JPS641657B2 - - Google Patents

Info

Publication number
JPS641657B2
JPS641657B2 JP55118260A JP11826080A JPS641657B2 JP S641657 B2 JPS641657 B2 JP S641657B2 JP 55118260 A JP55118260 A JP 55118260A JP 11826080 A JP11826080 A JP 11826080A JP S641657 B2 JPS641657 B2 JP S641657B2
Authority
JP
Japan
Prior art keywords
air
valve
negative pressure
fuel ratio
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55118260A
Other languages
Japanese (ja)
Other versions
JPS5744748A (en
Inventor
Hiroyuki Matsumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP55118260A priority Critical patent/JPS5744748A/en
Publication of JPS5744748A publication Critical patent/JPS5744748A/en
Publication of JPS641657B2 publication Critical patent/JPS641657B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、排気ガスを吸気系へ導く再循環通路
に空燃比センサの出力に関係して空気を導入する
空燃比制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an air-fuel ratio control device that introduces air into a recirculation passage that leads exhaust gas to an intake system in relation to the output of an air-fuel ratio sensor.

[発明が解決しようとする問題点] このような空燃比制御装置において、空燃比セ
ンサの応答遅れに因つてシフトチエンジ時の空燃
比が理論空燃比より過濃側へ大きくずれることが
問題となつている。
[Problems to be Solved by the Invention] In such an air-fuel ratio control device, a problem arises in that the air-fuel ratio at the time of a shift change greatly deviates from the stoichiometric air-fuel ratio to the rich side due to the response delay of the air-fuel ratio sensor. ing.

本発明の目的は、シフトチエンジ時の空燃比制
御に優れた効果を発揮する空燃比制御装置を提供
することである。
An object of the present invention is to provide an air-fuel ratio control device that exhibits excellent effects on air-fuel ratio control during shift changes.

[実施例] 図面を参照して本発明の実施例を説明する。[Example] Embodiments of the present invention will be described with reference to the drawings.

第1図において気化器1は、運転室の加速ペダ
ルに連動する絞り弁2を有し、上流側においてエ
アクリーナ3、下流において吸気分岐管4にそれ
ぞれ接続され、理論空燃比より少し小さい過濃混
合気を形成する。混合気は機関本体燃焼室で燃焼
され、排気ガスは排気管5を介して導かれる。排
気ガス再循環(EGR)通路9は、排気管5と吸
気分岐管4とを接続し、EGR弁10により流通
断面積を制御されれる。EGR弁10は、ダイヤ
フラム11により互いに区画される圧力室12と
大気室13、ダイヤフラム11を大気室13の方
へ押付けるばね14、ダイヤフラム11に結合す
る弁体15、および弁体15より排気系側に設け
られた定圧室16をもつ。絞り弁2が所定開度以
上になると絞り弁2より下流となる位置にポート
19,20が設けられ、ポート19は通路21を
介してEGR弁10の圧力室12へ接続される。
調圧弁25は通路21へ接続されているポート2
6、ダイヤフラム27により互いに区画されてい
る室28,29、ダイヤフラム27を室29の方
へ押付けるばね30およびダイヤフラム27に取
付けられてポート26を開閉する弁体31を備え
る。室28は大気とポート20とへ接続され、室
29は定圧室16に接続される。通路21におい
て調圧弁25とポート19との間にはオリフイス
31が設けられる。空気導入弁35は、大気へ接
続されているポート36、EGR通路9へ接続さ
れているポート37、ダイヤフラム38により区
画される負圧室39、ダイヤフラム38を押付け
るばね40、ダイヤフラム38に結合している弁
体41、および弁体41の弁座とポート37との
間に設けられているリード弁42を備える。負圧
室39は、通路45を介して吸気管4のポート4
6へ接続されている。電磁開閉弁47は通路45
に設けられ、電子制御部48からの電気信号によ
り、負圧室39側のポート49をポート46側の
ポート50あるいは大気ポート51へ選択的に接
続する。排気ガス中の酸素濃度を検出する空燃比
センサ54は排気管5に取付けられ、その出力は
電子制御部48へ送られる。
In FIG. 1, a carburetor 1 has a throttle valve 2 that is linked to an accelerator pedal in the driver's cab, and is connected to an air cleaner 3 on the upstream side and an intake branch pipe 4 on the downstream side, and is connected to an air-fuel ratio slightly smaller than the stoichiometric air-fuel ratio. Form the spirit. The air-fuel mixture is combusted in the combustion chamber of the engine body, and exhaust gas is guided through the exhaust pipe 5. An exhaust gas recirculation (EGR) passage 9 connects the exhaust pipe 5 and the intake branch pipe 4, and has a flow cross-sectional area controlled by an EGR valve 10. The EGR valve 10 includes a pressure chamber 12 and an atmospheric chamber 13 separated from each other by a diaphragm 11, a spring 14 that presses the diaphragm 11 toward the atmospheric chamber 13, a valve body 15 coupled to the diaphragm 11, and an exhaust system from the valve body 15. It has a constant pressure chamber 16 provided on the side. Ports 19 and 20 are provided at positions downstream of the throttle valve 2 when the throttle valve 2 reaches a predetermined opening degree or more, and the port 19 is connected to the pressure chamber 12 of the EGR valve 10 via a passage 21.
The pressure regulating valve 25 is connected to the port 2 connected to the passage 21.
6. Chambers 28 and 29 separated from each other by the diaphragm 27, a spring 30 that presses the diaphragm 27 toward the chamber 29, and a valve body 31 that is attached to the diaphragm 27 and opens and closes the port 26. Chamber 28 is connected to the atmosphere and port 20, and chamber 29 is connected to constant pressure chamber 16. An orifice 31 is provided in the passage 21 between the pressure regulating valve 25 and the port 19. The air introduction valve 35 is connected to a port 36 connected to the atmosphere, a port 37 connected to the EGR passage 9, a negative pressure chamber 39 defined by a diaphragm 38, a spring 40 that presses the diaphragm 38, and the diaphragm 38. A reed valve 42 is provided between the valve seat of the valve body 41 and the port 37. Negative pressure chamber 39 is connected to port 4 of intake pipe 4 via passage 45.
6. The electromagnetic on-off valve 47 is connected to the passage 45
The port 49 on the negative pressure chamber 39 side is selectively connected to the port 50 on the port 46 side or the atmospheric port 51 by an electric signal from the electronic control unit 48. An air-fuel ratio sensor 54 that detects the oxygen concentration in exhaust gas is attached to the exhaust pipe 5, and its output is sent to the electronic control section 48.

以上の構成は従来装置と同じであり、その作用
を概略的に説明すると、気化器1のポート19
は、機関の負荷が所定値より大きい時には吸気管
負圧に維持され、この結果、EGR弁10はEGR
通路9を開して排気ガスが吸気系へ再循環され
る。調圧弁25は排気ガス圧の脈動による再循環
率の変動を防止する。空燃比が過濃側にずれてい
るときは、電磁弁47により空気導入弁35の負
圧室39へ吸気管負圧が供給され、これにより空
気がEGR通路9を介して吸気分岐管4および排
気管5内へ導入される。また空燃比が希薄側にず
れているときは、電磁弁47の大気ポート51か
ら大気圧が空気導入弁35の負圧室39へ供給さ
れ、弁体41は弁座42を閉じ、空気導入弁35
を介しての吸気分岐管4および排気管5への空気
導入は阻止される。
The above configuration is the same as the conventional device, and its operation will be briefly explained as follows: Port 19 of the carburetor 1
is maintained at negative pressure in the intake pipe when the engine load is greater than a predetermined value, and as a result, the EGR valve 10
Passage 9 is opened to allow exhaust gas to be recirculated to the intake system. The pressure regulating valve 25 prevents fluctuations in the recirculation rate due to pulsations in exhaust gas pressure. When the air-fuel ratio deviates to the rich side, the solenoid valve 47 supplies intake pipe negative pressure to the negative pressure chamber 39 of the air introduction valve 35, and this causes air to flow through the EGR passage 9 to the intake branch pipe 4 and It is introduced into the exhaust pipe 5. Further, when the air-fuel ratio deviates to the lean side, atmospheric pressure is supplied from the atmospheric port 51 of the solenoid valve 47 to the negative pressure chamber 39 of the air introduction valve 35, the valve body 41 closes the valve seat 42, and the air introduction valve 35
The introduction of air into the intake branch pipe 4 and the exhaust pipe 5 via the intake pipe is prevented.

負圧切換弁59は、吸気分岐管4のポート46
へ接続されているポート60、空気導入弁35の
負圧室39に接続されているポート61、ダイヤ
フラム62によつて互いに区画されている室6
3,64、ダイヤフラム62に設られているオリ
フイス65と逆止弁69、およびダイヤフラム6
2を室63の方へ押付けるばね66、ダイヤフラ
ム62に結合している弁体67を備える。室64
はセンシングポート68へ接続されている。セン
シングポート68は、絞り弁2がアイドリング開
度にあるときに絞り弁2より下流となり、絞り弁
2がアイドリング開度から開かれると絞り弁2よ
り上流となる。
The negative pressure switching valve 59 is connected to the port 46 of the intake branch pipe 4.
a port 60 connected to the negative pressure chamber 39 of the air introduction valve 35, a port 61 connected to the negative pressure chamber 39 of the air introduction valve 35, and a chamber 6 separated from each other by a diaphragm 62.
3, 64, orifice 65 and check valve 69 provided in diaphragm 62, and diaphragm 6
2 towards the chamber 63, a valve body 67 connected to the diaphragm 62. room 64
is connected to sensing port 68. The sensing port 68 is located downstream of the throttle valve 2 when the throttle valve 2 is at the idling opening, and is upstream of the throttle valve 2 when the throttle valve 2 is opened from the idling opening.

シフトチエンジ時では、加速ペダルが解放され
て、絞り弁2はアイドリング開度になる。したが
つてセンシングポート68から吸気管負圧が負圧
切換弁59の室64に供給され、室64と63と
の圧力差によつてダイヤフラム62がばね66に
抗してたわんで、弁体67が押下げられる。これ
により吸気管負圧が空気導入弁35の室39へ供
給され、弁体41が弁座から離れて、空気が吸気
分岐管4および排気管5へ供給される。アイドリ
ング開度が所定時間以上継続すると、オリフイス
65により室63,64が同圧となつて弁体67
は弁座の開口を閉じ、空気導入弁35から吸気系
および排気系への空気導入は中止される。絞り弁
2がアイドリング開度より大きくなると、センシ
ングポート68は絞り弁2より上流となり、負圧
切換弁59の弁体67は弁座を閉じ、空気導入弁
35からの吸気系への空気導入は阻止される、こ
うしてシフトチエンジ時における空燃比が過濃側
へ大きくずれることが防止される。
During a shift change, the accelerator pedal is released and the throttle valve 2 is opened at idling. Therefore, intake pipe negative pressure is supplied from the sensing port 68 to the chamber 64 of the negative pressure switching valve 59, and the diaphragm 62 is bent against the spring 66 due to the pressure difference between the chambers 64 and 63, and the valve body 67 is pressed down. As a result, intake pipe negative pressure is supplied to the chamber 39 of the air introduction valve 35, the valve body 41 is separated from the valve seat, and air is supplied to the intake branch pipe 4 and the exhaust pipe 5. When the idling opening degree continues for a predetermined time or more, the orifice 65 brings the chambers 63 and 64 to the same pressure, and the valve body 67
closes the opening of the valve seat, and air introduction from the air introduction valve 35 to the intake system and the exhaust system is stopped. When the opening of the throttle valve 2 becomes larger than the idling opening, the sensing port 68 becomes upstream of the throttle valve 2, the valve element 67 of the negative pressure switching valve 59 closes the valve seat, and air is no longer introduced from the air introduction valve 35 into the intake system. This prevents the air-fuel ratio from shifting significantly toward the rich side during a shift change.

第2図はシフトチエンジ時の空燃比変化を表わ
すグラフであり、横軸は時間t、縦軸は空燃比
A/F、t1、t2、t3はシフトチエンジ時刻をそれ
ぞれ示している。実線は本発明、破線は従来装置
の特性をそれぞれ示している。本発明によりシフ
トチエンジ時における空燃比が過濃側へ大きくず
れることなく、良好に制御されることが分かる。
FIG. 2 is a graph showing the change in air-fuel ratio during a shift change, where the horizontal axis shows time t, the vertical axis shows the air-fuel ratio A/F, and t1, t2, and t3 show the shift change times, respectively. The solid line shows the characteristics of the present invention, and the broken line shows the characteristics of the conventional device. It can be seen that according to the present invention, the air-fuel ratio at the time of a shift change is well controlled without significantly shifting toward the rich side.

第3図は本発明の他の実施例を示す。第1図と
対応する部分は同符号で指示して説明を省略し、
異なる点についてのみ説明する。この実施例では
負圧切換弁は省略されている。シフトチエンジ時
に絞り弁2がアイドリング開度に戻されてセンシ
ングポート68が絞り弁2より下流になると、セ
ンシングポート68における負圧変化により負圧
スイツチ71が作動する。マイクロプロセツサを
含む電子制御部48は負圧スイツチ71の出力を
検出してシフトチエンジ時では空燃比センサ54
の出力に関係なく、電磁弁47のポート49をポ
ート50に所定時間だけ接続する。これにより空
気導入弁35の負圧室39に吸気管負圧が供給さ
れ、弁体41がその弁座から離れて、空気が吸気
分岐管4へ導入される。
FIG. 3 shows another embodiment of the invention. Parts corresponding to those in FIG. 1 are designated with the same reference numerals and explanations are omitted.
Only the different points will be explained. In this embodiment, the negative pressure switching valve is omitted. When the throttle valve 2 is returned to the idling opening degree during a shift change and the sensing port 68 becomes downstream of the throttle valve 2, the negative pressure switch 71 is activated due to the change in negative pressure at the sensing port 68. An electronic control unit 48 including a microprocessor detects the output of the negative pressure switch 71 and detects the output of the air-fuel ratio sensor 54 during a shift change.
The port 49 of the solenoid valve 47 is connected to the port 50 for a predetermined period of time regardless of the output of the solenoid valve 47 . As a result, intake pipe negative pressure is supplied to the negative pressure chamber 39 of the air introduction valve 35, the valve body 41 is separated from its valve seat, and air is introduced into the intake branch pipe 4.

[発明の効果] このように本発明によれば、シフトチエンジ時
にEGR通路を介して空気が吸気分岐管へ供給さ
れるので、空燃比センサの応答遅れに因つて空燃
比が過濃側へ大きくずれることが防止され、シフ
トチエンジ時の空燃比を良好に維持することがで
きる。
[Effects of the Invention] As described above, according to the present invention, air is supplied to the intake branch pipe through the EGR passage during a shift change, so that the air-fuel ratio is greatly reduced to the rich side due to the response delay of the air-fuel ratio sensor. It is possible to prevent the shift from occurring and maintain a good air-fuel ratio during a shift change.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の構成図、第2図は本
発明におけるシフトチエンジ時の空燃比変化を示
すグラフ、第3図は本発明の他の実施例の構成図
である。 2……絞り弁、5……排気管、9……EGR通
路、10……EGR弁、35……空気導入弁、3
9……負圧室、47……電磁弁、48……電子制
御部、54……空燃比センサ、59……負圧切換
弁、68……センシングポート、71……負圧ス
イツチ。
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is a graph showing air-fuel ratio changes during a shift change in the present invention, and FIG. 3 is a block diagram of another embodiment of the present invention. 2... Throttle valve, 5... Exhaust pipe, 9... EGR passage, 10... EGR valve, 35... Air introduction valve, 3
9... Negative pressure chamber, 47... Solenoid valve, 48... Electronic control unit, 54... Air-fuel ratio sensor, 59... Negative pressure switching valve, 68... Sensing port, 71... Negative pressure switch.

Claims (1)

【特許請求の範囲】[Claims] 1 排気ガスを絞り弁より下流の吸気系へ導く再
循環通路、絞り弁の開度に関係して再循環通路の
流通断面積を制御する制御弁、負圧室を有しかつ
この負圧室の負圧に関係して再循環通路に空気を
導入する空気導入弁、および空燃比センサの出力
に関係して空気導入弁の負圧室へ吸気管負圧を供
給する制御部を備える空燃比制御装置において、
絞り弁がアイドリング開度になつたことを検知し
て導入弁の負圧室へ負圧を供給する手段を備える
ことを特徴とする、空燃比制御装置。
1. A recirculation passage that guides exhaust gas to the intake system downstream from the throttle valve, a control valve that controls the flow cross-sectional area of the recirculation passage in relation to the opening degree of the throttle valve, and a negative pressure chamber. an air-fuel ratio controller comprising: an air inlet valve for introducing air into the recirculation passage in relation to the negative pressure of the air-fuel ratio; In the control device,
An air-fuel ratio control device comprising means for detecting that a throttle valve has reached an idling opening degree and supplying negative pressure to a negative pressure chamber of an introduction valve.
JP55118260A 1980-08-29 1980-08-29 Controlling device of air-fuel ratio Granted JPS5744748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55118260A JPS5744748A (en) 1980-08-29 1980-08-29 Controlling device of air-fuel ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55118260A JPS5744748A (en) 1980-08-29 1980-08-29 Controlling device of air-fuel ratio

Publications (2)

Publication Number Publication Date
JPS5744748A JPS5744748A (en) 1982-03-13
JPS641657B2 true JPS641657B2 (en) 1989-01-12

Family

ID=14732215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55118260A Granted JPS5744748A (en) 1980-08-29 1980-08-29 Controlling device of air-fuel ratio

Country Status (1)

Country Link
JP (1) JPS5744748A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0338449Y2 (en) * 1984-10-18 1991-08-14

Also Published As

Publication number Publication date
JPS5744748A (en) 1982-03-13

Similar Documents

Publication Publication Date Title
US3942493A (en) Fuel metering system
US4583363A (en) Secondary air supply control device in internal combustion engine
US4464896A (en) System for supplying secondary air for an internal combustion engine
US4569318A (en) Secondary intake air supply system for internal combustion engines
JPS641657B2 (en)
US4677959A (en) Air intake side secondary air supply system for an internal combustion engine
US4558680A (en) System for controlling the air-fuel ratio supplied to a supercharged engine
US4349005A (en) Suction mixture control system for vehicle engines
JPS6053653A (en) Supply device of secondary intake air internal- combustion engine
JPS6181568A (en) Method of controlling exhaust gas recirculation of internal-combustion engine
JPS6146198Y2 (en)
JPS628331Y2 (en)
JPS6030457Y2 (en) Engine high altitude correction device
JPS6030456Y2 (en) Air bypass type air fuel ratio control device
JPS6145054B2 (en)
JPH0128295Y2 (en)
JPS6121555Y2 (en)
US4328774A (en) Device for controlling negative pressure in suction pipe of internal combustion engine
JPS6147301B2 (en)
JPS60243356A (en) Apparatus for supplying secondary intake air in internal-combustion engine
JPS6053654A (en) Supply device of secondary intake air in internal- combustion engine
JPS6124524B2 (en)
JPS6346243B2 (en)
JPS62131959A (en) Air-fuel ratio control device for carburetor of internal combustion engine
JPS62131958A (en) Air-fuel ratio control device for carburettor of internal combustion engine