JPS62188969A - Exhalation analysis - Google Patents

Exhalation analysis

Info

Publication number
JPS62188969A
JPS62188969A JP61031579A JP3157986A JPS62188969A JP S62188969 A JPS62188969 A JP S62188969A JP 61031579 A JP61031579 A JP 61031579A JP 3157986 A JP3157986 A JP 3157986A JP S62188969 A JPS62188969 A JP S62188969A
Authority
JP
Japan
Prior art keywords
output
gas
time
response
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61031579A
Other languages
Japanese (ja)
Other versions
JPH0323867B2 (en
Inventor
Hajime Hirata
肇 平田
Chikayasu Yamazaki
山崎 親康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP61031579A priority Critical patent/JPS62188969A/en
Publication of JPS62188969A publication Critical patent/JPS62188969A/en
Publication of JPH0323867B2 publication Critical patent/JPH0323867B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To enable a highly accurate exhalation analysis, by updating a time constant for compensating delay in response by a time constant which is calculated from an output characteristic of a gas densitometer with a switch between exhalation and inhalation to correct the output of the gas densitometer by a computation. CONSTITUTION:A tube 1 is connected to a mask 2 at one end thereof while being opened to outside air or the like. One end of a tube 3 is mounted on the tube 1 to sample gas flowing through the tube. The tube 3 is connected to a suction pump 6 through a gas densitometer 4 and a flow rate controller 5. An output of the gas densitometer 4 is inputted into a data processor 8 through an A/D converter 7. The data processed with the unit 8 is outputted to a D/A converter, a display unit 10 and a communicating device 11. Here, the unit 8 comprises a response time measuring section 12 which receives an output y(t) of the densitometer 4 to calculate a response time Tr of the gas concentration and an output correcting section 13 which outputs a value x(t) obtained by correcting the output y(t) through a computation using the response time Tr. This enables a proper compensation regardless of variations in the time constant for the delay in the response of the densitometer 4.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、ガス濃度計の応答遅れを補償して呼気分析
を行なう方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for performing exhaled breath analysis by compensating for the response delay of a gas concentration meter.

(従来の技術とその問題点) 人や動物の呼吸をガス濃度計を用いて測定すると、呼気
(成分未知)と吸気(成分既知)とが繰り返し2激に入
れかわり、それに伴って、測定すべき、たどえば酸素濃
度が急激に変化するのが検出される。ところが、このよ
うなガス濃度計は、固有の応答の遅れを有しているので
、急激な濃度変化に対して出力信号は大きな誤差をもつ
ようになり、そのままでは正確な分析を行なうことはで
きない。
(Conventional technology and its problems) When the respiration of humans and animals is measured using a gas concentration meter, exhaled air (composition unknown) and inhaled air (composition known) are repeatedly switched into two. If you follow it, you will detect a sudden change in oxygen concentration. However, since such gas concentration meters have an inherent response delay, the output signal will have large errors in response to sudden changes in concentration, making it impossible to perform accurate analysis as is. .

このような応答の遅れを補償する方法として、従来より
、「応用生理学の雑誌J (Journal of A
pplied Physiolo(Iy) 、第52巻
、第1号、第79頁(1982年、 the静eriC
an Physiological 5OCietV)
に記載されているような方法が知られている。
As a method of compensating for such response delays, conventional methods have been proposed in the ``Journal of Applied Physiology.''
pplied Physiolo (Iy), Volume 52, No. 1, Page 79 (1982, the static
an Physiological 5OCietV)
A method such as that described in is known.

この方法は、ガス一度計による実際の測定を行なうに先
立ち、ガス濃度計にステップ入力を加えてその出力を電
磁オシログラフに記録し、その応答波形から、この応答
を1次遅れ応答と仮定したときの応答遅れの時定数(L
J、下、応答時間という)を読み取る。そして、測定時
にこの応答時間を用いて、ガス濃度計の出力を演算補正
するものである。
In this method, before making actual measurements using a gas meter, a step input is applied to the gas concentration meter, the output is recorded on an electromagnetic oscilloscope, and based on the response waveform, this response is assumed to be a first-order delayed response. The time constant of response delay (L
J, bottom, called response time). Then, during measurement, this response time is used to calculate and correct the output of the gas concentration meter.

ところが、このような従来の方法では、一般の使用者に
とって、ガス濃度計の応答時間の校正を行なうのが回動
であるという問題を有していた。
However, such a conventional method has a problem in that for general users, the response time of the gas concentration meter must be calibrated by rotation.

づなわち、ガス4■1の応答時間は経時変化するもので
あり、その程度には差があるため、応答時間は常に校正
する必要がある。しかし、従来の方法は、ガス濃度計に
ステップ入力を加えるのに特殊な装置が必要であること
、電磁オシログラフのように波形を高速度に記録する装
置が必要であること、応答時間の読みとりに専門知識を
要することなどのため、これを実際に行なえるのは、一
部の研究機関やガス濃度8J製造者などに限られている
。このため、一般の使用者は測定結果が明らかにおかし
いなど特に必要な場合にだけ、製造者に校正を依頼し、
通常は経時変化による誤差を含んだまま測定するのが現
状である。
That is, the response time of gas 4*1 changes over time, and since there are differences in the degree of change, the response time needs to be constantly calibrated. However, conventional methods require special equipment to apply step input to the gas concentration meter, equipment that records waveforms at high speed like an electromagnetic oscilloscope, and response time readings. Because this requires specialized knowledge, only some research institutions and gas concentration 8J manufacturers can actually carry out this process. For this reason, general users should request calibration from the manufacturer only when it is particularly necessary, such as when the measurement results are clearly incorrect.
Currently, measurements are normally made that include errors due to changes over time.

(発明の目的) この発明は、上記従来方法の欠点を解決するためになさ
れたもので、ガス濃度計の応答時間のわずられしい校正
作業を一切行なうことなしに、精度の良い呼気分析を行
なえる方法を提供することを目的とする。
(Purpose of the Invention) The present invention was made in order to solve the drawbacks of the conventional methods described above. The purpose is to provide a method that can be used.

(目的を達成するための手段) この発明は、呼気の濃度をガスm m mlにより測定
して分析を行う方法であって、上記目的を達成するため
に、呼気と吸気の切換的におけるガス温度削の出力特性
から応答遅れの時定数を粋出し、算出した時定数により
上記ガス濃度計の応答遅れを補償するための時定数を更
新して、ガス濃度計の出力を演算補正するようにしてい
る。
(Means for Achieving the Object) The present invention is a method for measuring and analyzing the concentration of exhaled breath using gas m m ml, and in order to achieve the above object, the gas temperature during switching between exhaled air and inspired air is The time constant of the response delay is extracted from the output characteristics of the cutter, and the time constant for compensating for the response delay of the gas concentration meter is updated using the calculated time constant, and the output of the gas concentration meter is calculated and corrected. There is.

(実施例) 第1図は、この発明の呼気分析方法を実施づるための装
置の一例を示す概略構成図である。管1はその一端を被
験者の口と榔を覆うマスク2に接続し、他端を大気もし
くはそれに相当する成分一定のガス中(以下大気という
)に開放している。
(Example) FIG. 1 is a schematic diagram showing an example of an apparatus for carrying out the breath analysis method of the present invention. One end of the tube 1 is connected to a mask 2 that covers the subject's mouth and mouth, and the other end is open to the atmosphere or an equivalent gas having a certain composition (hereinafter referred to as the atmosphere).

管1には、管内を流れるガスを連続して強制的に一定流
mでサンプルづるため、チューブ3の一端が取り付けら
れており、チューブ3は、ガス濃度計4.サンプルガス
流m ilI III] E C5を介し、吸引ポンプ
6に接続している。ガス濃度計4の出力は、A/D変換
器7を介し、マイクロコンピュータ等で構成されるデー
タ処理装置8に入力され、データ処理装置8で処理され
たデータは、D/A変換器9を介して例えば記録器(図
示省略)に記録され、あるいは表示器10に出力され、
さらには通信製ff111を介して他装置へ送信しうる
ように構成される。
One end of a tube 3 is attached to the tube 1 in order to continuously sample the gas flowing through the tube at a constant flow m, and the tube 3 is connected to a gas concentration meter 4. A sample gas stream m ilI III] E C5 is connected to the suction pump 6 . The output of the gas concentration meter 4 is inputted via an A/D converter 7 to a data processing device 8 composed of a microcomputer, etc., and the data processed by the data processing device 8 is sent to a D/A converter 9. For example, it is recorded on a recorder (not shown) or output to the display 10,
Furthermore, it is configured so that it can be transmitted to other devices via Tsushin ff111.

第2図は、データ処yJ!装賄8の機能を示すブロック
図であり、ガス濃度計出力y (t)を入力してガス濃
度の応答時間Tr (その詳細は後述する)を算出する
応答時間測定81112と、上記応答時間Trを用いて
ガス濃度計出力y(1)を演算補正した値X(t)を出
力する出力補正部13から成る。
Figure 2 shows data processing yJ! It is a block diagram showing the functions of the fitting 8, including a response time measurement 81112 that inputs the gas concentration meter output y (t) and calculates the response time Tr of the gas concentration (the details of which will be described later), and the response time Tr. It consists of an output correction section 13 that outputs a value X(t) obtained by calculating and correcting the gas concentration meter output y(1) using .

この場合、データ処理装置8としてマイクロコンピュー
タを使用した場合には、上記2つの機能を時分割で行な
う擬似並列実行としてもよい。
In this case, if a microcomputer is used as the data processing device 8, the above two functions may be executed in pseudo-parallel manner in a time-sharing manner.

次に、上記装置を用いた呼気分析方法を、第3図の波形
図および第4図のフローチャートを参照しながら説明覆
る。
Next, a breath analysis method using the above device will be explained with reference to the waveform diagram in FIG. 3 and the flow chart in FIG. 4.

第3図(a)、 (b)、 (c)、 (d)は、それ
ぞれ管1を流れるガスの流速f (t)、ガス濃度計4
の出力y (t)。
Figures 3 (a), (b), (c), and (d) show the flow rate f (t) of the gas flowing through the pipe 1 and the gas concentration meter 4, respectively.
The output y (t).

ガス濃度h1出力y([)の時間変化率dV(t)/d
t、および補正後の出力x Hと時間tとの関係を示す
。ここで、同図(a)のガスの流速f (t)において
は、呼気を正、吸気を負とし、また同図(b)のガス濃
度計出力y(【)においては、大気にお【プるガス(た
とえば酸素)の濃度を01淵度が変化する方向を正とし
、さらに同図(c)、(d)の時間的変化率dV(t)
/dt、および補正後の出力X(【)においては、上記
ガス濃度t1出力y (t)に準じて正負方向等を定め
るものとする。
Time rate of change of gas concentration h1 output y([) dV(t)/d
t, and the relationship between the corrected output xH and time t. Here, in the gas flow velocity f (t) in Fig. 1 (a), exhalation is positive and inhalation is negative, and in the gas concentration meter output y ([) in Fig. 2 (b), The direction in which the concentration of gas (for example, oxygen) changes is defined as positive, and the time rate of change dV(t) in (c) and (d) of the same figure is defined as positive.
/dt and the corrected output X ([), the positive and negative directions etc. are determined according to the gas concentration t1 output y (t).

測定状態においては、被験者はマスク2を装着して呼吸
を行い、吸気と呼気は、管1の内部をピストン・フロー
状態で第3図(a)に示す流速Nt)で流れる。そして
、このような流速f (t)下における管1内の呼気ガ
ス濃度たとえば酸素濃度が、ガス濃度計4により連続し
て測定される(第4図のステップS1)。
In the measurement state, the subject wears the mask 2 and breathes, and the inhaled and exhaled air flows inside the tube 1 in a piston flow state at a flow rate Nt) shown in FIG. 3(a). Then, the exhaled gas concentration, such as oxygen concentration, in the tube 1 under such flow rate f (t) is continuously measured by the gas concentration meter 4 (step S1 in FIG. 4).

いま、流速f([)が正から負に切換わる(?lなわち
呼気状態から吸気状態に切操わる)時刻計〇に着目する
と、この時刻t においては、管1内に取り付けられた
ガス・サンプル用デユープ3の先端開口部の周囲のガス
は、それまでの呼気から人気へ急激に変化する。これは
ガス濃度614にステップ状の入力を加えたことに相当
し、第3図に(b)に示すようにガス濃度計4の出力V
 (t)は、主にサンプルガスがチューブ3内を移動す
るのに要する時間差しの後、時刻tbより、呼気におけ
るガス濃度ΔPから大気における濃度0ヘステツプ応答
を示して変化する。
Now, if we focus on the time meter 〇 where the flow velocity f([) changes from positive to negative (?l, that is, it changes from the exhalation state to the inhalation state), at this time t, the gas installed in the tube 1 - The gas around the tip opening of the sample duplex 3 suddenly changes from exhaled air to popular air. This corresponds to adding a step input to the gas concentration 614, and as shown in FIG. 3(b), the output V of the gas concentration meter 4
(t) mainly changes from time tb after the time lag required for the sample gas to move within the tube 3, showing a step response from the gas concentration ΔP in exhalation to 0 in the atmosphere.

このガス温度翳14の出力V (t)は、データ処理装
置8の機能のうち応答時間測定部12に入力され、この
応答時間測定部12で、呼気から吸気への切換時のステ
ップ応答に基づき応答時間(すなわちガス1■14の応
答遅れの時定数)T、iが求められる(第4図における
ステップ32)。応答時間T、iの測定方法としては、
例えば次のような方法が用いられる。すなわち、ガス濃
度計出力y(【)の時間変化率d It) /d tは
、第3図(C)に示すようになり、時刻tbにおいて急
激に負の値どなる。そこで、時間変化率d V(t) 
/d tに対ししきい値Δy (<O)を設定し、d 
 V(t)   /d   t     ・く    
Δ y                ・・・ (1
)が成り立つのを監視すれば、時刻tbが判明する。
The output V (t) of the gas temperature sensor 14 is inputted to the response time measurement section 12 among the functions of the data processing device 8, and the response time measurement section 12 uses the response time measurement section 12 based on the step response at the time of switching from exhalation to inhalation. The response time (that is, the time constant of the response delay of gas 1 and 14) T, i is determined (step 32 in FIG. 4). The method for measuring the response time T,i is as follows:
For example, the following method is used. That is, the time rate of change dIt)/dt of the gas concentration meter output y([) becomes as shown in FIG. 3(C), and suddenly becomes a negative value at time tb. Therefore, the time rate of change d V(t)
/d Set a threshold value Δy (<O) for t, and d
V(t) /d t・ku
Δy... (1
) is satisfied, time tb can be determined.

すなわち、上記(1)式が成立する時刻を時刻tbとす
る。一方、上記時刻t、におけるガス濃度計4の出力y
 (t)の値を測定し、これをΔPとする。
That is, the time at which the above equation (1) is satisfied is defined as time tb. On the other hand, the output y of the gas concentration meter 4 at the above time t
The value of (t) is measured and set as ΔP.

これより ΔP’ =ΔPx (1−0,632>  ・・・(2
)で表わされるしきい値を計算し、ガス濃度計出力V 
(t)が上記ΔP′より小さくなる、すなわち、y(t
)  <  ΔP′         ・・・(3)が
成り立つ時刻tcを監視する。すると、応答時間”ri
は、 ■ ・=1 −1b         ・・・(4)N
      C より算出できる。
From this, ΔP' = ΔPx (1-0,632> ...(2
) is calculated, and the gas concentration meter output V
(t) becomes smaller than the above ΔP', that is, y(t
) <ΔP'...The time tc at which (3) holds true is monitored. Then, the response time “ri”
is ■ ・=1 −1b ・・・(4)N
It can be calculated from C.

応答時間T、iの他の測定方法どしては、時刻tb後、
dll)/dtの最小値△ymを読み取り、■ ・=Δ
P/l△y1111      ・・−(5)より求め
るようにしてもよい。
Another way to measure the response time T,i is after time tb,
Read the minimum value △ym of dll)/dt, and find ■ ・=Δ
P/lΔy1111...-(5) may be used.

こうして応答時間Triが求まると、次に第2図に示す
出力補正部13において、応答時間Triを用いて、ガ
ス濃度計出力y (t)が演算補正され、補正された値
x (t)がデータ処理装置8から出力される(ステッ
プ83)。ここで、ガス濃度計出力V (t)の演算補
正は、次のようにして行なわれる。すなわち、一般にガ
ス濃度計4の応答は一次遅れ応答を示すため、その応答
時間をT、で表わした場合、補償要素の伝達関数は(1
+T、S)で表わされる。そこで、入力y(t)、出力
x (t)についてそれぞれラプラス変換をとれば、X
(s) = (1+T  s ) Y(s)    ・
・・(6)が成立する。
Once the response time Tri is determined in this way, the output correction section 13 shown in FIG. 2 calculates and corrects the gas concentration meter output y (t) using the response time Tri, and the corrected value x (t) is It is output from the data processing device 8 (step 83). Here, the calculation correction of the gas concentration meter output V (t) is performed as follows. That is, since the response of the gas concentration meter 4 generally shows a first-order delayed response, when the response time is expressed as T, the transfer function of the compensation element is (1
+T, S). Therefore, if we take the Laplace transform for the input y(t) and the output x(t), we get X
(s) = (1+T s ) Y(s) ・
...(6) holds true.

出力信号×(t)は、逆ラプラス変換を行うことにより
得られ、すなわち、 によりx (t)を算出しうる。
The output signal x(t) is obtained by performing an inverse Laplace transform, that is, x(t) can be calculated by x(t).

いま、ガス濃度計4の応答時間T、が経時変化をおこさ
なければ、応答時間T、を一度測定するだけで、以後は
その応答時間T、を用い、ガス淵rg、i1出力y(【
)に対し上記(7)式に示す演算補正を行なうことによ
り、正確なガス分析が可能となる。しかしながら、実際
には従来例でも説明したように、応答時間Trが経時的
に変化する。そこで、この発明では、応答時間測定部1
2により、呼気から吸気への切換時におけるガス濃度則
4の応答時間T、iを適宜測定し、測定の度に、測定し
た応答時間T、iを用い出力補正部13において上記(
7)式の応答時間T、を更新して、ガス濃度計出力y 
(t)の演算補正を行うようにしている。言い換えれば
、応答時間測定部12が時刻t1において応答時間T、
iを測定した後は、次に周部が次の応答時間” r、 
i+1を求め更新づる時刻tし1までの間、上記(7)
式の時定数T としてT、iを用「 いて、ガス濃度計出力V (t)の演算補正を行う。
Now, if the response time T, of the gas concentration meter 4 does not change over time, it is only necessary to measure the response time T, once, and from then on, using the response time T, the gas well rg, i1 output y ([
) by performing the calculation correction shown in equation (7) above, it becomes possible to perform accurate gas analysis. However, in reality, as explained in the conventional example, the response time Tr changes over time. Therefore, in this invention, the response time measuring section 1
2, the response time T, i of the gas concentration law 4 at the time of switching from exhalation to inhalation is appropriately measured, and the output correction unit 13 uses the measured response time T, i each time the measurement is performed.
7) Update the response time T in the equation to obtain the gas concentration meter output y
(t) calculation correction is performed. In other words, the response time measurement unit 12 at time t1 has a response time T,
After measuring i, the peripheral part then measures the next response time "r,
The above (7) is performed until time t and 1 when i+1 is calculated and updated.
Using T and i as the time constant T in the equation, the gas concentration meter output V (t) is calculated and corrected.

(1<1≦t i      i。1)(i・1,2・・・)により、
補正出力x (t)を計粋するわ【プである。
(1<1≦t i i.1) (i・1,2...),
Calculate the corrected output x (t).

なお、測定の開始時において、まだ応答時間測定部12
が応答時間T、iを求める前には、補正に測定前から保
持している値T、。を用いる。これは例えば定数でもよ
いし、または前回の測定の最後に保持していた値でもよ
い。
Note that at the start of the measurement, the response time measuring section 12 is still
Before calculating the response time T,i, the value T, which is held from before the measurement is used for correction. Use. This may be a constant, for example, or a value held at the end of the previous measurement.

なお、応答Il古寺間測定は、呼吸の度に行なってもよ
いし、ガスm度訂4の杆部変化の程度に応じ適当な間隔
をあけて行なってもよい。
Incidentally, the response Il interval measurement may be carried out each time a person breathes, or may be carried out at appropriate intervals depending on the degree of change in the stem of the gas m degree.

このように、この方法によれば、呼気と吸気の切換時に
おけるガス濃度計の出力特性から応答遅れの時定数を算
出し、算出した時定数によりガス濃度計の応答遅れを補
償するための時定数を更新して、ガス濃度計の出力を演
算補正するようにしているため、ガス濃度計の応答遅れ
の時定数が変化しても適切な補償ができ、高い測定粘度
が得られる。また、応答時間の測定(校正)と、ガス濃
度測定を別々に行う必要がないため、測定の手間も大き
く省ける。
As described above, according to this method, the time constant of the response delay is calculated from the output characteristics of the gas concentration meter when switching between exhalation and inspiration, and the time constant for compensating for the response delay of the gas concentration meter is calculated using the calculated time constant. Since the constant is updated and the output of the gas concentration meter is calculated and corrected, even if the time constant of the response delay of the gas concentration meter changes, appropriate compensation can be made and a high measured viscosity can be obtained. Furthermore, since there is no need to separately measure response time (calibration) and gas concentration measurement, the effort required for measurement can be greatly reduced.

第5図は、この発明の方法を、酸素摂取量測定に用いた
概略図である。同図に示すように、マスク24の先端部
の管14の内部には、ガスサンプル用チューブ15の一
端と流量センサ19が配設される。ガスサンプル用デユ
ープ15の(t!!iは、酸素計16および流量制御2
p装置17を介して吸引ポンプ18に接続されており、
管14内を流れるガスが流聞制tIl装首17および吸
引ポンプ1stこよりチューブ15内に一定流吊でサン
プリングされて、呼気ガスの酸素濃度が酸ズ4116に
よって測定される。また、管14内を通る呼気ガスの流
量が、流mセンサ19および流岳甜20によって測定さ
れる。これら流量計20の出力f、(1)および111
の出力y。2はそれぞれデータ処理V装置21に入力さ
れ、以下に述べる手順で酸素摂取量が計算される。
FIG. 5 is a schematic diagram of the method of the present invention used to measure oxygen uptake. As shown in the figure, one end of a gas sample tube 15 and a flow rate sensor 19 are disposed inside the tube 14 at the tip of the mask 24. (t!!i) of the gas sample duplex 15 is the oxygen meter 16 and the flow rate control 2.
It is connected to a suction pump 18 via a p device 17,
The gas flowing through the tube 14 is sampled at a constant flow into the tube 15 from the flow control neck 17 and the suction pump 1st, and the oxygen concentration of the exhaled gas is measured by the acid tin 4116. Further, the flow rate of exhaled gas passing through the tube 14 is measured by the flow sensor 19 and the flow tube 20. Outputs f, (1) and 111 of these flowmeters 20
output y. 2 are respectively input to the data processing V device 21, and the oxygen intake amount is calculated according to the procedure described below.

第6図(a)、 (b)、 (c)は、それぞれ管14
内を流れるガスの流速f4.酸素計16の出力y。2.
酸素計16の応答遅れを補償した後の補正出力X。2と
時間tとの関係を示した波形図である。同図において、
しは、主にサンプルガスがチューブ15内を移動するの
に要する時間よりなる流量信号とガス濃度信号の時間差
を示す。データ処J11I装防21では、まず酸素計1
6の出力y。2に基づいて、第1図のデータ処理装置8
で行なわれたのと同様の方法で、酸素計16の応答遅れ
を補償するための演算処理が施され、第6図(C)に示
す補止出力x02が求められる。ついで、上記補正され
た出力X と、Ififf+20の出力fEに基づいて
、下記式で示される演算が施され、単位時間あたりの酸
素摂取量v。2が求められる。すなわち、・・・(9) ここで、t、:吸気の開始時刻 tq :呼気の開始時刻 tr−呼気の終了時刻 一次回の吸気の開始時刻 を表わす。
FIGS. 6(a), (b), and (c) each show the tube 14.
The flow rate of gas flowing through f4. Output y of oxygen meter 16. 2.
Corrected output X after compensating for the response delay of the oxygen meter 16. 2 is a waveform diagram showing the relationship between time t and time t. In the same figure,
2 shows the time difference between the flow rate signal and the gas concentration signal, which mainly consists of the time required for the sample gas to move within the tube 15. In the data office J11I equipment 21, first, the oxygen meter 1
6 output y. 2, the data processing device 8 of FIG.
In the same manner as that carried out in , arithmetic processing is performed to compensate for the response delay of the oximeter 16, and the supplementary output x02 shown in FIG. 6(C) is obtained. Then, based on the above corrected output X and the output fE of Ififf+20, the calculation shown by the following formula is performed to obtain the oxygen intake amount v per unit time. 2 is required. That is,...(9) Here, t: Inhalation start time tq : Expiration start time tr - exhalation end time Represents the start time of the first inhalation.

こうして求められた酸素摂取量は、表示器22やプリン
タ23によって表示されることとなる。
The oxygen intake amount determined in this way is displayed on the display 22 and printer 23.

この呼気分析方法によれば、酸素it 16の出力”0
2から応答遅れの時定数を測定して応答遅れを絶えず補
償し、補正後の値X。2を用いて酸素摂取量を計算する
ため、酸素計16の応答時間が変化しても常に¥J度の
良い測定ができる。なお、酸素計16の代わりに炭酸ガ
ス51を用いて炭酸ガス生成量(排出m)を測定する場
合でも効果は同じである。
According to this breath analysis method, the output of oxygen it 16 is "0"
2, measure the time constant of the response delay, constantly compensate for the response delay, and obtain the corrected value X. 2 is used to calculate the oxygen intake amount, even if the response time of the oxygen meter 16 changes, accurate measurements can always be made. Note that the effect is the same even when the carbon dioxide gas 51 is used instead of the oxygen meter 16 to measure the amount of carbon dioxide gas produced (exhaust m).

(発明の効果) 以上のように、この発明の方法によれば、呼気と吸気の
切換時におけるガス′a度計の出力特性から応答遅れの
時定数を算出し、0出した時定数により応答遅れを補償
するための時定数を更新して、ガス濃度計の出力を演算
補正するようにしているため、ガス8l度計の応答遅れ
の時定数が変化しても適切な補償ができ、高い測定精度
が得られるとともに、応答時間の測定とガス濃度測定を
別々に行なう必要がないために、測定の手間も大きく省
けるという効果が得られる。
(Effects of the Invention) As described above, according to the method of the present invention, the time constant of the response delay is calculated from the output characteristics of the gas meter when switching between expiration and inspiration, and the response is determined by the time constant set to 0. Since the time constant for compensating for the delay is updated and the output of the gas concentration meter is calculated and corrected, even if the time constant for the response delay of the gas 8l degree meter changes, it can be appropriately compensated for, resulting in a high In addition to achieving high measurement accuracy, there is no need to measure response time and gas concentration separately, so the effort required for measurement can be greatly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の方法を実施するための装置の一例を
示す概略構成図、第2図はデータ処[1装置の機能を示
すブロック図、第3図はガス分析装置の作用を説明する
ための波形図、第4図は同装置の動作を説明するための
フローチャート、第5図はこの発明の方法によって人の
酸素摂取聞を測定する場合に用いる装置の概略図、第6
図は同装置の作用を説明するための波形図である。 4・・・ガス濃疫計、 8.21・・・データ処理装置、 12・・・応答時間測定部、 13・・・出力補正部 16・・・Fm 1. K1
Fig. 1 is a schematic configuration diagram showing an example of an apparatus for carrying out the method of the present invention, Fig. 2 is a block diagram showing the functions of the data processing apparatus [1], and Fig. 3 explains the operation of the gas analyzer. FIG. 4 is a flowchart for explaining the operation of the device, FIG. 5 is a schematic diagram of the device used to measure a person's oxygen intake by the method of the present invention, and FIG.
The figure is a waveform diagram for explaining the operation of the device. 4...Gas concentration meter, 8.21...Data processing device, 12...Response time measuring section, 13...Output correction section 16...Fm 1. K1

Claims (1)

【特許請求の範囲】[Claims] (1)呼気の濃度をガス濃度計により測定して分析を行
う方法において、呼気と吸気の切換時における前記ガス
濃度計の出力特性から応答遅れの時定数を算出し、算出
した時定数により前記ガス濃度計の応答遅れを補償する
ための時定数を更新して、ガス濃度計の出力を演算補正
することを特徴とする呼気分析方法。
(1) In a method of measuring and analyzing exhaled breath concentration with a gas concentration meter, a time constant of response delay is calculated from the output characteristics of the gas concentration meter when switching between exhalation and inspiration, and the time constant of the response delay is calculated based on the calculated time constant. A breath analysis method characterized by updating a time constant for compensating for a response delay of the gas concentration meter, and calculating and correcting the output of the gas concentration meter.
JP61031579A 1986-02-14 1986-02-14 Exhalation analysis Granted JPS62188969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61031579A JPS62188969A (en) 1986-02-14 1986-02-14 Exhalation analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61031579A JPS62188969A (en) 1986-02-14 1986-02-14 Exhalation analysis

Publications (2)

Publication Number Publication Date
JPS62188969A true JPS62188969A (en) 1987-08-18
JPH0323867B2 JPH0323867B2 (en) 1991-03-29

Family

ID=12335093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61031579A Granted JPS62188969A (en) 1986-02-14 1986-02-14 Exhalation analysis

Country Status (1)

Country Link
JP (1) JPS62188969A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002504408A (en) * 1998-02-25 2002-02-12 レスピロニクス・インコーポレイテッド Patient monitoring device and its use
EP1547523A1 (en) * 2003-12-24 2005-06-29 Instrumentarium Corporation Method and apparatus for synchronizing respiratory gas measurements
JP2007151355A (en) * 2005-11-30 2007-06-14 Nippon Seiki Co Ltd Magnet rotor and moving-magnet instrument equipped therewith, stepping motor equipped therewith
JP2009000548A (en) * 2001-05-11 2009-01-08 Aerocrine Ab Method and apparatus to measure the concentration of nitrogen monoxide in exhalation
WO2012059768A1 (en) * 2010-11-05 2012-05-10 The University Of Manchester Apparatus and methods for breath sampling
JP2013144104A (en) * 2011-12-16 2013-07-25 Minato Ikagaku Kk Expiration gas analyzer
JP2013171033A (en) * 2012-02-22 2013-09-02 Minato Ikagaku Kk Mask for respiration measurement
JP2014018622A (en) * 2012-07-13 2014-02-03 Minato Ikagaku Kk Time lag calibration of expired gas analyzer
US20210341456A1 (en) * 2018-09-05 2021-11-04 Maschinenfabrik Reinhausen Gmbh Analysis of a gas dissolved in an insulating medium of a high-voltage device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002504408A (en) * 1998-02-25 2002-02-12 レスピロニクス・インコーポレイテッド Patient monitoring device and its use
JP2009000548A (en) * 2001-05-11 2009-01-08 Aerocrine Ab Method and apparatus to measure the concentration of nitrogen monoxide in exhalation
EP1547523A1 (en) * 2003-12-24 2005-06-29 Instrumentarium Corporation Method and apparatus for synchronizing respiratory gas measurements
JP2007151355A (en) * 2005-11-30 2007-06-14 Nippon Seiki Co Ltd Magnet rotor and moving-magnet instrument equipped therewith, stepping motor equipped therewith
WO2012059768A1 (en) * 2010-11-05 2012-05-10 The University Of Manchester Apparatus and methods for breath sampling
JP2013144104A (en) * 2011-12-16 2013-07-25 Minato Ikagaku Kk Expiration gas analyzer
JP2013171033A (en) * 2012-02-22 2013-09-02 Minato Ikagaku Kk Mask for respiration measurement
JP2014018622A (en) * 2012-07-13 2014-02-03 Minato Ikagaku Kk Time lag calibration of expired gas analyzer
US20210341456A1 (en) * 2018-09-05 2021-11-04 Maschinenfabrik Reinhausen Gmbh Analysis of a gas dissolved in an insulating medium of a high-voltage device

Also Published As

Publication number Publication date
JPH0323867B2 (en) 1991-03-29

Similar Documents

Publication Publication Date Title
US5398695A (en) Cardiopulmonary performance analyzer having dynamic transit time compensation
US5072737A (en) Method and apparatus for metabolic monitoring
US4368740A (en) Physiologic analyzer
US5038773A (en) Flow meter system
US8459261B2 (en) Side-stream respiratory gas monitoring system and method
CA1108039A (en) System for measurement of oxygen uptake and respiratory quotient
US5285794A (en) Respiratory gas monitor
US4233842A (en) Apparatus for measurement of expiration fluids
Hyatt et al. Direct writeout of total respiratory resistance.
US20080119753A1 (en) Premature infant side-stream respiratory gas monitoring sensor
US5680871A (en) Whole-body plethysmograph
US5386833A (en) Method for calibrating a carbon dioxide monitor
Brunner et al. Accurate measurement of N2 volumes during N2 washout requires dynamic adjustment of delay time
JPS62188969A (en) Exhalation analysis
Schibler et al. Measurement of functional residual capacity in rabbits and children using an ultrasonic flow meter
US20030023180A1 (en) Respiratory analyzer and method for measuring changes in concentration of a gas component of a breathing gas mixture
US5502660A (en) Dynamic gas density compensation in pulmonary gas analyzer systems
Schibler et al. Measurement of lung volume in mechanically ventilated monkeys with an ultrasonic flow meter and the nitrogen washout method
Seear et al. Comparison of three methods for measuring respiratory mechanics in ventilated children
Swanson et al. Sensitivity of breath-to-breath gas exchange measurements to expiratory flow errors
JPH05329132A (en) Breath by breath metabolism measuring apparatus
Davies et al. A new technique for recording respiratory transients at the start of exercise
Graham et al. Implementing the three-equation method of measuring single breath carbon monoxide diffusing capacity
US3902481A (en) System and device for exploration of the intrathoracic ventilatory mechanism
Lindmark et al. A simplified technique for measurements of energy expenditure and substrate oxidation in man