JPH033059B2 - - Google Patents

Info

Publication number
JPH033059B2
JPH033059B2 JP9997281A JP9997281A JPH033059B2 JP H033059 B2 JPH033059 B2 JP H033059B2 JP 9997281 A JP9997281 A JP 9997281A JP 9997281 A JP9997281 A JP 9997281A JP H033059 B2 JPH033059 B2 JP H033059B2
Authority
JP
Japan
Prior art keywords
air
bypass
passage
air passage
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9997281A
Other languages
Japanese (ja)
Other versions
JPS582445A (en
Inventor
Kazusato Kasuya
Takeshi Yasuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP9997281A priority Critical patent/JPS582445A/en
Publication of JPS582445A publication Critical patent/JPS582445A/en
Publication of JPH033059B2 publication Critical patent/JPH033059B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、空燃比をフイードバツク制御する
内燃機関(以下エンジンともいう)用双胴型気化
器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a twin-barrel carburetor for an internal combustion engine (hereinafter also referred to as an engine) that performs feedback control of an air-fuel ratio.

(従来の技術) 従来、エンジンの排気ガスの空燃比をフイード
バツクして気化器の空燃比を制御する方式は種々
提案されているが、その代表的なものは次の2つ
である。
(Prior Art) Conventionally, various methods have been proposed for controlling the air-fuel ratio of a carburetor by feeding back the air-fuel ratio of engine exhaust gas, but the following two are representative.

(1) 気化器の燃料流量をエア・ブリード通路によ
り制御する方式。
(1) A method that controls the fuel flow rate of the carburetor using an air bleed passage.

例えば、特公昭53−16853、実公昭54−41232
号公報等がある。
For example, Tokuko Sho 53-16853, Jitsugoku Sho 54-41232
There are publications etc.

(2) 気化器の下流側に2次空気を流入させ、この
バイパス空気流量を制御する方式。
(2) A method that allows secondary air to flow into the downstream side of the carburetor and controls the flow rate of this bypass air.

例えば、特公昭52−13257、特公昭52−13586
号公報等がある。
For example, Tokuko Sho 52-13257, Tokuko Sho 52-13586
There are publications etc.

上記のフイードバツク制御において、エンジン
の排気ガスの空燃比が設定空燃比よりリーン側ま
たはリツチ側に変化すると、フイードバツク制御
が働くが、空燃比制御手段を経て混合気の空燃比
が修正される時間は、エア・ブリードの空気流量
を変化させて燃料流量を制御する方式よりも直接
空気流量を制御する方式のほうが短い。すなわ
ち、上記(2)のバイパス空気制御方式の方が、上記
(1)の燃料制御方式に比べ、はるかに空燃比制御特
性が良好である。
In the above feedback control, when the air-fuel ratio of the engine exhaust gas changes to the lean side or rich side from the set air-fuel ratio, the feedback control is activated, but the time for the air-fuel ratio of the mixture to be corrected through the air-fuel ratio control means is The method of directly controlling the air flow rate is shorter than the method of controlling the fuel flow rate by changing the air flow rate of the air bleed. In other words, the bypass air control method in (2) above is better than the above.
Compared to the fuel control method (1), the air-fuel ratio control characteristics are much better.

(発明が解決しようとする問題点) しかしながら双胴型気化器においては主副各空
気通路の空気流の位相が異なるため、バイパス空
気制御方式によるときは、それぞれの空気通路に
バイパス空気制御器を設けなければならず、気化
器の構造が複雑になるという問題があつた。
(Problem to be solved by the invention) However, in a twin-barrel carburetor, the phases of the air flows in the main and sub air passages are different, so when using the bypass air control method, a bypass air controller is installed in each air passage. However, there was a problem in that the structure of the carburetor was complicated.

そこでこの発明は、主空気通路にはバイパス空
気制御方式を採用し、副空気通路には燃料制御方
式を採用した応答性の良いフイードバツク制御気
化器の提供を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a feedback control carburetor with good responsiveness, which employs a bypass air control system in the main air passage and a fuel control system in the auxiliary air passage.

(問題点を解決するための手段) 上記目的を達成するため、この発明のフイード
バツク制御気化器は、主スロツトル・バルブを備
えた主空気通路と副スロツトル・バルブを備えた
副空気通路とを有する内燃機関用気化器であつ
て、可変絞りアクチユエータを備えたエア・ブリ
ード通路を副空気通路のベンチユリ部に通ずる副
燃料通路に連結し、バイパス空気制御器を備えた
バイパス空気通路をインテーク・マニホルドに連
結し、前記主スロツトル・バルブと前記バイパス
空気通路に設けたバイパス・スロツトル・バルブ
とを連動するように連結し、排気管に取り付けら
れた排気ガス濃度センサからの信号を受けて、低
速時は前記バイパス空気制御器の開閉を制御する
制御信号を送り、高速時は前記バイパス空気制御
器への制御信号とともに前記可変絞りアクチユエ
ータの流量を制御する制御信号を送る電子制御器
を設けたことを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the feedback control carburetor of the present invention has a main air passage provided with a main throttle valve and a sub air passage provided with a sub throttle valve. A carburetor for an internal combustion engine, wherein an air bleed passage having a variable throttle actuator is connected to an auxiliary fuel passage leading to a vent lily portion of the auxiliary air passage, and a bypass air passage having a bypass air controller is connected to an intake manifold. The main throttle valve and the bypass throttle valve provided in the bypass air passage are connected to each other so that the main throttle valve is connected to the bypass throttle valve provided in the bypass air passage, and the main throttle valve is connected to the bypass throttle valve provided in the bypass air passage. An electronic controller is provided which sends a control signal to control opening and closing of the bypass air controller, and sends a control signal to the bypass air controller as well as a control signal to control the flow rate of the variable throttle actuator at high speeds. shall be.

(作用) エンジンの排気ガスの空燃比が設定空燃比から
はずれると、吸入空気流量が少ない低速時は、電
子制御器からの制御信号を受けてバイパス空気制
御器が働き、一定量の空気がバイパス空気通路に
導入される。このときバイパス・スロツトル・バ
ルブが主スロツトル・バルブと連動した開度にな
つており、主空気通路の開口面積の変化に比例し
たバイパス空気通路の開口から適量のバイパス空
気がインテーク・マニホールドに供給され、主空
気通路の空燃比を制御する。
(Function) When the air-fuel ratio of engine exhaust gas deviates from the set air-fuel ratio, at low speeds when the intake air flow rate is low, the bypass air controller operates in response to a control signal from the electronic controller, and a certain amount of air is bypassed. introduced into the air passage. At this time, the bypass throttle valve is opened in conjunction with the main throttle valve, and an appropriate amount of bypass air is supplied to the intake manifold from the opening of the bypass air passage, which is proportional to the change in the opening area of the main air passage. , controls the air-fuel ratio in the main air passage.

吸入空気流量が多く副空気通路のスロツトル・
バルブが開いた高速時は、電子制御器からの制御
信号を受けて、バイパス空気制御器の作動ととも
に可変絞りアクチユエータも作動し、副空気通路
の空燃比を制御する。
The intake air flow rate is large and the throttle of the auxiliary air passage
When the valve is open at high speed, the bypass air controller operates and the variable throttle actuator also operates in response to a control signal from the electronic controller to control the air-fuel ratio in the auxiliary air passage.

(実施例) 以下実施例を示す図面に基づいて、この発明を
説明する。第1図は第1実施例の気化器の部分破
断正面図である。気化器1は、主空気通路2と主
スロツトル・バルブ3および副空気通路4と副ス
ロツトル・バルブ5を有する。副空気通路4のベ
ンチユリ部6に連通する副燃料通路7には、エ
ア・ブリード通路8が結合されている。エア・ブ
リード通路8の流量は、ステツプ・モータまたは
電磁弁を含む可変絞りアクチユエータ9で制御さ
れる。
(Example) The present invention will be described below based on drawings showing examples. FIG. 1 is a partially cutaway front view of the carburetor of the first embodiment. The carburetor 1 has a main air passage 2, a main throttle valve 3, and an auxiliary air passage 4 and an auxiliary throttle valve 5. An air bleed passage 8 is coupled to an auxiliary fuel passage 7 that communicates with the bench lily portion 6 of the auxiliary air passage 4 . The flow rate in the air bleed passage 8 is controlled by a variable throttle actuator 9, which may include a step motor or a solenoid valve.

一方、インテーク・マニホールド11には、バ
イパス空気通路12が結合されている。バイパス
空気通路12にはバイパス・スロツトル・バルブ
13が取り付けられ、主スロツトル・バルブ3と
連動するようにリンク14で連結されている。1
5は、バイパス空気通路12を通じてインテー
ク・マニホールド11に供給されるバイパス空気
の流量を制御するバイパス空気制御器で、レギユ
レータ本体16と三方電磁弁17とで構成されて
いる。レギユレータ本体16は、バイパス空気導
入通路18と、バイパス空気入口および出口を有
するレギユレータ室19と、レギユレータ室19
に隣接し、小孔で連通した大気圧室21と、大気
圧室21と隣接したダイアフラム22を介して設
けられた制御圧室23と、一端をダイアフラム2
2に固定され他端に弁子24を備えてレギユレー
タ室19のバイパス空気入口を開閉するレギユレ
ータ・バルブ25とからなる。三方電磁弁17
は、大気に開口した大気口17aとインテーク・
マニホールド11に連通する負圧口17bとを有
し、それぞれの開度は電子制御器15からの制御
信号で作動される電磁弁17vで制御され、制御
圧口17cを通じてレギユレータ本体16の制御
圧室23の空気圧を制御してダイアフラム22を
作動させる。
On the other hand, a bypass air passage 12 is coupled to the intake manifold 11 . A bypass throttle valve 13 is attached to the bypass air passage 12 and is operatively connected to the main throttle valve 3 by a link 14. 1
A bypass air controller 5 controls the flow rate of bypass air supplied to the intake manifold 11 through the bypass air passage 12, and is composed of a regulator body 16 and a three-way solenoid valve 17. The regulator body 16 includes a bypass air introduction passage 18, a regulator chamber 19 having a bypass air inlet and an outlet, and a regulator chamber 19.
an atmospheric pressure chamber 21 adjacent to and communicating with through a small hole, a control pressure chamber 23 provided via a diaphragm 22 adjacent to the atmospheric pressure chamber 21, and one end connected to the diaphragm 2.
2 and a regulator valve 25 having a valve 24 at the other end for opening and closing the bypass air inlet of the regulator chamber 19. Three-way solenoid valve 17
is an air vent 17a opened to the atmosphere and an intake air port 17a.
It has a negative pressure port 17b communicating with the manifold 11, the opening degree of each of which is controlled by a solenoid valve 17v operated by a control signal from the electronic controller 15, and a control pressure chamber of the regulator body 16 through the control pressure port 17c. The diaphragm 22 is operated by controlling the air pressure of the diaphragm 23.

26はエンジン(図示しない)の排気管で、ジ
ルコニア・センサなどの排気ガス濃度センサー2
7が取り付けられている。28は電子制御器で、
センサー27からの信号を受けて可変絞りアクチ
ユエータ9およびバイパス空気制御器15の各電
磁弁を制御する。
26 is an exhaust pipe of the engine (not shown), and an exhaust gas concentration sensor 2 such as a zirconia sensor is installed.
7 is installed. 28 is an electronic controller,
The solenoid valves of the variable throttle actuator 9 and the bypass air controller 15 are controlled in response to a signal from the sensor 27.

以上のように構成されたフイードバツク制御気
化器の作用を説明する。エンジンの運転中に排気
ガスが設定空燃比からはずれると、排気管26の
排気ガス濃度センサー27からHiまたはLoの信
号が電子制御器28へ送られる。吸入空気流量が
少ない低速時は、電子制御器28から出された制
御信号を受けてバイパス空気制御器15が作動し
てレギユレータ・バルブ25が開き、エンジン吸
気管の一定負圧により一定量の空気がバイパス空
気通路12に導入される。このときバイパス・ス
ロツトル・バルブ13が主スロツトル・バルブ3
と連動した開度になつており、主空気通路2の開
口面積の変化に比例したバイパス空気通路12の
開口から、適量のバイパス空気がインテーク・マ
ニホールド11に供給され、主空気通路2の混合
気の空燃比を修正する。
The operation of the feedback control carburetor constructed as above will be explained. When the exhaust gas deviates from the set air-fuel ratio during engine operation, a Hi or Lo signal is sent from the exhaust gas concentration sensor 27 in the exhaust pipe 26 to the electronic controller 28. At low speeds when the intake air flow rate is low, the bypass air controller 15 operates in response to a control signal issued from the electronic controller 28, and the regulator valve 25 opens, allowing a constant amount of air to flow due to the constant negative pressure in the engine intake pipe. is introduced into the bypass air passage 12. At this time, bypass throttle valve 13 is connected to main throttle valve 3.
An appropriate amount of bypass air is supplied to the intake manifold 11 from the opening of the bypass air passage 12 which is proportional to the change in the opening area of the main air passage 2, and the air-fuel mixture in the main air passage 2 is Correct the air/fuel ratio.

吸入空気流量が多く、副空気通路4の副スロツ
トル・バルブ5が開いている高速時は、電子制御
器28からの制御信号を受けて、バイパス空気制
御器15の作動とともに可変絞りアクチユエータ
9も作動する。これによりエア・ブリード通路8
の空気流量を変化させて副燃料通路7の燃料流量
を制御し、副空気通路4の混合気の空燃比を制御
する。この場合吸入空気量が多いので、副空気通
路4のエア・ブリードによる燃料流量制御の応答
時間が適度に速くなり、充分な応答性が得られ
る。
At high speeds when the intake air flow rate is large and the auxiliary throttle valve 5 of the auxiliary air passage 4 is open, the variable throttle actuator 9 is activated as well as the bypass air controller 15 in response to a control signal from the electronic controller 28. do. This allows air bleed passage 8
The fuel flow rate in the auxiliary fuel passage 7 is controlled by changing the air flow rate in the auxiliary air passage 4, thereby controlling the air-fuel ratio of the mixture in the auxiliary air passage 4. In this case, since the amount of intake air is large, the response time of the fuel flow rate control by air bleed of the auxiliary air passage 4 becomes appropriately fast, and sufficient responsiveness can be obtained.

このようにして排気ガスの空燃比は、常時電子
制御器28にフイードバツクされ、混合気が最適
空燃比を維持するように制御される。
In this way, the air-fuel ratio of the exhaust gas is constantly fed back to the electronic controller 28, and the air-fuel mixture is controlled to maintain the optimum air-fuel ratio.

上記のフイードバツク制御において、バイパス
空気制御器15で制御される空燃比は、直接空気
流量が制御されるので、エア・ブリードによる間
接的な燃料制御に比べ応答性がよく、可変絞りア
クチユエータ9で制御される燃料制御による空燃
比と合成されて単独の場合より空燃比制御幅が小
さくなり、この発明のフイードバツク制御気化器
の制御特性がさらに良くなる。
In the above feedback control, the air-fuel ratio controlled by the bypass air controller 15 is controlled by the variable throttle actuator 9, which has better responsiveness than indirect fuel control by air bleed because the air flow rate is directly controlled. When combined with the air-fuel ratio by fuel control, the air-fuel ratio control width becomes smaller than in the case of the air-fuel ratio control alone, and the control characteristics of the feedback control carburetor of the present invention are further improved.

第2図は第2実施例を示し、バイパス空気制御
器35は、第1実施例における三方電磁弁17の
代りに三方継手37を含む。三方継手37は可変
絞りアクチユエータ39からの大気とインテー
ク・マニホールド11からの負圧空気とを受け入
れて混合し、レギユレータ本体16の制御圧室2
3に送り込む。可変絞りアクチユエータ39は、
2つのニードル・バルブ39a,39bを有し、
39aはエア・ブリード通路8に連通し、39b
は三方継手37に連通している。第2実施例は、
上記以外は第1実施例と同じ構成であるが、三方
電磁弁17の代りに三方継手37を使用したので
システムが簡素化でき、コスト、信頼性、搭載性
などが良くなる。
FIG. 2 shows a second embodiment, in which the bypass air controller 35 includes a three-way joint 37 instead of the three-way solenoid valve 17 in the first embodiment. The three-way joint 37 receives and mixes the atmospheric air from the variable throttle actuator 39 and the negative pressure air from the intake manifold 11, and mixes it into the control pressure chamber 2 of the regulator body 16.
Send it to 3. The variable aperture actuator 39 is
It has two needle valves 39a, 39b,
39a communicates with air bleed passage 8; 39b
communicates with the three-way joint 37. The second example is
The configuration other than the above is the same as that of the first embodiment, but since a three-way joint 37 is used in place of the three-way solenoid valve 17, the system can be simplified and the cost, reliability, and mountability can be improved.

(発明の効果) この発明は以上説明したように、主空気通路に
はバイパス空気制御方式を採用し、副空気通路に
は燃料流量制御方式を採用したフイードバツク制
御双胴型気化器であるから、低速時および高速時
を通じて応答性の良いフイードバツク制御が可能
となり、またバイパス空気制御と燃料制御の合成
により制御幅が小さくなつて空燃比制御特性が良
くなる効果がある。
(Effects of the Invention) As explained above, this invention is a feedback control twin-barrel carburetor that employs a bypass air control method in the main air passage and a fuel flow rate control method in the auxiliary air passage. Feedback control with good responsiveness is possible at both low and high speeds, and the combination of bypass air control and fuel control reduces the control width and improves air-fuel ratio control characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの発明の実施例を示し、第1図は第1実
施例の部分破断正面図、第2図は第2実施例の部
分破断正面図である。 2……主空気通路、3……主スロツトル・バル
ブ、4……副空気通路、5……副スロツトル・バ
ルブ、6……ベンチユリ部、7……副燃料通路、
8……エア・ブリード通路、9,39……可変絞
りアクチユエータ、11……インテーク・マニホ
ールド、12……バイパス空気通路、13……バ
イパス・スロツトル・バルブ、15,35……バ
イパス空気制御器、26……排気管、27……排
気ガス濃度センサ、28……電子制御器。
The figures show embodiments of the invention, with FIG. 1 being a partially cutaway front view of the first embodiment, and FIG. 2 being a partially cutaway front view of the second embodiment. 2... Main air passage, 3... Main throttle valve, 4... Sub-air passage, 5... Sub-throttle valve, 6... Bench lily portion, 7... Sub-fuel passage,
8... Air bleed passage, 9, 39... Variable throttle actuator, 11... Intake manifold, 12... Bypass air passage, 13... Bypass throttle valve, 15, 35... Bypass air controller, 26...Exhaust pipe, 27...Exhaust gas concentration sensor, 28...Electronic controller.

Claims (1)

【特許請求の範囲】[Claims] 1 主スロツトル・バルブを備えた主空気通路と
副スロツトル・バルブを備えた副空気通路とを有
する内燃機関用気化器であつて、可変絞りアクチ
ユエータを備えたエア・ブリード通路を副空気通
路のベンチユリ部に通ずる副燃料通路に連結し、
バイパス空気制御器を備えたバイパス空気通路を
インテーク・マニホルドに連結し、前記主スロツ
トル・バルブと前記バイパス空気通路に設けたバ
イパス・スロツトル・バルブとを連動するように
連結し、排気管に取り付けられた排気ガス濃度セ
ンサからの信号を受けて、低速時は前記バイパス
空気制御器の開閉を制御する制御信号を送り、高
速時は前記バイパス空気制御器への制御信号とと
もに前記可変絞りアクチユエータの流量を制御す
る制御信号を送る電子制御器を設けたことを特徴
とするフイードバツク制御気化器。
1. A carburetor for an internal combustion engine having a main air passage with a main throttle valve and an auxiliary air passage with an auxiliary throttle valve, wherein the air bleed passage with a variable throttle actuator is connected to a bench lily of the auxiliary air passage. connected to the auxiliary fuel passage leading to the
A bypass air passage having a bypass air controller is connected to the intake manifold, the main throttle valve and a bypass throttle valve provided in the bypass air passage are operatively connected, and the bypass air passage is attached to an exhaust pipe. In response to a signal from the exhaust gas concentration sensor, a control signal is sent to control the opening and closing of the bypass air controller when the speed is low, and a control signal to the bypass air controller and the flow rate of the variable throttle actuator is sent when the speed is high. 1. A feedback control vaporizer, characterized in that it is provided with an electronic controller that sends control signals for control.
JP9997281A 1981-06-25 1981-06-25 Feedback controlled carburettor Granted JPS582445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9997281A JPS582445A (en) 1981-06-25 1981-06-25 Feedback controlled carburettor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9997281A JPS582445A (en) 1981-06-25 1981-06-25 Feedback controlled carburettor

Publications (2)

Publication Number Publication Date
JPS582445A JPS582445A (en) 1983-01-08
JPH033059B2 true JPH033059B2 (en) 1991-01-17

Family

ID=14261574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9997281A Granted JPS582445A (en) 1981-06-25 1981-06-25 Feedback controlled carburettor

Country Status (1)

Country Link
JP (1) JPS582445A (en)

Also Published As

Publication number Publication date
JPS582445A (en) 1983-01-08

Similar Documents

Publication Publication Date Title
JPH02277919A (en) Suction device of multi-cylinder engine
JPS5845593B2 (en) Additional fluid control device for internal combustion engines
JPH033059B2 (en)
JPS58140453A (en) Air-fuel ratio controlling apparatus
JPS6296776A (en) Fuel feeder for itnernal combustion engine
US4380984A (en) Electronic controlled carburetor
JPS636463Y2 (en)
JPS5830458A (en) Air-fuel ratio control device for internal combustion engine
JPS6145054B2 (en)
JPS6011667A (en) Oxygen rich air feeder
JP3260508B2 (en) Gas-fuel mixture mixture formation device
JPS6030457Y2 (en) Engine high altitude correction device
JPS6380055A (en) Fuel supply device for engine
JP2518071Y2 (en) Canister purge control device
JPS59162349A (en) Air-fuel ratio control method for super charging engine
JPH0330618Y2 (en)
JPH0113790Y2 (en)
JPS6038039Y2 (en) Engine air-fuel ratio control device
JPS6158659B2 (en)
JPH0241337Y2 (en)
JPH0128295Y2 (en)
JPS63131856A (en) Carburettor
JPS62131959A (en) Air-fuel ratio control device for carburetor of internal combustion engine
JPH0733813B2 (en) Gas pressure control method for sub chamber of gas engine
JPS62131958A (en) Air-fuel ratio control device for carburettor of internal combustion engine