JPH0323867B2 - - Google Patents

Info

Publication number
JPH0323867B2
JPH0323867B2 JP61031579A JP3157986A JPH0323867B2 JP H0323867 B2 JPH0323867 B2 JP H0323867B2 JP 61031579 A JP61031579 A JP 61031579A JP 3157986 A JP3157986 A JP 3157986A JP H0323867 B2 JPH0323867 B2 JP H0323867B2
Authority
JP
Japan
Prior art keywords
gas concentration
time
output
concentration meter
response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61031579A
Other languages
Japanese (ja)
Other versions
JPS62188969A (en
Inventor
Hajime Hirata
Chikayasu Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP61031579A priority Critical patent/JPS62188969A/en
Publication of JPS62188969A publication Critical patent/JPS62188969A/en
Publication of JPH0323867B2 publication Critical patent/JPH0323867B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、ガス濃度計の応答遅れを補償して
呼気分析を行なう方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for performing exhaled breath analysis by compensating for the response delay of a gas concentration meter.

(従来の技術とその問題点) 人や動物の呼吸をガス濃度計を用いて測定する
と、呼気(成分未知)と吸気(成分既知)とが繰
り返し急激に入れかわり、それに伴つて、測定す
べき、たとえば酸素濃度が急激に変化するのが検
出される。ところが、このようなガス濃度計は、
固有の応答の遅れを有しているので、急激な濃度
変化に対して出力信号は大きな誤差をもつように
なり、そのままでは正確な分析を行なうことはで
きない。
(Conventional technology and its problems) When the respiration of humans and animals is measured using a gas concentration meter, exhaled air (components unknown) and inhaled air (components known) repeatedly and rapidly replace each other. , for example, a sudden change in oxygen concentration is detected. However, such a gas concentration meter
Since it has an inherent response delay, the output signal will have a large error in response to sudden changes in concentration, and accurate analysis cannot be performed as it is.

このような応答の遅れを補償する方法として、
従来より、「応用生理学の雑誌」(Journal of
Applied Physiology)、第52巻、第1号、第79頁
(1982年、the American Physiological
Society)に記載されているような方法が知られ
ている。この方法は、ガス濃度計による実際の測
定を行なうに先立ち、ガス濃度計にステツプ入力
を加えてその出力を電磁オシログラフに記録し、
その応答波形から、この応答を1次遅れ応答と仮
定したときの応答遅れの時定数(以下、応答時間
という)を読み取る。そして、測定時にこの応答
時間を用いて、ガス濃度計の出力を演算補正する
ものである。
As a way to compensate for this response delay,
Traditionally, the Journal of Applied Physiology
Applied Physiology), Volume 52, No. 1, Page 79 (1982, the American Physiologist)
Methods such as those described in ``Society'' are known. This method involves applying step input to the gas concentration meter and recording its output on an electromagnetic oscilloscope, before making actual measurements using the gas concentration meter.
From the response waveform, the time constant of the response delay (hereinafter referred to as response time) is read when this response is assumed to be a first-order delayed response. Then, during measurement, this response time is used to calculate and correct the output of the gas concentration meter.

ところが、このような従来の方法では、一般の
使用者にとつて、ガス濃度計の応答時間の校正を
行なうのが困難であるという問題を有していた。
すなわち、ガス濃度計の応答時間は経時変化する
ものであり、その程度には差があるため、応答時
間は常に校正する必要がある。しかし、従来の方
法は、ガス濃度計にステツプ入力を加えるのに特
殊な装置が必要であること、電磁オシログラフの
ように波形を高速度に記録する装置が必要である
こと、応答時間の読みとりに専門知識を要するこ
となどのため、これを実際に行なえるのは、一部
の研究機関やガス濃度計製造者などに限られてい
る。このため、一般の使用者は測定結果が明らか
におかしいなど特に必要な場合にだけ、製造者に
校正を依頼し、通常は経時変化による誤差を含ん
だまま測定するのが現状である。
However, such conventional methods have a problem in that it is difficult for general users to calibrate the response time of the gas concentration meter.
That is, the response time of a gas concentration meter changes over time, and since there are differences in the degree of change, the response time needs to be constantly calibrated. However, conventional methods require special equipment to apply step input to the gas concentration meter, equipment that records waveforms at high speed like an electromagnetic oscilloscope, and the ability to read response times. Because this requires specialized knowledge, only some research institutions and gas concentration meter manufacturers can actually carry out this process. For this reason, the current situation is that ordinary users request calibration from the manufacturer only when it is particularly necessary, such as when the measurement results are clearly incorrect, and usually take measurements that include errors due to changes over time.

(発明の目的) この発明は、上記従来方法の欠点を解決するた
めになされたもので、ガス濃度計の応答時間のわ
ずらわしい校正作業を一切行なうことなしに、精
度の良い呼気分析を行なえる方法を提供すること
を目的とする。
(Object of the Invention) This invention was made to solve the drawbacks of the conventional methods described above, and is a method that allows highly accurate exhaled breath analysis without any troublesome calibration work for the response time of a gas concentration meter. The purpose is to provide

(目的を達成するための手段) この発明は、呼気の濃度をガス濃度計により測
定して分析を行う方法であつて、上記目的を達成
するために、呼気と吸気の切換時におけるガス濃
度計の出力特性から応答遅れの時定数を算出し、
算出した時定数により上記ガス濃度計の応答遅れ
を補償するための時定数を更新して、ガス濃度計
の出力を演算補正するようにしている。
(Means for Achieving the Object) The present invention is a method for measuring and analyzing the concentration of exhaled breath using a gas concentration meter. Calculate the response delay time constant from the output characteristics of
The time constant for compensating for the response delay of the gas concentration meter is updated using the calculated time constant, and the output of the gas concentration meter is calculated and corrected.

(実施例) 第1図は、この発明の呼気分析方法を実施する
ための装置の一例を示す概略構成図である。管1
はその一端を被験者の口と鼻を覆うマスク2に接
続し、他端を大気もしくはそれに相当する成分一
定のガス中(以下大気という)に開放している。
管1には、管内を流れるガスを連続して強制的に
一定流量でサンプルするため、チユーブ3の一端
が取り付けられており、チユーブ3は、ガス濃度
計4、サンプルガス流量制御装置5を介し、吸引
ポンプ6に接続している。ガス濃度計4の出力
は、A/D変換器7を介し、マイクロコンピユー
タ等で構成されるデータ処理装置8に入力され、
データ処理装置8で処理されたデータは、D/A
変換器9を介して例えば記録器(図示省略)に記
録され、あるいは表示器10に出力され、さらに
は通信装置11を介して他装置へ送信しうるよう
に構成される。
(Example) FIG. 1 is a schematic configuration diagram showing an example of an apparatus for carrying out the breath analysis method of the present invention. tube 1
One end of the mask 2 is connected to a mask 2 that covers the subject's mouth and nose, and the other end is opened to the atmosphere or an equivalent gas having a certain composition (hereinafter referred to as the atmosphere).
One end of a tube 3 is attached to the tube 1 in order to continuously and forcibly sample the gas flowing inside the tube at a constant flow rate. , connected to the suction pump 6. The output of the gas concentration meter 4 is inputted via an A/D converter 7 to a data processing device 8 consisting of a microcomputer, etc.
The data processed by the data processing device 8 is D/A
It is configured so that it can be recorded on, for example, a recorder (not shown) or outputted to a display 10 via the converter 9, and further transmitted to another device via the communication device 11.

第2図は、データ処理装置8の機能を示すブロ
ツク図であり、ガス濃度計出力y(t)を入力し
てガス濃度の応答時間Tr(その詳細は後述する)
を算出する応答時間測定部12と、上記応答時間
Trを用いてガス濃度計出力y(t)を演算補正し
た値x(t)を出力する出力補正部13から成る。
この場合、データ処理装置8としてマイクロコン
ピユータを使用した場合には、上記2つの機能を
時分割で行なう擬似並列実行としてもよい。
FIG. 2 is a block diagram showing the functions of the data processing device 8, in which the gas concentration meter output y(t) is input and the gas concentration response time T r (details will be described later).
a response time measurement unit 12 that calculates the response time;
It consists of an output correction section 13 that outputs a value x(t) obtained by calculating and correcting the gas concentration meter output y(t) using T r .
In this case, if a microcomputer is used as the data processing device 8, the above two functions may be executed in pseudo-parallel manner in a time-sharing manner.

次に、上記装置を用いた呼気分析方法を、第3
図の波形図および第4図のフローチヤートを参照
しながら説明する。
Next, the breath analysis method using the above device will be explained in the third section.
This will be explained with reference to the waveform diagram in the figure and the flowchart in FIG.

第3図a,b,c,dは、それぞれ管1を流れ
るガスの流速f(t)、ガス濃度計4の出力y
(t)、ガス濃度計出力y(t)の時間変化率dy
(t)/dt、および補正後の出力x(t)と時間t
との関係を示す。ここで、同図aのガスの流速f
(t)においては、呼気を正、吸気を負とし、ま
た同図bのガス濃度計出力y(t)においては、
大気におけるガス(たとえば酸素)の濃度を0、
濃度が変化する方向を正とし、さらに同図c,d
の時間的変化率dy(t)/dt、および補正後の出
力x(t)においては、上記ガス濃度計出力y
(t)に準じて正負方向等を定めるものとする。
Figure 3 a, b, c, and d show the flow rate f(t) of the gas flowing through the pipe 1 and the output y of the gas concentration meter 4, respectively.
(t), time rate of change dy of gas concentration meter output y(t)
(t)/dt, and the corrected output x(t) and time t
Indicates the relationship between Here, the flow velocity f of the gas in figure a is
In (t), exhalation is positive and inhalation is negative, and in the gas concentration meter output y(t) in the same figure b,
If the concentration of a gas (e.g. oxygen) in the atmosphere is 0,
The direction in which the concentration changes is defined as positive, and furthermore, c and d in the same figure
At the temporal rate of change dy(t)/dt and the corrected output x(t), the gas concentration meter output y
The positive and negative directions, etc. shall be determined in accordance with (t).

測定状態においては、被検者はマスク2を装着
して呼吸を行い、吸気と呼気は、管1の内部をピ
ストン・フロー状態で第3図aに示す流速f(t)
で流れる。そして、このような流速f(t)下に
おける管1内の呼気ガス濃度たとえば酸素濃度
が、ガス濃度計4により連続して測定される(第
4図のステツプS1)。
In the measurement state, the subject wears the mask 2 and breathes, and the inhalation and exhalation are carried out inside the tube 1 in a piston flow state at a flow rate f(t) shown in FIG. 3a.
It flows. Then, the exhaled gas concentration, such as oxygen concentration, in the tube 1 under such flow rate f(t) is continuously measured by the gas concentration meter 4 (step S1 in FIG. 4).

いま、流速f(t)が正から負に切換わる(す
なわち呼気状態から吸気状態に切換わる)時刻ta
に着目すると、この時刻taにおいては、管1内に
取り付けられたガス・サンプル用チユーブ3の先
端開口部の周囲のガスは、それまでの呼気から大
気へ急激に変化する。これはガス濃度計4にステ
ツプ状の入力を加えたことに相当し、第3図にb
に示すようにガス濃度計4の出力y(t)は、主
にサンプルガスがチユーブ3内を移動するのに要
する時間差Lの後、時刻tbより、呼気におけるガ
ス濃度ΔPから大気における濃度0へステツプ応
答を示して変化する。
Now, the time t a when the flow velocity f(t) switches from positive to negative (that is, switches from the exhalation state to the inhalation state)
At this time t a , the gas around the opening at the tip of the gas sample tube 3 installed in the tube 1 suddenly changes from exhaled air to the atmosphere. This corresponds to adding a step-like input to the gas concentration meter 4, and is shown in Fig. 3.
As shown in , the output y(t) of the gas concentration meter 4 changes from the gas concentration ΔP in exhalation to the concentration 0 in the atmosphere from time t b after the time difference L required for the sample gas to move inside the tube 3. It shows a step response and changes.

このガス濃度計4の出力y(t)は、データ処
理装置8の機能のうち応答時間測定部12に入力
され、この応答時間測定部12で、呼気から吸気
への切換時のステツプ応答に基づき応答時間(す
なわちガス濃度計4の応答遅れの時定数)Tri
求められる(第4図におけるステツプS2)。応答
時間Triの測定方法としては、例えば次のような
方法が用いられる。すなわち、ガス濃度計出力y
(t)の時間変化率dy(t)/dtは、第3図cに
示すようになり、時刻tbにおいて急激に負の値と
なる。そこで、時間変化率dy(t)/dtに対しし
きい値Δy(<0)を設定し、 dy(t)/dt<Δy …(1) が成り立つのを監視すれば、時刻tbが判明する。
すなわち、上記(1)式が成立する時刻を時刻tbとす
る。一方、上記時刻tbにおけるガス濃度計4の出
力y(t)の値を測定し、これをΔPとする。これ
より、 ΔP′=ΔP×(1−0.632) …(2) で表わされるしきい値を計算し、ガス濃度計出力
y(t)が上記ΔP′より小さくなる、すなわち、 y(t)<ΔP′ …(3) が成り立つ時刻tcを監視する。すると、応答時間
Triは、 Tri=tc−tb …(4) より算出できる。
The output y(t) of the gas concentration meter 4 is inputted to a response time measurement section 12 among the functions of the data processing device 8, and the response time measurement section 12 uses the step response at the time of switching from exhalation to inhalation to The response time (that is, the time constant of the response delay of the gas concentration meter 4) Tri is determined (step S2 in FIG. 4). For example, the following method is used to measure the response time T ri . In other words, gas concentration meter output y
The time rate of change dy(t)/dt of (t) becomes as shown in FIG. 3c, and suddenly becomes a negative value at time tb . Therefore, by setting a threshold value Δy (<0) for the time rate of change dy(t)/dt and monitoring whether dy(t)/dt<Δy (1) holds true, time t b can be determined. do.
That is, the time at which the above equation (1) holds true is defined as time t b . On the other hand, the value of the output y(t) of the gas concentration meter 4 at the above-mentioned time t b is measured, and this is set as ΔP. From this, calculate the threshold value expressed as ΔP'=ΔP×(1-0.632)...(2), and the gas concentration meter output y(t) will be smaller than the above ΔP', that is, y(t)< The time t c at which ΔP′ (3) holds is monitored. Then the response time
T ri can be calculated from T ri = t c − t b (4).

応答時間Triの他の測定方法としては、時刻tb
後、dy(t)/dtの最小値Δynを読み取り、 Tri=ΔP/|Δyn| …(5) より求めるようにしてもよい。
Another way to measure the response time T ri is to use the time t b
After that, the minimum value Δy n of dy(t)/dt may be read and calculated from T ri =ΔP/|Δy n | (5).

こうして応答時間Triが求まると、次に第2図
に示す出力補正部13において、応答時間Tri
用いて、ガス濃度計出力y(t)が演算補正され、
補正された値x(t)がデータ処理装置8から出
力される(ステツプS3)。ここで、ガス濃度計出
力y(t)の演算補正は、次のようにして行なわ
れる。すなわち、一般にガス濃度計4の応答は一
次遅れ応答を示すため、その応答時間をTrで表
わした場合、補償要素の伝達関数は(1+Trs)
で表わされる。そこで、入力y(t)、出力x(t)
についてそれぞれラプラス変換をとれば、 X(s)=(1+Trs)Y(s) …(6) が成立する。
Once the response time T ri is determined in this way, the output correction section 13 shown in FIG. 2 calculates and corrects the gas concentration meter output y(t) using the response time T ri .
The corrected value x(t) is output from the data processing device 8 (step S3). Here, the calculation correction of the gas concentration meter output y(t) is performed as follows. In other words, since the response of the gas concentration meter 4 generally shows a first-order delayed response, if the response time is expressed by T r , the transfer function of the compensation element is (1 + T r s)
It is expressed as Therefore, input y(t), output x(t)
If we take the Laplace transform for each, the following holds true: X(s)=(1+ Tr s)Y(s)...(6).

出力信号x(t)は、逆ラプラス変換を行うこ
とにより得られ、すなわち、 x(t)=y(t)+Trdy(t)/dt …(7) によりx(t)を算出しうる。
The output signal x(t) is obtained by performing inverse Laplace transform, that is, x(t) can be calculated by x(t)=y(t)+T r dy(t)/dt...(7) .

いま、ガス濃度計4の応答時間Trが経時変化
をおこさなければ、応答時間Trを一度測定する
だけで、以後はその応答時間Trを用い、ガス濃
度計出力y(t)に対し上記(7)式に示す演算補正
を行なうことにより、正確なガス分析が可能とな
る。しかしながら、実際には従来例でも説明した
ように、応答時間Trが経時的に変化する。そこ
で、この発明では、応答時間測定部12により、
呼気から吸気への切換時におけるガス濃度計4の
応答時間Triを適宜測定し、測定の度に、測定し
た応答時間Triを用い出力補正部13において上
記(7)式の応答時間Trを更新して、ガス濃度計出
力y(t)の演算補正を行うようにしている。言
い換えれば、応答時間測定部12が時刻tiにおい
て応答時間Triを測定した後は、次に同部が次の
応答時間Tr,i+1を求め更新する時刻ti+1までの間、
上記(7)式の時定数TrとしてTriを用いて、ガス濃
度計出力y(t)の演算補正を行う。すなわち、 x(t)=y(t)+Tridy(t)/dt …(8) (ti<t≦ti+1)(i=1,2…) により、補正出力x(t)を計算するわけである。
Now, if the response time T r of the gas concentration meter 4 does not change over time, you only need to measure the response time T r once, and then use that response time T r to calculate the response time for the gas concentration meter output y(t). Accurate gas analysis becomes possible by performing the calculation correction shown in equation (7) above. However, in reality, as explained in the conventional example, the response time T r changes over time. Therefore, in the present invention, the response time measuring section 12
The response time T r of the gas concentration meter 4 at the time of switching from exhalation to inhalation is appropriately measured, and the response time T r of the above equation (7) is calculated in the output correction unit 13 using the measured response time T r at each measurement. is updated to perform calculation correction of the gas concentration meter output y(t). In other words, after the response time measuring unit 12 measures the response time T ri at time t i , the period until time t i+1 when the same unit calculates and updates the next response time T r,i+1 is ,
Calculation correction of the gas concentration meter output y(t) is performed using T ri as the time constant T r in the above equation (7). In other words, by x(t)=y(t)+T ri dy(t)/dt...(8) (t i <t≦t i+1 )(i=1,2...), the corrected output x(t) This is how we calculate.

なお、測定の開始時において、まだ応答時間測
定部12が応答時間Triを求める前には、補正に
測定前から保持している値Trpを用いる。これは
例えば定数でもよいし、または前回の測定の最後
に保持していた値でもよい。
Note that at the start of the measurement, before the response time measuring section 12 calculates the response time T ri , the value T rp held from before the measurement is used for correction. This may be a constant, for example, or a value held at the end of the previous measurement.

なお、応答時間の測定は、呼吸の度に行なつて
もよいし、ガス濃度計4の経時変化の程度に応じ
適当な間隔をあけて行なつてもよい。
Note that the response time may be measured each time the patient takes a breath, or may be measured at appropriate intervals depending on the degree of change in the gas concentration meter 4 over time.

このように、この方法によれば、呼気と吸気の
切換時におけるガス濃度計の出力特性から応答遅
れの時定数を算出し、算出した時定数によりガス
濃度計の応答遅れを補償するための時定数を更新
して、ガス濃度計の出力を演算補正するようにし
ているため、ガス濃度計の応答遅れの時定数が変
化しても適切な補償ができ、高い測定精度が得ら
れる。また、応答時間の測定(校正)と、ガス濃
度測定を別々に行う必要がないため、測定の手間
も大きく省ける。
As described above, according to this method, the time constant of the response delay is calculated from the output characteristics of the gas concentration meter when switching between exhalation and inspiration, and the time constant for compensating for the response delay of the gas concentration meter is calculated using the calculated time constant. Since the constant is updated and the output of the gas concentration meter is calculated and corrected, even if the time constant of the response delay of the gas concentration meter changes, appropriate compensation can be made and high measurement accuracy can be obtained. Furthermore, since there is no need to separately measure response time (calibration) and gas concentration measurement, the effort required for measurement can be greatly reduced.

第5図は、この発明の方法を、酸素摂取量測定
に用いた概略図である。同図に示すように、マス
ク24の先端部の管14の内部には、ガスサンプ
ル用チユーブ15の一端と流量センサ19が配設
される。ガスサンプル用チユーブ15の他端は、
酸素計16および流量制御装置17を介して吸引
ポンプ18に接続されており、管14内を流れる
ガスが流量制御装置17および吸引ポンプ18に
よりチユーブ15内に一定流量でサンプリングさ
れて、呼気ガスの酸素濃度が酸素計16によつて
測定される。また、管14内を通る呼気ガスの流
量が、流量センサ19および流量計20によつて
測定される。これら流量計20の出力fE(t)お
よび酸素計の出力y02はそれぞれデータ処理装置
21に入力され、以下に述べる手順で酸素摂取量
が計算される。
FIG. 5 is a schematic diagram of the method of the present invention used to measure oxygen uptake. As shown in the figure, one end of a gas sample tube 15 and a flow rate sensor 19 are disposed inside the tube 14 at the tip of the mask 24. The other end of the gas sample tube 15 is
It is connected to a suction pump 18 via an oxygen meter 16 and a flow rate control device 17, and the gas flowing in the tube 14 is sampled at a constant flow rate into the tube 15 by the flow rate control device 17 and suction pump 18, and exhaled gas is collected. Oxygen concentration is measured by oxygen meter 16. Further, the flow rate of exhaled gas passing through the pipe 14 is measured by a flow rate sensor 19 and a flow meter 20. The output f E (t) of the flow meter 20 and the output y 02 of the oximeter are respectively input to the data processing device 21, and the oxygen intake amount is calculated according to the procedure described below.

第6図a,b,cは、それぞれ管14内を流れ
るガスの出力fE、酸素計16の出力y02、酸素計
16の応答遅れを補償した後の補正出力x02と時
間tとの関係を示した波形図である。同図におい
て、Lは、主にサンプルガスがチユーブ15内を
移動するのに要する時間よりなる流量信号とガス
濃度信号の時間差を示す。データ処理装置21で
は、まず酸素計16の出力y02に基づいて、第1
図のデータ処理装置8で行なわれたのと同様の方
法で、酸素計16の応答遅れを補償するための演
算処理が施され、第6図cに示す補正出力x02
求められる。ついで、上記補正された出力x02と、
流量計20の出力fEに基づいて、下記式で示され
る演算が施され、単位時間あたりの酸素摂取量
V〓02が求められる。すなわち、 V〓02=1/tr−tptr tgfE(t)・X02(t+L)dt…
(9) ここで、tp:吸気の開始時刻 tq:吸気の開始時刻 tr:呼気の終了時刻 =次回の吸気の開始時刻 を表わす。
6a, b, and c show the output f E of the gas flowing in the pipe 14, the output y 02 of the oxygen meter 16, the corrected output x 02 after compensating for the response delay of the oxygen meter 16, and the time t, respectively. FIG. 3 is a waveform diagram showing the relationship. In the figure, L indicates the time difference between the flow rate signal and the gas concentration signal, which is mainly the time required for the sample gas to move within the tube 15. In the data processing device 21, first, based on the output y 02 of the oxygen meter 16, the first
In the same manner as that performed by the data processing device 8 shown in the figure, arithmetic processing is performed to compensate for the response delay of the oximeter 16, and the corrected output x 02 shown in FIG. 6c is obtained. Next, the above corrected output x 02 and
Based on the output f E of the flowmeter 20, the calculation shown by the following formula is performed to determine the oxygen intake per unit time.
V〓 02 is required. That is, V〓 02 = 1/t r −t ptr tg f E (t)・X 02 (t+L)dt…
(9) Here, t p : Inhalation start time t q : Inhalation start time t r : Expiration end time = Represents the start time of the next inhalation.

こうして求められた酸素摂取量は、表示器22
やプリンタ23によつて表示されることとなる。
The oxygen intake amount determined in this way is displayed on the display 22.
It will be displayed by the printer 23.

この呼気分析方法によれば、酸素計16の出力
y02から応答遅れの時定数を測定して応答遅れを
絶えず補償し、補正後の値x02を用いて酸素摂取
量を計算するため、酸素計16の応答時間が変化
しても常に精度の良い測定ができる。なお、酸素
計16の代わりに炭酸ガス計を用いて炭酸ガス生
成量(排出量)を測定する場合でも効果は同じで
ある。
According to this breath analysis method, the output of the oxygen meter 16
The time constant of the response delay is measured from y 02 to constantly compensate for the response delay, and the corrected value x 02 is used to calculate the oxygen intake, so even if the response time of the oxygen meter 16 changes, the accuracy is always maintained. Can take good measurements. Note that the effect is the same even when the carbon dioxide gas production amount (emission amount) is measured using a carbon dioxide gas meter instead of the oxygen meter 16.

(発明の効果) 以上のように、この発明の方法によれば、呼気
と吸気の切換時におけるガス濃度計の出力特性か
ら応答遅れの時定数を算出し、算出した時定数に
より応答遅れを補償するための時定数を更新し
て、ガス濃度計の出力を演算補正するようにして
いるため、ガス濃度計の応答遅れの時定数が変化
しても適切な補償ができ、高い測定精度が得られ
るとともに、応答時間の測定とガス濃度測定を
別々に行なう必要がないために、測定の手間も大
きく省けるという効果が得られる。
(Effects of the Invention) As described above, according to the method of the present invention, the time constant of the response delay is calculated from the output characteristics of the gas concentration meter when switching between expiration and inspiration, and the response delay is compensated by the calculated time constant. Since the time constant for the gas concentration meter is updated and the output of the gas concentration meter is calculated and corrected, even if the time constant of the response delay of the gas concentration meter changes, it can be appropriately compensated for and high measurement accuracy can be achieved. In addition, since it is not necessary to measure the response time and the gas concentration separately, there is an effect that the time and effort required for measurement can be greatly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法を実施するための装置
の一例を示す概略構成図、第2図はデータ処理装
置の機能を示すブロツク図、第3図はガス分析装
置の作用を説明するための波形図、第4図は同装
置の動作を説明するためのフローチヤート、第5
図はこの発明の方法によつて人の酸素摂取量を測
定する場合に用いる装置の概略図、第6図は同装
置の作用を説明するための波形図である。 4……ガス濃度計、8,21……データ処理装
置、12……応答時間測定部、13……出力補正
部、16……酸素計。
FIG. 1 is a schematic configuration diagram showing an example of an apparatus for implementing the method of the present invention, FIG. 2 is a block diagram showing the functions of a data processing device, and FIG. 3 is a diagram for explaining the operation of a gas analyzer. The waveform diagram, Figure 4 is a flowchart for explaining the operation of the device, and Figure 5 is a flowchart for explaining the operation of the device.
The figure is a schematic diagram of an apparatus used to measure a person's oxygen intake by the method of the present invention, and FIG. 6 is a waveform diagram for explaining the operation of the apparatus. 4...Gas concentration meter, 8, 21...Data processing device, 12...Response time measuring section, 13...Output correction section, 16...Oxygen meter.

Claims (1)

【特許請求の範囲】[Claims] 1 呼気の濃度をガス濃度計により測定して分析
を行う方法において、呼気と吸気の切換時におけ
る前記ガス濃度計の出力特性から応答遅れの時定
数を算出し、算出した時定数により前記ガス濃度
計の応答遅れを補償するための時定数を更新し
て、ガス濃度計の出力を演算補正することを特徴
とする呼気分析方法。
1. In a method of measuring and analyzing exhaled breath concentration with a gas concentration meter, a time constant of response delay is calculated from the output characteristics of the gas concentration meter when switching between expiration and inspiration, and the gas concentration is determined by the calculated time constant. A breath analysis method characterized by calculating and correcting the output of a gas concentration meter by updating a time constant to compensate for a response delay of the meter.
JP61031579A 1986-02-14 1986-02-14 Exhalation analysis Granted JPS62188969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61031579A JPS62188969A (en) 1986-02-14 1986-02-14 Exhalation analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61031579A JPS62188969A (en) 1986-02-14 1986-02-14 Exhalation analysis

Publications (2)

Publication Number Publication Date
JPS62188969A JPS62188969A (en) 1987-08-18
JPH0323867B2 true JPH0323867B2 (en) 1991-03-29

Family

ID=12335093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61031579A Granted JPS62188969A (en) 1986-02-14 1986-02-14 Exhalation analysis

Country Status (1)

Country Link
JP (1) JPS62188969A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017315A (en) * 1998-02-25 2000-01-25 Respironics, Inc. Patient monitor and method of using same
FI110839B (en) * 2001-05-11 2003-04-15 Lauri Lehtimaeki Method and measuring apparatus for measuring the nitrogen oxide content in the exhaled air
DE60322403D1 (en) * 2003-12-24 2008-09-04 Ge Healthcare Finland Oy Method and device for synchronizing the respiratory gas measurements
JP4858751B2 (en) * 2005-11-30 2012-01-18 日本精機株式会社 Magnet rotor, movable magnet type instrument having the magnet rotor, and stepping motor having the magnet rotor
GB201018711D0 (en) * 2010-11-05 2010-12-22 Univ Manchester Apparatus and methods for breath sampling
JP6099249B2 (en) * 2011-12-16 2017-03-22 ミナト医科学株式会社 Exhalation gas analyzer
JP5950334B2 (en) * 2012-02-22 2016-07-13 ミナト医科学株式会社 Respiratory mask
JP6140404B2 (en) * 2012-07-13 2017-05-31 ミナト医科学株式会社 Calibration of the delay time of the breath gas analyzer
DE102018121647A1 (en) * 2018-09-05 2020-03-05 Maschinenfabrik Reinhausen Gmbh ANALYSIS OF A GAS SOLVED IN AN INSULATING MEDIUM OF A HIGH VOLTAGE DEVICE

Also Published As

Publication number Publication date
JPS62188969A (en) 1987-08-18

Similar Documents

Publication Publication Date Title
US8459261B2 (en) Side-stream respiratory gas monitoring system and method
US6068602A (en) Method and apparatus for determining airway resistance and lung compliance
US6238351B1 (en) Method for compensating for non-metabolic changes in respiratory or blood gas profile parameters
US5398695A (en) Cardiopulmonary performance analyzer having dynamic transit time compensation
US5038773A (en) Flow meter system
US5876352A (en) Process for determining the mechanical properties of the respiratory system of a respirated patient and device for carrying out the process
US20080119753A1 (en) Premature infant side-stream respiratory gas monitoring sensor
JP3553160B2 (en) Method of controlling a ventilator for determining functional residual capacity of a lung and a ventilator for determining functional residual capacity
US5386833A (en) Method for calibrating a carbon dioxide monitor
US6200271B1 (en) Bi-directional partial re-breathing method
GB2077444A (en) Determining at least two parameters of a patient&#39;s respiratory system
US6210342B1 (en) Bi-directional partial re-breathing method
US11963757B2 (en) Side-stream respiratory gas monitoring system
Newth et al. Multiple-breath nitrogen washout techniques: including measurements with patients on ventilators
JPH0323867B2 (en)
EP1772098B1 (en) Measuring head for diagnostic instruments and method
EP2311371B1 (en) Combination of inert gast rebreathing and multiple-breath wash-out techniques for determination of indices of ventilation inhomogeneity
GrØnland A new method for breath-to-breath determination of oxygen flux across the alveolar membrane
US5857459A (en) Boxless measurement of thoracic gas volume
JPH05329132A (en) Breath by breath metabolism measuring apparatus
JP2004501374A (en) Alcohol detector
Davies et al. A new technique for recording respiratory transients at the start of exercise
Bellville et al. Respiratory carbon dioxide response curve computer
JP2014018622A (en) Time lag calibration of expired gas analyzer
JPH0374571B2 (en)