、ガス濃
度分析計7で分析されるO濃度及びCO濃度とが精
度よく対応付けられ、被検者の身体活動量を正確に把握
し、健康管理や運動管理に有用な酸素消費量などのデー
タを精度よく演算することが可能になる。
As described above, in the present invention, one open end of a sampling tube into which a part of respiratory air is introduced is held and fixed at the central position of the respiratory airflow of the subject in the flow meter, A gas concentration analyzer for analyzing the O 2 concentration and CO 2 concentration in the respiratory air is connected to the other open end of this sampling tube. For this reason, the arrival delay time of the respiratory air of the subject to the gas concentration analyzer is shortened, and the respiratory air flow of the subject measured by the flow meter 5 and the gas concentration analyzer 7 are analyzed. The O 2 concentration and the CO 2 concentration are accurately associated with each other, the amount of physical activity of the subject can be accurately grasped, and data such as oxygen consumption useful for health management and exercise management can be accurately calculated. become.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成を示す説明図である。FIG. 1 is an explanatory diagram showing a configuration of an embodiment of the present invention.

【図2】本発明の一実施例の要部の構成を示す説明図で
ある。
FIG. 2 is an explanatory diagram showing a configuration of a main part of one embodiment of the present invention.

【図3】従来のブレスバイブレス代謝測定装置の構成を
示す説明図である。
FIG. 3 is an explanatory diagram showing a configuration of a conventional breath-by-breath metabolism measuring device.

【符号の説明】[Explanation of symbols]

1 被検者 2 呼吸気採取マスク 3 サンプリングチューブ 5 フローメータ 6 増幅器 7 ガス濃度分析計 8 吸引ポンプ 10 増幅器 11 ADコンバータ 12 演算装置 1 Subject 2 Respiratory air sampling mask 3 Sampling tube 5 Flow meter 6 Amplifier 7 Gas concentration analyzer 8 Suction pump 10 Amplifier 11 AD converter 12 Arithmetic device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被検者の口元に取り付けられる呼吸気採
取マスクと、この呼吸気採取マスクに接続され、前記被
検者の呼吸気流量を測定するフローメータと、前記フロ
ーメータ内の前記呼吸気流の中心位置に一開口端が保持
固定され、前記呼吸気の一部が導入されるサンプリング
チューブと、このサンプリングチューブの他開口端に接
続され、前記呼吸気中のO濃度及びCO濃度を分析
するガス濃度分析計と、このガス濃度分析計と前記フロ
ーメータとに接続され、被検者の呼吸気流量に対応付け
て前記O濃度及びCO濃度を調整演算する演算手段
とを有することを特徴とするブレスバイブレス代謝測定
装置。
1. A respiratory air sampling mask attached to the mouth of a subject, a flow meter connected to the respiratory air sampling mask for measuring the respiratory air flow of the subject, and the respiration in the flow meter. One open end is held and fixed at the center position of the airflow, and a sampling tube into which a part of the breathed air is introduced, and the other open end of this sampling tube are connected, and the O 2 concentration and CO 2 concentration in the breathed air And a gas concentration analyzer for analyzing the above, and a calculation means connected to the gas concentration analyzer and the flow meter for adjusting and calculating the O 2 concentration and the CO 2 concentration in association with the respiratory air flow of the subject. A breath-by-breath metabolism measuring device characterized by having.
JP4162263A 1992-05-28 1992-05-28 Breath by breath metabolism measuring apparatus Pending JPH05329132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4162263A JPH05329132A (en) 1992-05-28 1992-05-28 Breath by breath metabolism measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4162263A JPH05329132A (en) 1992-05-28 1992-05-28 Breath by breath metabolism measuring apparatus

Publications (1)

Publication Number Publication Date
JPH05329132A true JPH05329132A (en) 1993-12-14

Family

ID=15751126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4162263A Pending JPH05329132A (en) 1992-05-28 1992-05-28 Breath by breath metabolism measuring apparatus

Country Status (1)

Country Link
JP (1) JPH05329132A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847177A (en) * 1987-04-29 1989-07-11 Bayer Aktiengesellschaft Fanal pigments of closed-ring dry toners containing indamine-and diphenylmethane dyestuffs
US4869989A (en) * 1987-04-29 1989-09-26 Bayer Aktiengesellschaft Dry toners containing fanal pigments based on cationic dyes
EP1024745A1 (en) * 1997-10-22 2000-08-09 IDS Intelligent Detection Systems, Inc. A sample collection and detection system used for breath analysis
WO2001047417A1 (en) * 1999-11-16 2001-07-05 Cortex Biophysik Gmbh Ergospirometry system for animals, especially horses, camels or the like
JP2005529627A (en) * 2001-09-27 2005-10-06 シャーロット−メクレンバーグ ホスピタル オーソリティー ディー/ビィー/エー キャロライナス メディカル センター Non-invasive device and method for diagnosing pulmonary vascular occlusion
JP2007111517A (en) * 2005-09-16 2007-05-10 Ndd Medizintechnik Ag Device for determination of time-delay between main-stream ultrasonic flow sensor and side-stream gas analyzer
JP2008086741A (en) * 2005-12-26 2008-04-17 Akira Tomono Respiration detection type chemical substance presenting device and respiration detector

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847177A (en) * 1987-04-29 1989-07-11 Bayer Aktiengesellschaft Fanal pigments of closed-ring dry toners containing indamine-and diphenylmethane dyestuffs
US4869989A (en) * 1987-04-29 1989-09-26 Bayer Aktiengesellschaft Dry toners containing fanal pigments based on cationic dyes
EP1024745A1 (en) * 1997-10-22 2000-08-09 IDS Intelligent Detection Systems, Inc. A sample collection and detection system used for breath analysis
EP1024745A4 (en) * 1997-10-22 2001-04-25 Ids Intelligent Detection Syst A sample collection and detection system used for breath analysis
WO2001047417A1 (en) * 1999-11-16 2001-07-05 Cortex Biophysik Gmbh Ergospirometry system for animals, especially horses, camels or the like
JP2005529627A (en) * 2001-09-27 2005-10-06 シャーロット−メクレンバーグ ホスピタル オーソリティー ディー/ビィー/エー キャロライナス メディカル センター Non-invasive device and method for diagnosing pulmonary vascular occlusion
JP2007111517A (en) * 2005-09-16 2007-05-10 Ndd Medizintechnik Ag Device for determination of time-delay between main-stream ultrasonic flow sensor and side-stream gas analyzer
JP2008086741A (en) * 2005-12-26 2008-04-17 Akira Tomono Respiration detection type chemical substance presenting device and respiration detector

Similar Documents

Publication Publication Date Title
US4572208A (en) Metabolic gas monitoring apparatus and method
US5398695A (en) Cardiopulmonary performance analyzer having dynamic transit time compensation
CA1108039A (en) System for measurement of oxygen uptake and respiratory quotient
US5645071A (en) Method for the measurement of the molar mass of gases or gas mixtures and an apparatus for the performance of the method
US6286360B1 (en) Methods and apparatus for real time fluid analysis
US6572561B2 (en) Respiratory calorimeter
EP0392503B1 (en) Method and apparatus for metabolic monitoring
Hyatt et al. Direct writeout of total respiratory resistance.
US20100185112A1 (en) Device for analysing an inflammatory status of a respiratory system
CN101340941A (en) Method and apparatus for estimating lung volume at the end of exhalation
JPH07120463A (en) Concentration correction method for aspiration component and aspiration analysis device
CN104970795A (en) Device for measurement and analysis of multiple breath nitrogen washout process
US9999373B2 (en) On-airway pulmonary function tester
US5386833A (en) Method for calibrating a carbon dioxide monitor
KR101703971B1 (en) Portable bidirectional spirometer apparatus and method thereof
US8352206B2 (en) Method for the signal linearization of a gas sensor output signal
JPS6331732B2 (en)
EP1764036B1 (en) Method for the determination of the time-delay between a main-stream ultrasonic flow sensor and a side-stream gas analyzer
JPH05329132A (en) Breath by breath metabolism measuring apparatus
US7127936B2 (en) Acoustic analysis of gas mixtures
JPH0323867B2 (en)
US6406435B1 (en) Method and apparatus for the non-invasive determination of cardiac output
JPH0316555A (en) Respiration flowmeter
Henderson et al. A system for the continuous measurement of oxygen uptake and carbon dioxide output in artificially ventilated patients
Graham et al. Implementing the Three‐Equation Method of Measuring Single Breath Carbon Monoxide Diffusing Capacity