JPS6011579A - Phosphor - Google Patents

Phosphor

Info

Publication number
JPS6011579A
JPS6011579A JP11703783A JP11703783A JPS6011579A JP S6011579 A JPS6011579 A JP S6011579A JP 11703783 A JP11703783 A JP 11703783A JP 11703783 A JP11703783 A JP 11703783A JP S6011579 A JPS6011579 A JP S6011579A
Authority
JP
Japan
Prior art keywords
phosphor
bromide
europium
curve
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11703783A
Other languages
Japanese (ja)
Other versions
JPS6335189B2 (en
Inventor
Yasuhiro Shirakawa
康博 白川
Tsutomu Ishii
努 石井
Takeshi Takahara
武 高原
Tadao Komi
小見 忠雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11703783A priority Critical patent/JPS6011579A/en
Publication of JPS6011579A publication Critical patent/JPS6011579A/en
Publication of JPS6335189B2 publication Critical patent/JPS6335189B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conversion Of X-Rays Into Visible Images (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To provide a phosphor having improved luminance and after-glow property, prepd. by adding an alkali element to a europium-activated LaF3.AX2 compd. CONSTITUTION:The phosphor is shown by the formula (where A is an alkaline earth metal element consisting of at least one of Ba, Sr and Ca; X is an alkali element consisting of at least one of F, Cl and Br: n/m is 1X10<-3>-7X10<-1>; a is 1X10<-4>-3X10<-1>; b is 0-2X10<-2>). For higher emission efficiency, the concn. (a) of Eu which is used as activator, should be 1X10<-4>-3X10<-1>. Within this range, the efficiency of emission remains essentially constant without occurrence of concn. quenching. The ratio n/m, which represents the composition of a matrix should be 1X10<-3>-7X10<-1>, for a high luminance as well as momentary emission by radiation are obtainable within this range. The phosphor is obtained, e.g., by burning in a crucible a mixt. of lanthanum fluoride, barium fluoride and barium bromide with europium oxide and chloride or bromide of an alkali element.

Description

【発明の詳細な説明】 (発明の技術分野〕 この発明は、フロロハロゲン化合物螢光体に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) This invention relates to a fluorohalogen compound phosphor.

[発明の技術的背景とその問題点〕 従来より放射線像を記録し再成する手段としては、螢光
体を塗布したハロゲン化銀フィルムを用いる写真法があ
る。一方、医療用放射線診断における被曝線量の問題は
、人体を対象とした場合殊に重大であり、その低減が切
に望まれている。また、診断の立場よりすれば、その撮
影画像に記録された画像からできるだけ多くのしかもよ
り正確な情報の得られることが望ましい。これらの要求
を満たすには従来の写真法では不十分であることから、
米国特許第3,859,527号明細書等に開示されて
いるような放射線像変換システムが有望視されている。
[Technical background of the invention and its problems] As a conventional means for recording and reproducing radiation images, there is a photographic method using a silver halide film coated with a phosphor. On the other hand, the problem of exposure dose in medical radiological diagnosis is particularly serious when the human body is targeted, and reduction of the dose is strongly desired. Furthermore, from the standpoint of diagnosis, it is desirable to obtain as much and more accurate information as possible from the images recorded in the captured images. Since conventional photography methods are insufficient to meet these demands,
Radiographic image conversion systems such as those disclosed in US Pat. No. 3,859,527 and others are viewed as promising.

該システムは、被写体を透過した放射線を輝尽性あるい
は熱発光性螢光体を有する放射線像変換プレートに被写
体潜像を蓄積せしめたのち再成する。従って、該システ
ムを実用化するには、被曝線量低減のために放射線吸収
率が高くしかも蓄積エネルギーを高効率に解放しうる輝
尽性あるいは熱発光性螢光体が要求される。さらに診断
時間の短縮への強い要望から、読み出し時の輝尽残光の
少ない螢光体が必要となってくる。
This system uses radiation that has passed through an object to accumulate a latent image of the object on a radiation image conversion plate having a stimulable or thermoluminescent phosphor, and then regenerates the image. Therefore, in order to put this system into practical use, a stimulable or thermoluminescent phosphor that has a high radiation absorption rate and can release stored energy with high efficiency is required to reduce the exposure dose. Furthermore, due to the strong desire to shorten diagnosis time, a phosphor with less photostimulated afterglow during readout is required.

本発明者等は、ユーロピウム付活LaF、・AX、化合
物が特開昭53−112291号公報に開示の如く、高
い発光効率を有することに注目し種々検討を試みてきた
。その結果、X線照射時における発光(瞬時発光と称す
)のみならず、蓄積エネルギーの光励起による発光(輝
尽発光と称す)においても従来より試みられているアル
カリ土類弗化ノ・ロゲン化物営光体に勝る特性を有する
ことを見い出した。
The inventors of the present invention have made various studies focusing on the fact that europium-activated LaF, .AX, compounds have high luminous efficiency, as disclosed in JP-A-53-112291. As a result, the use of alkaline earth fluorides and halides, which has been attempted not only to emit light during X-ray irradiation (referred to as instantaneous luminescence), but also to emit light due to photoexcitation of stored energy (referred to as stimulated luminescence), has been demonstrated. It was discovered that it has properties superior to that of light.

すなわち、ユーロピウム付活LaF3・AX、化合物は
、X線吸収率が高くかつ輝尽発光効率が高いという前記
要求の二つを満たしている。しかしながら、第三の要求
、即ち残光性について問題がある。従来のユーロピウム
付活アルカリ土類元素ノ・ロゲン化物螢光体の輝尽発光
の減衰時間は数マイクロ秒であるのに対してユーロピウ
ム付活LaF、1°AX1!化合物は数百マイクロ秒に
及ぶ減衰時間を示し、実用化がはばまれている。従って
残光特性を改善しかつ高効率を保った特性の改善が必要
である。
That is, the europium-activated LaF3.AX compound satisfies the two requirements of high X-ray absorption and high stimulated luminescence efficiency. However, there is a problem with the third requirement, that is, afterglow property. The decay time of the stimulated luminescence of conventional europium-activated alkaline earth element/loginide phosphors is several microseconds, whereas the decay time of europium-activated LaF is 1° AX1! The compound exhibits a decay time of several hundred microseconds, preventing its practical application. Therefore, it is necessary to improve the afterglow characteristics while maintaining high efficiency.

本発明者等はユーロピウム付活LaF、・AX2化合物
において微量のアルカリ塩を添加することにより、輝尽
発光の残光特性が著しく改善されることを見い出し、本
発明に至った。
The present inventors have discovered that by adding a trace amount of alkali salt to a europium-activated LaF, .AX2 compound, the afterglow characteristics of stimulated luminescence can be significantly improved, leading to the present invention.

ユーロピウム付活アルカリ土類フロロハロゲン化物螢光
体とアルカリ塩の化合物においてX線瞬時発光の残光特
性が改良されることが、特公昭53−18470号公報
、特公昭57−り7108号公報等に開示されている。
It has been reported in Japanese Patent Publications No. 18470-18470 and No. 7108-7108 that the afterglow characteristics of instantaneous X-ray emission are improved in compounds of europium-activated alkaline earth fluorohalide phosphors and alkali salts. has been disclosed.

しかしながらこれらはいずれも増感紙におい【問題とな
る、X線照射直後の数十ミリ秒に及ぶ遅延発光の改良に
関するものであり、輝尽発光における数マイクロ秒の残
光特性改善という本発明に係る効果とは本質的に異なる
ものである。
However, all of these are related to the improvement of delayed luminescence, which is a problem in intensifying screens and lasts for several tens of milliseconds immediately after X-ray irradiation, and the present invention, which improves the afterglow characteristic of several microseconds in stimulated luminescence, This effect is essentially different.

〔本発明の目的〕[Object of the present invention]

本発明は、ユーロピウム付活LaFB・AX、化合物に
アルカリ元素を含有させることにより輝尽残光特性を改
良した新規な螢光体を提供するものである。
The present invention provides a novel phosphor with improved photostimulated afterglow characteristics by incorporating an alkali element into the europium-activated LaFB/AX compound.

し発明の概要〕 本発明に係る螢光体は一般式を次の通りとする。Summary of the invention] The general formula of the phosphor according to the present invention is as follows.

nLaF3− mAX、 : aEu、 bDただし、
人はBa、Sr 、Caの少なくとも1種からなるアル
カリ土類元素、XはF、C/、Brの少なくとも1種か
らなるハロゲン元素、Dはに、Rbの少なくとも1種か
らなるアルカリ元素であって、n/frIは1xxo”
≦n/m S 7X1(r”+ aはlXl0”≦a≦
3×1σS、 bはo<b≦2×12なる値を満たす値
である。
nLaF3-mAX, : aEu, bD However,
X is an alkaline earth element consisting of at least one of Ba, Sr, and Ca; X is a halogen element consisting of at least one of F, C/, and Br; D is an alkali element consisting of at least one of Rb; So, n/frI is 1xxo”
≦n/m S 7X1 (r”+ a is lXl0”≦a≦
3×1σS, b is a value satisfying o<b≦2×12.

付活剤であるEu 濃度aは、第1図に示すように発光
効率の点から1x16’≦a≦3xl(r’が望ましい
As shown in FIG. 1, the concentration a of Eu, which is an activator, is preferably 1x16'≦a≦3xl (r') from the viewpoint of luminous efficiency.

この範囲内であれば濃度消光を起こさず発光効率はほぼ
一定である。一方母体組成比n/fnは、1×163≦
n/in<7xlO’が望寸しい。この範囲内であれば
放射線による瞬時発光と同様、輝尽輝度も非常に強い。
Within this range, concentration quenching does not occur and the luminous efficiency remains almost constant. On the other hand, the matrix composition ratio n/fn is 1×163≦
It is desirable that n/in<7xlO'. Within this range, the photostimulated luminance is very strong, similar to instantaneous light emission due to radiation.

例えば、第2図はBu濃度を母体1モルに対して5×1
6′モルに対して5x1o’モル、アルカリ元素を16
3モルに固定し、母体をLaF3とBaFBrとの化合
物系列とするとき、LaF3の母体中モル数nとBaF
Brの母体中モル数mの変化に対するエックス線照射後
の輝尽発輝度である。曲線1はアルカリ金属としてカリ
ウム、曲線2はルビジウムを用いたものである。第2図
より母体組成比n/fnは、xxxo”≦n/fn≦7
刈61の範囲が望ましい。この傾向は、母体組成を本発
明に係る他の元素によるもの規定すれば、全く変りない
。たとえば、母体をLaFsと5rFBrとの化合物系
列とするときの母体組成比n/mは、第3図よりlX1
0””≦n/fr1≦7xto’が望ましい。ことで曲
線1はに添加2曲線2は几す添加を表わす。また同様に
母体をLaFHとCaFCI!との化合物系列とすると
きの母体組成比n7fnは第4図より1×1σ3≦n/
fn≦7×161が望ましい。ここで曲線1はに添加1
曲線2はRh添加である。
For example, in Figure 2, the Bu concentration is 5 x 1 per mol of parent material.
5 x 1 o' moles for 6' moles, 16 alkali elements
When the number of moles in the matrix is fixed at 3 mol and the matrix is a compound series of LaF3 and BaFBr, the number of moles n in the matrix of LaF3 and BaF
It is the photostimulated luminance after X-ray irradiation with respect to the change in the number of moles of Br in the matrix (m). Curve 1 uses potassium as the alkali metal, and curve 2 uses rubidium. From Figure 2, the mother composition ratio n/fn is xxxo”≦n/fn≦7
A range of 61 is desirable. This tendency does not change at all if the matrix composition is defined by other elements according to the present invention. For example, when the matrix is a compound series of LaFs and 5rFBr, the matrix composition ratio n/m is lX1 from FIG.
It is desirable that 0""≦n/fr1≦7xto'. Thus, curve 1 represents addition and curve 2 represents addition. Similarly, the mother body is LaFH and CaFCI! From Figure 4, the parent composition ratio n7fn for the compound series with is 1×1σ3≦n/
It is desirable that fn≦7×161. Here curve 1 is added to 1
Curve 2 is Rh addition.

また、アルカリ元素に、几すの含有量すはo<b≦2X
1o″が望ましい。上記アルカリ元素を含有せしめるこ
とにより残光特性改善の効果が減少する。
In addition, the content of alkaline elements is o<b≦2X
1o'' is desirable. By containing the above-mentioned alkali elements, the effect of improving afterglow characteristics is reduced.

2×ICを越えると輝尽輝度の低下が著しい。第5図は
本発明に係る螢光体の一つである0、04LaPs・Q
、95BaFBr : 0.0005Eu、bD螢光体
に80KVI)のエックス線を照射したのち約1時間暗
中に放置し、赤色発光ダイオード(波長660nm )
の光を励起源とした輝尽輝強度とアルカリ元素含有量と
の関係を示した図である。ここでDは、カリウム(曲線
1)、ルビジウム(曲線2)である。第5図において縦
軸はb=0、すなわちアルカリ元素を故意に添加してい
ない0.04LaFs ・096BaFBr : O,
0O05Eu螢光体の輝尽輝強度を100とした相対強
度である。第5図より明らかなように、アルカリ元素り
の添加による輝尽輝強度はb≦2×1「の範囲内では、
大幅は低下は見られない。この傾向は、母体組成を本発
明に係る他の元素によるものに規定すれば、全く同様で
ある。たとえば、第6図に示すように、0.04LaF
s−0,965rBaF : 0.0005Eu 、b
K (曲線1)、及び0.04LaPs @ 0.96
 CaFC1!: O,0O05Bu 、bRb (曲
線2)においても、b≦2×162の範囲内であれば、
輝尽輝度の低下は少ない。
When it exceeds 2×IC, the photostimulated luminance decreases significantly. FIG. 5 shows 0,04LaPs・Q, which is one of the phosphors according to the present invention.
, 95BaFBr: 0.0005Eu, after irradiating the bD phosphor with X-rays of 80 KVI), it was left in the dark for about 1 hour, and a red light emitting diode (wavelength 660 nm) was irradiated.
FIG. 2 is a diagram showing the relationship between the stimulable luminescence intensity and the alkali element content using light from the excitation source. Here, D is potassium (curve 1) and rubidium (curve 2). In Fig. 5, the vertical axis is b=0, that is, 0.04LaFs ・096BaFBr: O, in which no alkali element was intentionally added.
It is a relative intensity with the stimulable luminescence intensity of the 0O05Eu phosphor as 100. As is clear from Fig. 5, within the range of b≦2×1, the stimulable luminescence intensity due to the addition of an alkali element is
No significant decline is seen. This tendency is exactly the same if the matrix composition is defined as one composed of other elements according to the present invention. For example, as shown in Figure 6, 0.04LaF
s-0,965rBaF: 0.0005Eu,b
K (curve 1), and 0.04LaPs @ 0.96
CaFC1! : O,0O05Bu, bRb (curve 2), if b≦2×162,
There is little decrease in photostimulated brightness.

一方残光特性改善の効果は第7図より明らかである。第
7図は本発明に係る螢光体の一つである0、04LaF
a ・0.96BaFBr :0.0001u、bK螢
光体の一つである0、04LaFs・0.96 BaF
Br :0.0001u 、 bK螢光体に80[Vp
のエックス線を照射したのち、約1時間暗中に放置し、
パルス幅10マイクロ秒の赤色発光ダイオードをパルス
光源とした輝尽発光の残光特性を示した図である。第7
図においてに含有量は、b=0(曲線1)、b=x6”
c曲線2)、b=16’(曲線3 )、b=10 (曲
線4)であり、縦軸はパルス励起直後の輝尽輝度を10
0とした相対強度であり、横軸はパルス励起直後よりの
経過時間を表わしている。第7図より明らかなようにカ
リウム添加により残光特性は著しく改善される。実用上
10分の1減衰時間が約10数マイクロ秒以下の要請か
ら、カリウム添加量は10以上であればよい。第8図は
カリウム(曲線1)及びルビジウム(曲線2)添加量と
10分の1減衰時間の関係を示す。このように残光特性
改善効果はRb添加においても同様である。第9図は、
0.04LaP、・0.968rFBr : O,00
05Eu、bD において、K(曲線1)及びRh(曲
線2)添加量と10分の1減衰時間の関係を示す図であ
る。また第10図は0.04LaFs・0.96 Ca
FCl : 0.0005Eu 、bD において、K
(曲線1)及びRb(曲線2)際加量と10分の1減衰
時間の関係を示す図である。このように、アルカリ、元
素導入による特性改善は、母体組成を本発明に係る他の
元素によるものに規定すれば全く同様に得られる。従っ
て、輝尽輝度及び残光特性の改善効果を加味し、アルカ
リ元素含有量はo<b≦2刈5tが望捷しい。より好ま
しいのは1刈O″4≦b≦2刈01である。
On the other hand, the effect of improving afterglow characteristics is clear from FIG. FIG. 7 shows 0,04LaF, which is one of the phosphors according to the present invention.
a・0.96BaFBr: 0.0001u, 0,04LaFs・0.96 BaF, which is one of the bK phosphors
Br: 0.0001u, 80[Vp for bK phosphor
After irradiating with X-rays, leave it in the dark for about an hour.
FIG. 3 is a diagram showing the afterglow characteristics of stimulated luminescence using a red light emitting diode with a pulse width of 10 microseconds as a pulsed light source. 7th
In the figure, the contents are b=0 (curve 1), b=x6''
c curve 2), b = 16' (curve 3), b = 10 (curve 4), and the vertical axis represents the photostimulated luminance immediately after pulse excitation at 10
The relative intensity is set to 0, and the horizontal axis represents the elapsed time from immediately after pulse excitation. As is clear from FIG. 7, the afterglow characteristics are significantly improved by adding potassium. In practice, the one-tenth decay time is required to be about 10-odd microseconds or less, so the amount of potassium added may be 10 or more. FIG. 8 shows the relationship between the amounts of potassium (curve 1) and rubidium (curve 2) added and the 1/10 decay time. In this way, the effect of improving afterglow characteristics is the same even when Rb is added. Figure 9 shows
0.04LaP, 0.968rFBr: O,00
05Eu,bD is a diagram showing the relationship between the added amount of K (curve 1) and Rh (curve 2) and the 1/10 decay time. Also, Figure 10 shows 0.04LaFs・0.96Ca
FCl: 0.0005Eu, K in bD
(Curve 1) and Rb (Curve 2) are diagrams showing the relationship between load and 1/10 decay time. In this way, improvements in properties by introducing alkali and elements can be obtained in exactly the same way if the host composition is defined as one containing other elements according to the present invention. Therefore, taking into consideration the effect of improving the photostimulated brightness and afterglow characteristics, it is desirable that the alkali element content is o<b≦25t. More preferred is 1 cutting O''4≦b≦2 cutting 01.

以上より明らかなように、アルカリ元素を添加剤として
含有するユーロピウム付活nLaF、・mAX。
As is clear from the above, europium-activated nLaF,·mAX contains an alkali element as an additive.

螢光体は、これを含有しない場合ζζ比較し、残光特性
が著しく改善されていることが認められる。
It is recognized that the afterglow property of the phosphor is significantly improved compared to the case where the phosphor does not contain the phosphor.

本発明に係る螢光体は次のようlこ形成される。The phosphor according to the present invention is formed as follows.

例えば、弗化ランタンと弗化バリウム及び臭化バリウム
に酸化ユーロピウムとアルカリ元素の塩化物あるいは臭
化物等を物理的手段により混合し、るつぼに充填したの
ち、焼成することによって該螢光体を得ることができる
For example, the phosphor can be obtained by mixing lanthanum fluoride, barium fluoride, barium bromide, europium oxide, chloride or bromide of an alkali element, etc. by physical means, filling a crucible, and then firing the mixture. I can do it.

〔発明の実施例〕[Embodiments of the invention]

以下実施例iこよって本発明を説明する。 The present invention will be explained below using Example I.

実施例1 弗化ランタン3.3 f 、弗化バリウム35.8 F
、臭化バリウム60.7f、酸化ユーロピウム0.07
5L 臭化カリウム0.0055’を物理的手段により
混合し、還元性雰囲気中850℃で2時間石英るっほに
て焼成し、0D4LaFs ・0.96 BaFBr 
: 0.0O05Bu 、 0.0001に螢光体を得
る。
Example 1 Lanthanum fluoride 3.3 F, barium fluoride 35.8 F
, barium bromide 60.7f, europium oxide 0.07
5L of potassium bromide 0.0055' was mixed by physical means and fired in a reducing atmosphere at 850°C for 2 hours on a quartz Ruho to form 0D4LaFs 0.96 BaFBr.
: 0.0005Bu, 0.0001 to obtain a phosphor.

実施例2 実施例1の原料において臭化カリウムを0.055’と
して同様の焼成を行ない0.04LaFa * 0.9
6 BaFBr :0D005EL! 、 0.001
に螢光体を得る。
Example 2 The raw material of Example 1 was calcined in the same manner as potassium bromide at 0.055', resulting in 0.04LaFa*0.9.
6 BaFBr:0D005EL! , 0.001
to obtain phosphor.

実施例3 実施例1の原料において臭化カリウムを052として同
様の焼成を行ない0.04LaF3 @ 0.96 B
aFBr :0.0005Ell 、 0.01に螢光
体ヲ得ル。
Example 3 The raw material of Example 1 was calcined in the same manner as potassium bromide as 052, resulting in 0.04LaF3 @ 0.96 B
aFBr: 0.0005Ell, 0.01 with phosphor.

以上の製造方法により得られた螢光体を8QKVpのエ
ックス線で照射したのち、約1時間暗中に放置し、赤色
発光ダイオードによりパルス励起した輝尽発光の10分
の1減衰時間を表1に示す。従来例は臭化カリウムを含
まないことの#丘かは同一の製造方法で得た0、04L
aFs ・0.96 BaFBr : 0.0005E
u螢光体を同一条件にて測定した10分の1減衰時間で
ある。
After the phosphor obtained by the above manufacturing method was irradiated with 8QKVp X-rays, it was left in the dark for about 1 hour, and the decay time of 1/10 of the stimulated luminescence pulse-excited with a red light emitting diode is shown in Table 1. . The conventional example is 0.04L, which was obtained by the same manufacturing method and does not contain potassium bromide.
aFs ・0.96 BaFBr: 0.0005E
This is the 1/10 decay time of the u phosphor measured under the same conditions.

い・Li化ら) 表 1 実施例4 弗化ランタン052.弗化バリウム36.9 y、臭化
バリウム625酸化ユーロピウム0.07!V 、臭化
ルビジウム0.007 Fを物理的手段により混合し、
還元性雰囲気中850℃にて2時間石英るつぼ中で焼成
し、0f106LaF3 ・O’+94BaFBr :
0.0005Eu 、O,0OOIRb螢光体を得る。
Table 1 Example 4 Lanthanum fluoride 052. Barium fluoride 36.9 y, barium bromide 625 europium oxide 0.07 y! V, rubidium bromide 0.007 F mixed by physical means,
Calcinate in a quartz crucible at 850°C for 2 hours in a reducing atmosphere to obtain 0f106LaF3 ・O'+94BaFBr:
A 0.0005Eu, O,0OOIRb phosphor is obtained.

実施例5 実施例4の原料において臭化ルビジウムを0.07fI
として同様の焼成を行ない、0.006LaFs・0.
994BaFBr:O,0O05Eu、0.0OIRb
螢光体を得る。
Example 5 0.07 fI of rubidium bromide in the raw material of Example 4
The same firing was performed as 0.006LaFs・0.
994BaFBr: O, 0O05Eu, 0.0OIRb
Obtain phosphor.

実施例6 実施例4の原料において臭化ルビジウムを0.79とし
て同様の焼成を行ない、0.006LaF、・0994
BaFBr:0000!Ju、0.01几す螢光体を得
る。
Example 6 Similar firing was performed using the raw material of Example 4 with rubidium bromide at 0.79, and 0.006LaF, .0994
BaFBr:0000! Ju, 0.01 liter of phosphor is obtained.

以上の製造法により得られた螢光体を80KVpのエッ
クス線で照射したのち、約1時間暗中に放置し、赤色発
光ダイオードによりパルス励起した輝尽発光の10分の
1減衰時間を表2に示す。従来例は臭化ルビジウムを含
壕ないことのほかは同一の製造方法で得た0、006L
aFs ・0.994BaFBr : 0.0005E
u螢光体を同一条件にて測定した10分の1減衰時間で
ある。
After irradiating the phosphor obtained by the above manufacturing method with X-rays of 80 KVp, it was left in the dark for about 1 hour, and the decay time of 1/10 of the stimulated luminescence pulse-excited with a red light emitting diode is shown in Table 2. . The conventional example is 0,006L obtained by the same manufacturing method except that it does not contain rubidium bromide.
aFs ・0.994BaFBr: 0.0005E
This is the 1/10 decay time of the u phosphor measured under the same conditions.

表 2 実施例7 弗化ランタン4.1F、弗化バリウム43B9.塩化バ
リウム52.OF、酸化ユーロピウム0.09y、塩化
カリウム0.004!Fを物理的手段により混合し、還
元性雰囲気中850℃で約2時間石英るつぼにて焼成し
、004LaFs ・O!:J6BaFCl! : 0
.0005Eu 、 0.0001に螢光体を得る。
Table 2 Example 7 Lanthanum fluoride 4.1F, barium fluoride 43B9. Barium chloride 52. OF, europium oxide 0.09y, potassium chloride 0.004! F was mixed by physical means and fired in a quartz crucible at 850°C for about 2 hours in a reducing atmosphere to form 004LaFs .O! :J6BaFCl! : 0
.. A phosphor is obtained at 0.0005Eu and 0.0001.

実施例8 実施例7の原料において塩化カリウムを0.04 Pと
して同様の焼成を行ない0.04LaFa ・0.96
BaPC/ :0.0O05Eu 、O,0OIK螢光
体を得る。
Example 8 The same firing was performed using the raw material of Example 7 except that potassium chloride was changed to 0.04P to produce 0.04LaFa ・0.96
BaPC/:0.0O05Eu, O,0OIK phosphor is obtained.

実施例9 実施例7の原料において塩化カリウムを049として同
様の焼成を行ない0.04LaFs・0.96BaF’
C/:0.0005Eu 、0.01に螢光体を得る。
Example 9 The same firing was performed using the raw material of Example 7 using potassium chloride as 049 to obtain 0.04LaFs・0.96BaF'
C/: 0.0005Eu, 0.01 to obtain a phosphor.

前項に記述した測定条件にてめた10分の1減衰時間を
表3に示す。従来例は塩化カリウムを含まないことのほ
かは同一の製造法で得たQ、Q4LaF。
Table 3 shows the 1/10 decay time obtained under the measurement conditions described in the previous section. The conventional examples are Q and Q4LaF obtained by the same manufacturing method except that they do not contain potassium chloride.

・096BaFC/ : 0.0005Eu螢光体を同
一条件下ニテ測定した10分の1減衰時間である。
-096BaFC/: 1/10 decay time of 0.0005Eu phosphor measured under the same conditions.

実施例10 弗化ランタン0419.弗化バリウム45.4 F 、
塩化バリウム5399. 酸化ユーロピウム0.09 
F 、塩化ルビビジラム0.006 yを物理的手段に
より混合し、還元性雰囲気中850℃で約2時間石英る
つほにて焼成し、0.006LaFs ・0.994B
aFC/ : O,0O05Eu 、0.0001 R
h螢光体を得る。
Example 10 Lanthanum fluoride 0419. Barium fluoride 45.4 F,
Barium chloride 5399. europium oxide 0.09
F, 0.006 y of rubibidyram chloride was mixed by physical means and fired in a quartz rutsuho at 850°C for about 2 hours in a reducing atmosphere to produce 0.006LaFs ・0.994B.
aFC/: O,0O05Eu, 0.0001R
Obtain h phosphor.

実施例11 実施例10の原料において塩化ルビジウムを0.06 
fJとして同様の焼成を行ない0.006LaF、−0
994BaFC/:0.0005Eu、0.001Rb
 螢光体を得る。
Example 11 In the raw material of Example 10, rubidium chloride was added to 0.06
Similar firing was performed as fJ to give 0.006LaF, -0
994BaFC/: 0.0005Eu, 0.001Rb
Obtain phosphor.

実施例12 実施例10の原料において塩化ルビジウムを0.67と
して同様の焼成を行ない0.006LaFs ・099
4BaFCe:O,0O05Eu 、0.01Rb 螢
光体ヲ得ル。
Example 12 The same firing was performed using the raw material of Example 10 with rubidium chloride being changed to 0.67 to produce 0.006LaFs 0.099
4BaFCe: O, 0O05Eu, 0.01Rb phosphor obtained.

前項に記述した測定条件にてめた10分の1減衰時間を
表4に示す。従来例は塩化ルビジウムを含寸ないことの
ほかは同一の製造法で得た0、006LaFs−0,9
94BaFCl :O,0O05Eu 、0.0IRb
螢光体を同一条件下にて測定した10分の1減衰時間で
ある。
Table 4 shows the 1/10 decay time obtained under the measurement conditions described in the previous section. The conventional example is 0,006LaFs-0,9 obtained by the same manufacturing method except that it does not contain rubidium chloride.
94BaFCl: O, 0O05Eu, 0.0IRb
This is the 1/10 decay time of the phosphor measured under the same conditions.

弗化ランタン4.2 F 、弗化ストロンチウム32.
2 P 。
Lanthanum fluoride 4.2 F, strontium fluoride 32.
2P.

臭化ストコニチウム63B?、酸化ユーロピウム01)
47ノ、臭化カリウム0.006 Fを物理的手段lこ
より混合し、還元性雰囲気中850℃で2時間石英るつ
ぼにて焼成し、0.04LaF、・018rFBr:0
.0005Eu、0OO01K螢光体を得る。
Stoconitium bromide 63B? , europium oxide 01)
47, 0.006 F of potassium bromide was mixed by physical means, and calcined in a quartz crucible at 850°C for 2 hours in a reducing atmosphere to yield 0.04 LaF, 0.018 rFBr:0.
.. 0005Eu, 0OO01K phosphors are obtained.

実施例14 実施例13の原料tこおいて臭化カリウムを006ti
として同様の焼成を行ない、0.04LaFs ・0.
96SrFBr :0.0005Bu 、 0.001
に螢光体を得る。
Example 14 Potassium bromide was added to the raw material t of Example 13.
The same firing was performed as 0.04LaFs・0.
96SrFBr: 0.0005Bu, 0.001
to obtain phosphor.

実施例15 実施例13の原料において臭化カリウムを0.67とし
て同様の焼成を行ない、0.04LaFs−0,968
rFBr :0.0005Eu 、0.OIK 螢光体
を得る。
Example 15 The raw material of Example 13 was calcined in the same manner as potassium bromide at 0.67, resulting in 0.04LaFs-0,968.
rFBr: 0.0005Eu, 0. Obtain OIK phosphor.

以上の製造法により得られた螢光体を80KVpのエッ
クス線で照射したのち、約1時間暗中に放置し、赤色発
光ダイオードによりパルス励起した輝尽発光の10分の
1減衰時間を表5に示す。従来例は臭化カリウムを含神
ないことのほかは同一の製造法で得た0、04LaFs
 ・0.96S rFBr : 0.0005Eu 螢
光体を同一条件にて測定した10分の1減衰時間である
After irradiating the phosphor obtained by the above manufacturing method with X-rays of 80 KVp, it was left in the dark for about 1 hour, and the decay time of 1/10 of the stimulated luminescence pulse-excited with a red light emitting diode is shown in Table 5. . The conventional example is 0,04LaFs obtained by the same manufacturing method except that it does not contain potassium bromide.
・0.96S rFBr: 0.0005Eu This is a 1/10 decay time measured under the same conditions.

表 5 実施例16 弗化ランタン7.9L弗化カルシウム38り、塩化カル
シウム54g、酸化ユーロピウム0.095’、臭化カ
リウム0.019を物理的手段により混合し、還元雰囲
気中850℃、で2時間石英る。つばにて焼成し、0.
04LaFs ・0.96CaFCl! : 0.00
05Eu r 0.0001に螢光体を得る。
Table 5 Example 16 7.9 L of lanthanum fluoride, 38 L of calcium fluoride, 54 g of calcium chloride, 0.095' of europium oxide, and 0.019 of potassium bromide were mixed by physical means, and the mixture was heated at 850°C in a reducing atmosphere for 2 hours. Time quartz. Fired at the brim, 0.
04LaFs ・0.96CaFCl! : 0.00
The phosphor is obtained at 0.05Eur 0.0001.

実施例17 実施例16の原料において臭化カリウムを0.1gとし
て同様の焼成を行ない、0.04LaF3・0.96C
aFCl!:0f1005Fiu 、0.001に螢光
体を得る。
Example 17 The same calcination was performed using the raw material of Example 16 with 0.1 g of potassium bromide, resulting in 0.04LaF3・0.96C.
aFCl! :0f1005Fiu, 0.001 to obtain fluorophore.

実施例18 実施例16の原料において臭化カリウムを将Vとして同
様の焼成を行ない、0.04LaFs ’ 0.96C
aFC/ :0.0005Eu、0.01に螢光体を得
る。
Example 18 The raw material of Example 16 was calcined in the same manner using potassium bromide as a general solvent, resulting in 0.04LaFs' 0.96C.
Obtain the fluorophore at aFC/: 0.0005Eu, 0.01.

以上の製造法により得られた螢光体を8 Qicvpの
エックス線で照射したのち約1時間暗中に放置し、赤色
発光ダイオードによりパルス励起した輝尽発光の10分
の1減衰時間を表6に示す。従来例は臭化カリウムを含
まないことのtlかは同一製造法で得た(MJ4LaF
s ・096CaFCl!:01:)O05Bu 螢光
体を同一条件にて測定した10分の1減衰時間である。
The phosphor obtained by the above manufacturing method was irradiated with X-rays of 8 Qicvp and then left in the dark for about 1 hour, and the decay time of 1/10 of the stimulated luminescence pulse-excited with a red light emitting diode is shown in Table 6. . In the conventional example, the tl of potassium bromide-free was obtained by the same manufacturing method (MJ4LaF
s ・096CaFCl! :01:) This is the 1/10 decay time of the O05Bu phosphor measured under the same conditions.

(上・L1夕厖) 表 6 〔発明の効果〕 以上のように本発明に係るアルカリ元素を微量含有した
ユーロピウム付活LaF、・AX、螢光体は、輝尽輝度
が高く、シかも残光特性の改善された螢光体であり、蓄
積型放射線像変換プレートへの応用において、該螢光体
は非常に利用価値の高い螢光体である。
(Top, L1 Yuku) Table 6 [Effects of the Invention] As described above, the europium-activated LaF, AX, and phosphors containing trace amounts of alkali elements according to the present invention have high photostimulated luminance and do not leave any stains. It is a phosphor with improved optical properties, and is very useful in application to storage type radiation image conversion plates.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る螢光体のEu濃度aと輝尽輝度
との関係を示す図、第2図乃至第4図は、本発明に係る
螢光体の母体組成比ψと相対輝尽輝度との関係を示す図
、第5図及び第6図は、本発明に係る螢光体のアルカリ
金属添加量と輝尽輝度の関係を示す図、第7図は本発明
に係る螢光体の輝尽発光の残光特性を示す図、第8図乃
至第10図は本発明ζこ係る螢光体のアルカリ金属添加
による輝尽発光の残光特性改善効果を示す図である。 代理人弁理士 則 近 憲 佑 (ほか1名)9 第 l 口 α 第2図 (71/hrL) 第 81図 第4図 第 5 図 第 7 図 特開昭GO−11579(7) A棗g午i■(マイクロケンン
FIG. 1 is a diagram showing the relationship between the Eu concentration a and the photostimulated brightness of the phosphor according to the present invention, and FIGS. 2 to 4 are diagrams showing the relationship between the matrix composition ratio ψ and the Figures 5 and 6 are diagrams showing the relationship between the amount of alkali metal added and the stimulated luminance of the phosphor according to the present invention, and Figure 7 is a diagram showing the relationship between the stimulated luminance and the phosphor according to the present invention Figures 8 to 10, which show the afterglow characteristics of stimulated luminescence of a luminescent material, are diagrams showing the effect of improving the afterglow characteristic of stimulated luminescence by adding an alkali metal to a phosphor according to the present invention. Representative Patent Attorney Noriyuki Chika (and 1 other person) 9 No. l Mouth α Fig. 2 (71/hrL) Fig. 81 Fig. 4 Fig. 5 Fig. 7 JP-A-11579 (7) A Natsume g Microken

Claims (1)

【特許請求の範囲】 一般式が nLaF3 ・mAX2: aEu 、 bDで表わさ
れる ゛ 螢光体。ただ しAはBa 、Sr 、Caの少なくとも1種からなる
アルカリ土類元素、XはF 、cl!、Brの少なくと
も1種からなるハロゲン元素、Dはに、Rbの少なくと
も1種からなるアルカリ元素、n7mは1xlO”−n
7m < 7×161.aはI X 10−’≦a <
 3X16″1.bは0<b<2XIOである。
[Claims] A phosphor having the general formula nLaF3.mAX2: aEu, bD. However, A is an alkaline earth element consisting of at least one of Ba, Sr, and Ca, and X is F, cl! , a halogen element consisting of at least one type of Br, D is an alkali element consisting of at least one type of Rb, n7m is 1xlO"-n
7m < 7×161. a is I X 10-'≦a<
3X16″1.b is 0<b<2XIO.
JP11703783A 1983-06-30 1983-06-30 Phosphor Granted JPS6011579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11703783A JPS6011579A (en) 1983-06-30 1983-06-30 Phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11703783A JPS6011579A (en) 1983-06-30 1983-06-30 Phosphor

Publications (2)

Publication Number Publication Date
JPS6011579A true JPS6011579A (en) 1985-01-21
JPS6335189B2 JPS6335189B2 (en) 1988-07-13

Family

ID=14701869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11703783A Granted JPS6011579A (en) 1983-06-30 1983-06-30 Phosphor

Country Status (1)

Country Link
JP (1) JPS6011579A (en)

Also Published As

Publication number Publication date
JPS6335189B2 (en) 1988-07-13

Similar Documents

Publication Publication Date Title
US5028509A (en) Method for converting radiographic image, radiation energy storage panel having stimulable phosphor-containing layer and alkali halide phosphor
EP0174875B1 (en) Method for converting radiographic image and radiation energy storage panel having stimulable phosphor-containing layer
JPH0344115B2 (en)
JPS6230237B2 (en)
JPS6121499B2 (en)
JPS6345433B2 (en)
JP4214681B2 (en) Method for producing rare earth activated alkaline earth metal fluoride halide photostimulable phosphor particles
JPH0324189A (en) Phosphor
JPH0784589B2 (en) Radiation image conversion method and radiation image conversion panel used in the method
JPS59109000A (en) Method of converting radiation image
JP4304998B2 (en) Radiation image conversion panel and method for manufacturing radiation image conversion panel
JPS6011579A (en) Phosphor
JPS5945707B2 (en) fluorescent material
JPH0784591B2 (en) Radiation image conversion method
JPS59102981A (en) Fluorescent material
JPS6144988A (en) Radiation image conversion method
JPH0514751B2 (en)
JPH058754B2 (en)
JPS6150118B2 (en)
JPS60101179A (en) Production of phosphor
JPH09291277A (en) Cerium-activated barium fluoride halide-based fluorescent substance and radiation image-converting panel
NL8702080A (en) CRYSTALLINE WITH RARE NATURAL METALS ACTIVATED LANTANOXIDE HALOGENIDE LUMINOUS.
JPH0527674B2 (en)
JPH0460512B2 (en)
JPS60170687A (en) X-ray image conversion plate