JPS6011667A - Oxygen rich air feeder - Google Patents

Oxygen rich air feeder

Info

Publication number
JPS6011667A
JPS6011667A JP58118176A JP11817683A JPS6011667A JP S6011667 A JPS6011667 A JP S6011667A JP 58118176 A JP58118176 A JP 58118176A JP 11817683 A JP11817683 A JP 11817683A JP S6011667 A JPS6011667 A JP S6011667A
Authority
JP
Japan
Prior art keywords
oxygen
air
throttle valve
downstream
enriched air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58118176A
Other languages
Japanese (ja)
Inventor
Toru Kosuda
小須田 通
Hiroki Kato
広己 加藤
Kunio Okamoto
邦夫 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP58118176A priority Critical patent/JPS6011667A/en
Publication of JPS6011667A publication Critical patent/JPS6011667A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/10Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone
    • F02M25/12Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone the apparatus having means for generating such gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To feed oxygen rich air only under low load through simple structure, by connecting an oxygen-rich film unit through a branch to the downstream of a throttle valve of a suction tube then sucking the oxygen-rich air into a suction tube by means of the suction negative pressure. CONSTITUTION:An annular partition 5 is provided in the center of casing 4 of an air filter unit 3 provided at the tip of a suction tube 2 then a suction filter 6 is contained above said partition 5 while an oxygen-rich film unit 7 is contained below said partition 5. An air take-in port 14 and a vent duct 15 are communicated with the outercircumferential chambers 10, 11 to be formed above and below the casing 4 while a ventilation blower 16 is provided to said duct 15. A branch 19 communicating with the downstream of a throttle valve 20 of suction tube 2 is coupled to the bottom face of the casing 4. The negative pressure produced at the downstream of said valve 20 is applied onto the unit 7 to suck the air through a separation film. In such a manner, the oxygen-rich air is fed into the suction tube 2.

Description

【発明の詳細な説明】 技術分野 本発明け、酸素選択性分離膜を用いてエンジンに吸入さ
れる空気を富酸素化する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to an apparatus for oxygen-enriching air taken into an engine using an oxygen-selective separation membrane.

背−其技術 ガソリンエンジンにおいて、低負荷運転域でエンジンに
富酸素空気を供給することは、着火性を改善するととも
に燃焼速度を向上させ、これにより燃費向上を図るとと
もに排気ガス中のHC,C0を低減させることができる
。特にアイドル運転域では、燃焼が安定す為ため、回転
数および空燃比を下げることができ、燃費を大幅に改善
することが可能である。
Back-Technology In gasoline engines, supplying oxygen-enriched air to the engine in the low-load operating range improves ignition performance and combustion speed, thereby improving fuel efficiency and reducing HC and CO in exhaust gas. can be reduced. Particularly in the idling operating range, combustion is stabilized, so the rotational speed and air-fuel ratio can be lowered, making it possible to significantly improve fuel efficiency.

一方、ディーゼルエンジンにおいてs 低負荷運転域で
吸気弁を絞ることによりシリンダ内最高圧力を減少させ
、回転変動および振動を減少させることが既に知られて
いる。また燃焼を緩慢にして燃焼騒音を低減させようと
いう試みがなされているが、これによると吸気弁を絞る
ことによる振動の減少効果は維持されるものの、着火遅
れが生じるとともに予混合燃焼割合が増大し、騒音があ
貰り減少せず、また燃焼が悪化してHCが大幅に増加す
るという問題がある。
On the other hand, it is already known that in a diesel engine, by throttling the intake valve in a low-load operating range, the maximum pressure inside the cylinder is reduced, and rotational fluctuations and vibrations are reduced. Attempts have also been made to reduce combustion noise by slowing combustion, but although this method maintains the vibration reduction effect of throttling the intake valve, it causes ignition delay and increases the premixed combustion ratio. However, there are problems in that the noise is not reduced and the combustion is worsened, resulting in a significant increase in HC.

発明の目的 本発明は、簡易な構成によりエンジンに富酸素化空気を
供給でき、特にディーゼルエンジンにおいては特別力機
構を設けること寿ぐ低負荷時にのみ富酸素空気を供給で
きる装置を得ることを目的としてなされたものである。
Purpose of the Invention The object of the present invention is to provide a device that can supply oxygen-enriched air to an engine with a simple configuration, and that can supply oxygen-enriched air only at low loads, especially in diesel engines, which eliminates the need for a special force mechanism. It has been done.

発明の構成 本発明は吸気管と、この管に設けられた絞り弁と、吸気
管の絞り弁よりも下流側に接続されて分離膜を有する酸
素富化膜ユニットに連通ずる枝管とを設けることにより
、分離膜により富酸素化された空気を絞り弁の下流側に
発生する負圧を用いて透遷させ、富酸素化された空気を
吸気管内に導くことを/ly¥徴としている。
Structure of the Invention The present invention includes an intake pipe, a throttle valve provided on this pipe, and a branch pipe connected downstream of the throttle valve of the intake pipe and communicating with an oxygen enrichment membrane unit having a separation membrane. As a result, the air enriched with oxygen by the separation membrane is permeated using the negative pressure generated on the downstream side of the throttle valve, and the oxygen-enriched air is introduced into the intake pipe.

特ニガソリンエンジンにおいて、高負荷域でエンジンに
富酸素空気を供給すると、燃費改善のために好寸しく々
<、またNOxの増加をもたらすため、望甘しくけ枝管
の途中に開度調整弁が設けられて、低負荷時にのみ富酸
素空気の供給が行なわれる。
In particular, in gasoline engines, supplying oxygen-enriched air to the engine in high load ranges is difficult to improve fuel efficiency, and also increases NOx, so it is undesirable to adjust the opening in the middle of the branch pipe. A valve is provided to provide oxygen-enriched air only at low loads.

実施例 以下図示実施例により本発明を説明する。Example The present invention will be explained below with reference to illustrated embodiments.

第1図は第1実施例を示し、本発明をガソリンエンジン
に適用したものである。エンノン本体1に大気を導く吸
気管2の先端にはエアフィルタユニット3が設けられる
。このユニット3のケーシング4内の中央には環状仕切
板5が設けられ、さらにこの仕切板5の上方に吸気フィ
ルタ6が、仕切板5の下方に酸素富化膜ユニットzがそ
れぞれ収容される。ケーシング4の」二方開ロ部は上カ
バー8により閉塞され、これにより吸気フィルタ6が固
定される。一方酸素富化膜ユニット7は、ケーシング4
の下方開口部に取付けられた下刃・り−9により固定さ
れる。吸気フィルタ6、酸素富化膜゛ユニット7ともに
環状を有し、それぞれ外周面はケーシング4の内面から
離間していて、外周室]、 0 、11がそれぞれ形成
され、また中心室12゜13は吸気管2に連通する。
FIG. 1 shows a first embodiment, in which the present invention is applied to a gasoline engine. An air filter unit 3 is provided at the tip of an intake pipe 2 that introduces the atmosphere into the Ennon main body 1. An annular partition plate 5 is provided at the center of the casing 4 of this unit 3, and an intake filter 6 is housed above the partition plate 5, and an oxygen enrichment membrane unit z is housed below the partition plate 5. The two-way opening portion of the casing 4 is closed by an upper cover 8, thereby fixing the intake filter 6. On the other hand, the oxygen enrichment membrane unit 7 is connected to the casing 4
It is fixed by the lower blade ri-9 attached to the lower opening. Both the intake filter 6 and the oxygen enrichment membrane unit 7 have an annular shape, and their respective outer peripheral surfaces are spaced apart from the inner surface of the casing 4, forming peripheral chambers 12 and 11, respectively, and central chambers 12 and 13. It communicates with the intake pipe 2.

ケーシング4の上方部には外周室10に通じる空気取入
れ口14が設けられ、ケーシング4の下方部には外周室
11に連通する換気ダクト15が増付けられる。換気ダ
クト15に設けられた換気ブロア16は、空気取入れ口
14から吸込んだ空気を、外周室10.吸気フィルタ6
、中心室12゜13、酸素富化膜ユニット7、外周室1
1、換気ダクト15を介して排出させ、酸素富化膜ユニ
ット7に常に新しい空気を供給する。
An air intake port 14 communicating with the outer peripheral chamber 10 is provided in the upper part of the casing 4, and a ventilation duct 15 communicating with the outer peripheral chamber 11 is added in the lower part of the casing 4. A ventilation blower 16 provided in the ventilation duct 15 blows air sucked in from the air intake port 14 into the peripheral chamber 10. Intake filter 6
, central chamber 12゜13, oxygen enrichment membrane unit 7, peripheral chamber 1
1. Exhaust air through the ventilation duct 15 to constantly supply fresh air to the oxygen enrichment membrane unit 7.

ケーシング4の底面、すなわち下カバー9の下面の中央
には、接続管17が形成され、またその側方には、酸素
富化膜ユニット7の下面に突設されたパイプ部18が貫
通する孔が穿設される。接続管17は吸気管2の開口部
に嵌合される。一方パイブ部18は枝管19に接続され
、この枝管19は吸気管2の絞シ弁20が設けられた部
位のすぐ下流側に開口する突出管21に連通ずる。した
がって絞シ弁20の下流に発生する負圧は、枝管19を
介して酸素富化膜ユニット7に導かれる。
A connecting pipe 17 is formed in the center of the bottom surface of the casing 4, that is, the bottom surface of the lower cover 9, and a hole is formed on the side thereof, through which a pipe portion 18 protruding from the bottom surface of the oxygen enrichment membrane unit 7 passes. is drilled. The connecting pipe 17 is fitted into the opening of the intake pipe 2. On the other hand, the pipe portion 18 is connected to a branch pipe 19, and this branch pipe 19 communicates with a protruding pipe 21 that opens immediately downstream of the portion of the intake pipe 2 where the throttle valve 20 is provided. Therefore, the negative pressure generated downstream of the throttle valve 20 is guided to the oxygen enrichment membrane unit 7 via the branch pipe 19.

力お絞り弁20の下流には捷だ継手管22を介して負圧
センサ23が取付けられ、このセンサ23の検出した負
圧信号は、水温の信号S0、エンジン回転数の信号82
等とともにコンピュータ24に入力される。
A negative pressure sensor 23 is installed downstream of the force throttle valve 20 via a twisted joint pipe 22, and the negative pressure signal detected by this sensor 23 is a water temperature signal S0 and an engine rotational speed signal 82.
etc. are input into the computer 24.

第2(之1〜第4図は酸素富化膜ユニット7を構成する
富酸素膜セル30の構造を詳示したものである。酸素富
化膜ユニット7は富酸素膜セル30を多数枚集合させて
成る。富酸素膜セル30は多孔質支持膜31を薄い箱状
に成形するとともに下端に細管32を連設し、さらに外
面に例えばシリコンゴム、ブチルゴム等の高分子膜から
成る分離膜33を非常に薄くコーティングしたものであ
る。
Figures 2 (1 to 4) show in detail the structure of the oxygen-enriched membrane cell 30 that constitutes the oxygen-enriched membrane unit 7. The oxygen-enriched membrane cell 30 is formed by forming a porous support membrane 31 into a thin box shape, with a thin tube 32 connected to the lower end, and a separation membrane 33 made of a polymer membrane such as silicone rubber or butyl rubber on the outer surface. It is a very thin coating.

しかして細管32を介して富酸素1莫セル30の内部3
4に負圧を導くと、多孔質支持、嘆31を介して分離膜
33の両面間に圧力差が発生する。富酸素膜セル30の
外部35には通常の空気が導かれており、分離膜33の
外表面において、酸素および窒素は分離膜33内に溶解
する。酸素および窒素は上記圧力差に基いて分離膜33
の内部を拡散移%h L、内側面において分離膜33か
ら離脱するが、分離膜33に溶解する割合は酸素の方が
り)素よりも2〜3倍大きいので、富酸素膜セル30の
内部34に富酸素化空気が得られる。
Thus, through the thin tube 32, the inside 3 of the oxygen-rich cell 30 is
When negative pressure is introduced into the membrane 4, a pressure difference is generated between both sides of the separation membrane 33 through the porous support 31. Ordinary air is led to the outside 35 of the oxygen-rich membrane cell 30, and on the outer surface of the separation membrane 33, oxygen and nitrogen are dissolved within the separation membrane 33. Oxygen and nitrogen are separated by the separation membrane 33 based on the pressure difference.
Oxygen (%hL) is released from the separation membrane 33 on the inner surface, but since the proportion of oxygen dissolved in the separation membrane 33 is 2 to 3 times larger than that of oxygen, the inside of the oxygen-rich membrane cell 30 34, oxygen-enriched air is obtained.

各富酸素膜セル30の細管32は、パイプ部18に連通
し、これにより各富酸素膜セル30の内部34に、吸気
管2内の絞り弁20下流の負圧が導かれ、この負圧が大
きいほど富酸素化された空気の量が増加するためエンジ
ン本体1へ酸素濃度の高い空気が供給されることとなる
The thin tube 32 of each oxygen-rich membrane cell 30 communicates with the pipe section 18, thereby introducing the negative pressure downstream of the throttle valve 20 in the intake pipe 2 into the interior 34 of each oxygen-rich membrane cell 30. The larger the value, the greater the amount of oxygen-enriched air, which means that air with a high oxygen concentration is supplied to the engine body 1.

本実施例装置は以上の構成を有するので、次のように作
用する。
Since the device of this embodiment has the above configuration, it operates as follows.

空気取入れ口14からエアフィルタユニット3内に覗込
まれ、吸気フィルタ6を通過した空気の一部は、酸素富
化膜ユニット7を通らず、接続管17を介して直接吸気
管2内へ導かれ、絞り弁20を通過してエンジン本体1
へ供給される。しかしてこの空気は酸素濃度21%の通
常の空気である。
A part of the air that has looked into the air filter unit 3 from the air intake port 14 and passed through the intake filter 6 is directly guided into the intake pipe 2 via the connecting pipe 17 without passing through the oxygen enrichment membrane unit 7. It passes through the throttle valve 20 and enters the engine body 1.
supplied to However, the lever air is normal air with an oxygen concentration of 21%.

一方、吸気フィルタ6を通過した残りの空気は各富酸素
膜セル30の外面に供給される。これらのy<酸素膜セ
ル30の内部34には絞り弁20の下流側の負圧が導か
れているため、この空気は分離膜33を介して富酸素化
され、枝管19を通って絞り弁20の下流側へ導入され
てエンジン本体1へ供給される。
On the other hand, the remaining air that has passed through the intake filter 6 is supplied to the outer surface of each oxygen-rich membrane cell 30. These y It is introduced downstream of the valve 20 and supplied to the engine body 1.

このようにして通常の空気と富酸素化された空気とが混
合され、所定の酸素Dr現の空気がエンジン本体1に供
給される。一方、コンピータ24は、負圧センサ23が
検出した負圧、水温、エンジン回転数等の信号に基づき
、エンソンヘ供給する燃料間゛を計算する。
In this way, normal air and oxygen-enriched air are mixed, and air containing a predetermined amount of oxygen is supplied to the engine body 1. On the other hand, the computer 24 calculates the amount of fuel to be supplied to the engine based on signals such as the negative pressure, water temperature, and engine speed detected by the negative pressure sensor 23.

以上のように本実施例装置t+づ、絞り弁20の下流側
に発生した負圧を酸素富化1j’、4Fユニツト7に導
くという簡易な構成により、富酸素化された空気をfR
’)弁20の下流に導入するようにしたものである。し
たがって、エンジンへ供給される空気中の酸素分圧が上
列し、燃焼速度が非常に炉口くなる。
As described above, the device t+ of this embodiment has a simple configuration in which the negative pressure generated on the downstream side of the throttle valve 20 is guided to the oxygen enrichment unit 1j', 4F unit 7, and the oxygen-enriched air is converted to fR.
') It is designed to be introduced downstream of the valve 20. Therefore, the partial pressure of oxygen in the air supplied to the engine increases, and the combustion rate becomes very low.

この結集、特に低速低負荷運転域のように燃焼が悪化し
やすい領域において、燃焼を大幅に改イ1オすることが
でき、燃費を向上させるとともに、排気ガス中のT−T
C、Co f:減少させることができる。寸だケーシン
グ4内に酸素富化膜ユニット7と吸気フィルタ6と収容
し、酸素富化膜ユニット7の上流側を吸気フィルタ6の
下流側に接続したので、酸素富化膜ユニット7は別にフ
ィルタを有する必要がなく、装置全体を極力小型化する
ことができ、車両への搭載上有利である。
This concentration makes it possible to significantly improve combustion, especially in areas where combustion tends to deteriorate, such as low-speed, low-load operating ranges, improving fuel efficiency and reducing T-T in exhaust gas.
C, Co f: Can be decreased. Since the oxygen enrichment membrane unit 7 and the intake filter 6 are housed in the casing 4, and the upstream side of the oxygen enrichment membrane unit 7 is connected to the downstream side of the intake filter 6, the oxygen enrichment membrane unit 7 can be separately filtered. It is not necessary to have a device, and the entire device can be made as small as possible, which is advantageous for mounting on a vehicle.

第5図は第2実施例を示し、これは本発明をディーゼル
エンソンに適用したものである。基本的な構成および作
用・制、上記第1実施例と略同様であり、異なる点につ
いてのみ説明する。
FIG. 5 shows a second embodiment, in which the present invention is applied to a diesel engine. The basic structure and operation/system are substantially the same as those of the first embodiment, and only the different points will be explained.

絞り弁20は図示しないアクチュエータによシ駆動され
、このアクチェエータはコンピュータ24により制御さ
れる。アクセルペダル41に連動する開度検出スイッチ
42の出力信号は、水温の信号SI%エンジン回転数の
信号S7等とともにコンピュータ24に入力される。コ
ンピュータ24は、アイドリング運転及び低速低負荷運
転域においてアクチュエータを駆・7bシて絞り弁20
を閉じ、吸気負圧を一定値、例えば100〜200wn
Hグにイ1負つ。
The throttle valve 20 is driven by an actuator (not shown), and this actuator is controlled by a computer 24. The output signal of the opening degree detection switch 42 that is linked to the accelerator pedal 41 is input to the computer 24 along with the water temperature signal SI%, the engine rotation speed signal S7, and the like. The computer 24 controls the throttle valve 20 by driving the actuator 7b during idling operation and low speed and low load operation ranges.
Close the intake pressure and keep the intake negative pressure at a constant value, for example 100~200wn.
I lose 1 to H.

したがって上記運転域において、絞り弁20の下流に負
圧が発生し、この負圧は枝管19を介して酸素富化膜ユ
ニット7に作用し、富酸素化された空気を絞り弁20の
下流側に導く。しかしてこの富酸素化空気は、酸素富化
膜ユニット7を通らずに直接吸気管2に導かれた通常の
空気と混合され、所定の酸素濃度となってエンジンに供
給される。これにより、エンジンのシリンダ内最高圧力
を減少させ、回転変動及び振動を減少させると同時に、
圧縮圧力の低下に拘らず燃料の着火遅れが緩和し、予混
合燃焼割合が減少するため、騒音が低下する。また燃焼
状態が改良されてHCが大幅に減少するため、燃料噴射
時期を遅らせることができ、騒音、振動をより低下させ
ることが可能となる。
Therefore, in the above operating range, negative pressure is generated downstream of the throttle valve 20, and this negative pressure acts on the oxygen-enriching membrane unit 7 through the branch pipe 19 to direct the oxygen-enriched air downstream of the throttle valve 20. lead to the side. However, this oxygen-enriched air is mixed with normal air that is directly led to the intake pipe 2 without passing through the oxygen-enriched membrane unit 7, and is supplied to the engine with a predetermined oxygen concentration. This reduces the maximum pressure inside the engine's cylinders, reduces rotational fluctuations and vibrations, and at the same time
Despite the reduction in compression pressure, the ignition delay of the fuel is alleviated and the premix combustion ratio is reduced, resulting in a reduction in noise. Furthermore, since the combustion state is improved and HC is significantly reduced, the fuel injection timing can be delayed, making it possible to further reduce noise and vibration.

なお、手記運転域以外においては絞り弁20が開放され
、この下流側の負圧が略0と々るので酸素富化ji式ユ
ニット7には負圧が作用しなくなり、富酸素化された空
気の導入は行々われない、第6図は第3実施[5(1を
示し、富酸素化空気が供給される運転域、およびその空
気の酸素濃1Wをエンジンの運転状態に応じて制御でき
るようにしたものであり、基本的な構成は上記第1実施
「[1と同様である。第1図と異なる点について説明す
ると、枝管19の途中に開度調整弁43が設けられ、こ
の弁43の開度の信号は、水温、外気温、吸気温、エン
ジン回転数、エンジン負荷(アクセル開度、スロットル
開度、吸気負圧)等の信号とともに、コンビーータ24
に入力される。コンビーータ24はこれらの水温、外気
温、エンジン負荷等の信号に応じて開度調整弁43の開
度を制御する。
Note that outside the manual operation range, the throttle valve 20 is opened and the negative pressure on the downstream side reaches approximately 0, so that no negative pressure acts on the oxygen-enriched JI type unit 7, and the oxygen-enriched air is Figure 6 shows the third implementation [5 (1). The basic configuration is the same as that of the first embodiment "[1]. To explain the difference from FIG. The signal of the opening degree of the valve 43 is sent to the converter 24 along with the signals of water temperature, outside temperature, intake temperature, engine speed, engine load (accelerator opening, throttle opening, intake negative pressure), etc.
is input. The conbeater 24 controls the opening degree of the opening adjustment valve 43 according to signals such as the water temperature, outside temperature, and engine load.

さて、吸気負圧値の大きさにより、酸素富化膜ユニット
7を介して導入される富酸素化空気の酸素濃度は変化し
々いが、富酸素、化空気量は変化する。本実施例はこの
ことを利用したものである。
Now, depending on the magnitude of the intake negative pressure value, the oxygen concentration of the oxygen-enriched air introduced via the oxygen-enriching membrane unit 7 tends to change, but the amount of oxygen-enriched air and oxygen-enriched air also changes. This embodiment takes advantage of this fact.

すなわちエンジンの運転状態に応じて調整弁43の開度
をコンビーータ24により調整し、枝管19内の負圧を
制御して富酸素化空気量を所定値にしようとするもので
ある。
That is, the opening degree of the regulating valve 43 is adjusted by the converter 24 according to the operating state of the engine, and the negative pressure in the branch pipe 19 is controlled to bring the amount of oxygen-enriched air to a predetermined value.

調杵弁43の開度が相対的に小さい”’5.合、導入さ
れる富酸素化空気のため、枝管19の調整弁43より上
流側部分の圧力は大気圧に近すき、これにより富酸素化
空気の骨は減少する。逆に調整弁43の開度が相対的に
大きい場合、酸素富化膜ユニット7にけ常に吸気負圧が
直接作用し、富酸素化空気量げ増加する。
When the opening degree of the regulating valve 43 is relatively small, the pressure in the upstream part of the branch pipe 19 from the regulating valve 43 approaches atmospheric pressure due to the introduced oxygen-enriched air. The amount of oxygen-enriched air decreases.On the contrary, when the opening degree of the regulating valve 43 is relatively large, the intake negative pressure always acts directly on the oxygen-enriched membrane unit 7, and the amount of oxygen-enriched air increases. .

以」−のように第3実施例jd1酸素富化膜ユニット7
に吸気負圧を導く枝管19に調整弁43を設け、この弁
43の開度を調此することにより、富酸素化空気骨を調
整する構成としたので、エンジン運転状態に応じてエン
ジンに吸入される空気の酸素濃度を制御することができ
る。例えば、エンジン負荷が小さく、燃焼が不安安々領
域または「機運1時等においては酸素濃度を濃く、逆に
狛荷が少し大きく力っだ場合は、NOxの増加を防ぐた
め酸素濃度を薄くする。kお、酸素着、1度を変化させ
るとエンジン回転数が変化するが、これをオ11甲して
暖機運転時のアイドル回転数を上昇させることも可能で
ある。また、λ11整弁43の開度をエンジン回転数に
応じて制御することにより、アイドル回転数を制御する
ことも可能である。
Third embodiment jd1 oxygen enrichment membrane unit 7 as shown below
A regulating valve 43 is provided in the branch pipe 19 that leads intake negative pressure to the engine, and by adjusting the opening degree of this valve 43, the amount of oxygen-enriched air is adjusted. The oxygen concentration of the inhaled air can be controlled. For example, when the engine load is small and combustion is in an unstable region or when the engine is in a state of high momentum, the oxygen concentration is increased, but when the engine load is a little large and powerful, the oxygen concentration is decreased to prevent an increase in NOx. The engine speed will change if the oxygen adhesion is changed by 1 degree, but it is also possible to increase the idle speed during warm-up operation by changing this.Also, it is possible to increase the idle speed during warm-up operation. It is also possible to control the idle speed by controlling the opening degree of the engine according to the engine speed.

寿お、第5,6図とも、第1図の部分と同一部分は同一
符号により示される。
In both FIGS. 5 and 6, the same parts as those in FIG. 1 are designated by the same reference numerals.

発明の効果 以上のように本発明によれば、簡易な構成によりエンジ
ンに富酸素化空気を供給することができるという効果が
得られる。
Effects of the Invention As described above, according to the present invention, the effect that oxygen-enriched air can be supplied to the engine with a simple configuration can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示す断面図、第2図は富
酸素膜セルを示す側面図、第3図は第2図の■−■線に
沿う断面図、第4図は第3図の要部を拡大して示す断面
図、第5図は第2実施例を示す断面図、第6図は第3実
施例を示す断面図である。 2・・・吸気管、6・・・吸気フィルタ、19・・・枝
管、20・・・絞り弁、33・・・分離膜。 第1図 第2図 第3図 第4図 1 3 1) 並 第5図 ヒジ口
FIG. 1 is a cross-sectional view showing the first embodiment of the present invention, FIG. 2 is a side view showing an oxygen-rich membrane cell, FIG. 3 is a cross-sectional view taken along the line ■-■ in FIG. 2, and FIG. FIG. 5 is a cross-sectional view showing a second embodiment, and FIG. 6 is a cross-sectional view showing a third embodiment. 2... Intake pipe, 6... Intake filter, 19... Branch pipe, 20... Throttle valve, 33... Separation membrane. Figure 1 Figure 2 Figure 3 Figure 4 1 3 1) Normal Figure 5 Elbow opening

Claims (1)

【特許請求の範囲】 1、 エンジンのシリンダに大気を導く吸気管と、この
吸気管の途中に設けられ、流路面積を変化させる絞り弁
と、上記吸気管の絞り弁よりも下流側に開口するととも
に、酸素選択性分離膜を有する酸素富化膜ユニットに連
通ずる枝管とを設け、上記酸素選択性分離膜において富
酸素化された空気を、上記絞り弁の下流側に発生する負
圧により透過させ、この富酸素化された空気を上記吸気
管内に導くことを特徴とする富酸素空気供給装置。 2、上記分離膜よりも上流側は、上記吸気管の入口部に
設けられた吸気フィルタの下流側に接続されることを特
徴とする特許請求の範囲第1項記載の富酸素空気供給装
置。 3、上記枝管の途中に開度調整弁が設けられることを特
徴とする特許請求の範囲第1項記載の富酸素空気供給装
置。
[Claims] 1. An intake pipe that introduces the atmosphere to the cylinders of the engine, a throttle valve that is provided in the middle of this intake pipe and changes the flow path area, and an opening on the downstream side of the throttle valve of the intake pipe. At the same time, a branch pipe communicating with an oxygen enrichment membrane unit having an oxygen-selective separation membrane is provided, and the air enriched in oxygen in the oxygen-selective separation membrane is transferred to a negative pressure generated downstream of the throttle valve. An oxygen-enriched air supply device characterized in that the oxygen-enriched air is permeated through the oxygen-enriched air and introduced into the intake pipe. 2. The oxygen-enriched air supply device according to claim 1, wherein the upstream side of the separation membrane is connected to the downstream side of an intake filter provided at the entrance of the intake pipe. 3. The oxygen-enriched air supply device according to claim 1, wherein an opening adjustment valve is provided in the middle of the branch pipe.
JP58118176A 1983-07-01 1983-07-01 Oxygen rich air feeder Pending JPS6011667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58118176A JPS6011667A (en) 1983-07-01 1983-07-01 Oxygen rich air feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58118176A JPS6011667A (en) 1983-07-01 1983-07-01 Oxygen rich air feeder

Publications (1)

Publication Number Publication Date
JPS6011667A true JPS6011667A (en) 1985-01-21

Family

ID=14730007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58118176A Pending JPS6011667A (en) 1983-07-01 1983-07-01 Oxygen rich air feeder

Country Status (1)

Country Link
JP (1) JPS6011667A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62267559A (en) * 1986-05-16 1987-11-20 Hino Motors Ltd Suction device for internal combustion engine
WO2001055580A1 (en) * 2000-01-27 2001-08-02 Filterwerk Mann+Hummel Gmbh Intake system for an internal combustion engine with a membrane that is mainly permeable to oxygen molecules
JP2007159183A (en) * 2005-11-30 2007-06-21 Nidec Sankyo Corp Actuator
JP2010270681A (en) * 2009-05-21 2010-12-02 Honda Motor Co Ltd Intake device for engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62267559A (en) * 1986-05-16 1987-11-20 Hino Motors Ltd Suction device for internal combustion engine
WO2001055580A1 (en) * 2000-01-27 2001-08-02 Filterwerk Mann+Hummel Gmbh Intake system for an internal combustion engine with a membrane that is mainly permeable to oxygen molecules
JP2003524102A (en) * 2000-01-27 2003-08-12 フイルテルウエルク マン ウント フンメル ゲゼルシヤフト ミツト ベシユレンクテル ハフツング An intake system for an internal combustion engine with a membrane mainly through oxygen molecules
US6640794B2 (en) 2000-01-27 2003-11-04 Filterwerk Mann & Hummel Gmbh Intake system for an internal combustion engine with a membrane preferentially permeable to oxygen molecules
JP2007159183A (en) * 2005-11-30 2007-06-21 Nidec Sankyo Corp Actuator
JP2010270681A (en) * 2009-05-21 2010-12-02 Honda Motor Co Ltd Intake device for engine

Similar Documents

Publication Publication Date Title
JPH02277919A (en) Suction device of multi-cylinder engine
JPS6011667A (en) Oxygen rich air feeder
GB2168178A (en) Air-fuel ratio control system
JPS6030456Y2 (en) Air bypass type air fuel ratio control device
JPS6030457Y2 (en) Engine high altitude correction device
JPS5830458A (en) Air-fuel ratio control device for internal combustion engine
JPS6321712Y2 (en)
JPH0113790Y2 (en)
JPS61160520A (en) Intake-air control device in internal-combustion engine
JP2530101Y2 (en) Engine stall prevention device for deceleration of outboard motor with supercharger
JPH0295766A (en) Oxygen enriching air controller for oxygen enriched engine
JP2811702B2 (en) Engine intake system
JPS60243356A (en) Apparatus for supplying secondary intake air in internal-combustion engine
JPS5845592B2 (en) Air-fuel ratio control device for internal combustion engines
JPS6235875Y2 (en)
JPS6221985B2 (en)
JPH03246357A (en) Electronic control carburetter for motorcycle
JPS61247842A (en) Secondary air control system
JPS6041217B2 (en) Enrichment device for internal combustion engine carburetor
JPS6342095B2 (en)
JPS58119949A (en) Air fuel ratio control unit in internal-combustion engine
JPS641657B2 (en)
JPS60150466A (en) Intake secondary air feeder for internal-combustion engine
JPH033059B2 (en)
JPH03962A (en) Fuel cut device