JPH0514751B2 - - Google Patents

Info

Publication number
JPH0514751B2
JPH0514751B2 JP59196367A JP19636784A JPH0514751B2 JP H0514751 B2 JPH0514751 B2 JP H0514751B2 JP 59196367 A JP59196367 A JP 59196367A JP 19636784 A JP19636784 A JP 19636784A JP H0514751 B2 JPH0514751 B2 JP H0514751B2
Authority
JP
Japan
Prior art keywords
phosphor
image conversion
radiation image
general formula
conversion method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59196367A
Other languages
Japanese (ja)
Other versions
JPS6173787A (en
Inventor
Fumio Shimada
Akiko Kano
Hisanori Tsuchino
Koji Amitani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP19636784A priority Critical patent/JPS6173787A/en
Priority to EP19850306567 priority patent/EP0174875B1/en
Priority to DE8585306567T priority patent/DE3578081D1/en
Publication of JPS6173787A publication Critical patent/JPS6173787A/en
Priority to US07/344,543 priority patent/US5028509A/en
Publication of JPH0514751B2 publication Critical patent/JPH0514751B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conversion Of X-Rays Into Visible Images (AREA)
  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はタリウム元素付活系で付活したアルカ
リハライド蛍光体を用いた放射線画像変換方法に
関する。 (従来技術) 従来アルカリハライド蛍光体としてはCsI:
Na、CsI:Tl、CsBr:Tl、RbBr:Eu、RbCl:
Eu、KCl:Tl、LiF:Mg等が知られており、こ
の中でCsI:NaやCsI:TlはX線用I.I.管に応用さ
れており、CsBr:Tlも同様な用途への応用が試
みられている。またRbBr:Eu、、RbCl:Euや
LiF:Mgは熱輝尽性蛍光体であることが知られ
ており、KCl:Tlも輝尽現象を示すことが知られ
ている。 ところで、この蛍光体は輝尽性蛍光体として被
写体を透過した放射線を吸収せしめ、その後長波
長可視光および赤外線の一方またはその両方を照
射することによつて蛍光体が蓄積した放射線エネ
ルギーを蛍光として放出させ、それを検出するこ
とによつて被写体の放射線像を得る蓄積型放射線
画像変換パネルとしても利用できることがわかつ
ているが、このような放射線画像変換パネルとし
て使用する際には、人が被写体となる場が多いの
で、被写体の被曝線量をできるだけ軽減させる必
要から、それに用いる蛍光体としてはより輝尽発
光効率の高い蛍光体が望まれている。また、読取
時間と解像力及び放射線画像変換パネルの読取面
積の関係から実用上1画素当たりの走査時間は
10μsec程度であるので、これ以下の輝尽発光寿命
を有する蛍光体が望まれている。さらに、また読
取時に輝尽発光による残光があるとSN比を劣化
させる原因となるので、この残光現象を示さない
蛍光体が望まれている。即ちこれらの要望を満す
放射線画像変換方法が望まれている。 (発明の目的) 本発明はこのような要望に基づいてなされたも
のであり、より高輝度の輝尽発光を示す蛍光体、
輝尽励起した際の発光時間が短い蛍光体、さらに
また輝尽発光による残光がない蛍光体を用いた放
射線画像変換方法を提供することを目的としてい
る。 (発明の構成) 本発明者等は前記本発明の目的に沿つて検討し
た結果; 被写体を透過した放射線を下記一般式()で
示されるタリウム元素付活ハロゲン化ルビジウム
輝尽性蛍光体の少なくとも一つに吸収せしめ、し
かる後、この輝尽性蛍光体を可視光及び/または
赤外線から選ばれる電磁波で励起して前記輝尽性
蛍光体が蓄積している前記放射線のエネルギーを
蛍光として放出せしめ、この蛍光を検出して放射
線画像を得ることを特徴とする放射線画像変換方
法によつて達成される。 一般式() (1−x)RbBr・xM〓I・aM〓X′2・bM〓X″3:cTl
・dA (ただし、M〓はRbまたはCsから選ばれる少な
くとも一種のアルカリ金属であり、M〓はBe,
Mg,Ca,Sr,Ba,Zn,CdおよびNiから選ばれ
る少なくとも一種の二価金属であり、M〓はSc,
Y,La,Pm,Lu,Al,GaおよびInから選ばれ
る少なくとも一種の三価金属であり、X′および
X″はF,Cl,BrおよびIから選ばれる少なくと
も一種のハロゲンであり、AはEu,Tb,Ce,
Tm,Dy,Pr,Ho,Nd,Yb,Er,Gd,Sm,
Na,Ag,Cu,Pb,BiおよびMnから選ばれる少
なくとも一種の金属である。 また、x,a,b,cおよびdはそれぞれ、0
<x<0.9、0≦a<0.5、0≦b<0.5、0<c<
0.2、0≦d<0.2の範囲の数値である。) 前記一般式(1)を有する本発明に係るアルカリハ
ライド蛍光体に、X線、紫外線、電子線などの放
射線を照射したのち、前記蛍光体を可視光および
赤外線の一方またはその両方を照射して輝尽励起
すると、従来より知られているアルカリハライド
蛍光体を用いて同様の操作を行つた場合に比較し
て明らかに強い輝尽発光を示す。 また前記組成式を有する本発明に係るアルカリ
ハライド蛍光体に、X線、紫外線、電子線などの
放射線を照射したのち、前記蛍光体を可視光およ
び赤外線の一方またはその両方をその強度が矩形
に変化するようにして照射し輝尽励起すると、従
来より知られているアルカリハライド蛍光体を用
いて同様の操作を行つた場合に比較して明らかに
輝尽励起光に対する応答性が良く、また、輝尽の
残光も少ない。 即ち本発明に係る組成の輝尽性蛍光体は可視か
ら赤外の領域の電磁波で励起すると従来公知の輝
尽性蛍光体よりも高輝度の輝尽発光を示し、しか
も近赤外領域で特に実用的に高感度な放射線画像
変換方法が得られるものである。 本発明の放射線画像変換方法は、前記一般式
()の輝尽性蛍光体を含有する放射線画像変換
パネルを用いる形態で実施される。 放射線画像変換パネルは、従来から知られてい
るように基本的には支持体と、その片面あるいは
両面に設けられた少なくとも一層の輝尽性蛍光体
層とからなるものである。また一般に、この輝尽
性蛍光体層の支持体とは反対側の表面には輝尽性
蛍光体層を化学的あるいは物理的に保護するため
の保護層が設けられている。すなわち、本発明の
放射線画像変換方法は、支持体と、この支持体上
に設けられた輝尽性蛍光体を含有する少なくとも
一層の輝尽性蛍光体層とから実質的になる放射線
画像変換パネルにおいて、該輝尽性蛍光体層の内
の少なくとも一層が、前記一般式()で表わさ
れる輝尽性蛍光体を含有することを特徴とする放
射線画像変換パネルを用いて実施される。 前記一般式()の輝尽性蛍光体はX線などの
放射線を吸収した後、可視あるいは赤外領域の
光、好ましくは500〜900nmの波長領域の光(励
起光)の照射を受けると輝尽発光を示す。従つ
て、被写体を透過した、あるいは被写体から発せ
られた放射線を、その放射線量に比例して放射線
画像変換パネルの輝尽性蛍光体層に含まれる輝尽
性蛍光体に吸収させ、前記放射線画像変換パネル
上に被写体あるいは被写体の放射線画像を、放射
線エネルギーを蓄積した潜像として形成させる。
次にこの潜像を、500nm以上の波長領域の励起光
で励起することにより、蓄積した放射線エネルギ
ーに比例した輝尽発光を示放射させ、この輝尽発
光を光検出器で光電的に読み取ることにより、放
射線エネルギーを蓄積した潜像を可視画像化する
ことが可能となる。 本発明の方法に用いられる励起光源としては、
放射線画像変換パネルに使用される輝尽性蛍光体
の輝尽励起波長を含む光源が使用でき、He−Ne
レーザ半導体レーザ光などが好適である。 光検出器としては、従来から用いられる光電
管、光電子倍増管、フオトダイオードなどが用い
られる。 次に本発明に係るアルカリハライド蛍光体につ
いて詳しく説明する。 本発明の前記一般式()で表わされる蛍光体
は以下に述べる製造方法で製造される。 先ず蛍光体原料としては、 () RbBr () RbI,CsIのうちの1種 () BeF2,BeCl2,BeBr2,BeI2,MgF2
MgCl2,MgBr2,MgI2,CaF2,CaCl2
CaBr2,CaI2,SrF2,SrCl2,SrBr2,SrI2
BaF2,BaCl2,BaBr2,BaBr2・2H2O,BaI2
ZnF2,ZnCl2,ZnBr2,ZnI2,CdF2,CdCl2
CdBr2,CdI2,NiF2,NiCl2,NiBr2,NiI2
うちの1種もしくは2種以上 () ScF3,ScCl3,ScBr3,ScI3,YF3,YCl3
YBr3,Yl3,LaF3,LaCl3,LaBr3,LaI3
PmF3,PmCl3,PmBr3,PmI3,LuF3
LuCl3,LuBr3,LuI3,AlF3,AlCl3,AlBr3
AlI3,GaF3,GaCl3,GaBr3,GaI3,InF3
InCl3,InBr3,InI3のうちの1種もしくは2種
以上、 () TIF,TlCl,TlBr,TlI,Tl2O,Hl2O3
のタリウム化合物のうちの1種もしくは2種以
上、 および () Eu化合物群、Tb化合物群、Ce化合物群、
Tm化合物群、Dy化合物群、Pr化合物群、Ho
化合物群、Nd化合物群、Yb化合物群、Er化合
物群、Gd化合物群、Sm化合物群、Na化合物
群、Ag化合物群、Cu化合物群、Pb化合物群、
Bi化合物群、Mn化合物群のうちの1種もしく
は2種以上の共付活剤原料が用いられる。 前記原料を化学量論的に (1−x)RbBr・xM〓I・aM〓X′2・bM〓
X″3:cTl・dA(但し、M〓はRbまたはCsから選
ばれる少なくとも一種のアルカリ金属であり、
M〓はBe,Mg,Ca,Sr,Ba,Zn,CdおよびNi
から選ばれる少なくとも一種の二価金属であり、
M〓はSc,Y,La,Pm,Lu,Al,GaおよびIn
から選ばれる少なくとも一種の三価金属であり、
X′およびX″はF,Cl,BrおよびIから選ばれる
少なくとも一種のハロゲンであり、AはEu,
Tb,Ce,Tm,Dy,Pr,Ho,Nd,Yb,Gd,
Sm,Na,Ag,Cu,Pb,BiおよびMnから選ば
れる少なくとも一種の金属である。 また、x,a,b,cおよびはそれぞれ0<x
<0.9、0≦a<0.5、0≦b<0.5、0<c<0.2、
0≦d<0.2の範囲の数値である。) なる混合組成式となるように上記()〜()
の蛍光体原料を秤量し、ボールミル、ミキサーミ
ル、乳鉢等を用いて充分に混合する。 本発明に係る蛍光体においては、輝尽発光輝
度、輝尽励起光に対する応答性あるいは輝尽の残
光の点から、前記組成式のbおよびcはそれぞ
れ、0≦b<10-2および10-6≦c≦0.1の範囲で
あることが好ましく、M〓はY,La,Lu,Al,
GaおよびInから選ばれる少なくも一種の三価金
属であることが好ましく、X″はF,ClおよびBr
から選ばれる少なくも一種のハロゲンであること
が好ましく、M〓はBe,Mg,Ca,SrおよびBaか
ら選ばれる少なくも一種のアルカリ土類金属であ
ることが好ましい。 次に、得られた蛍光体原料混合物を石英ルツボ
或はアルミナルツボ等の耐熱性容器に充填して電
気炉中で焼成を行う。焼成温度は450乃至1000℃
が適当である。焼成時間は原料混合物の充填量、
焼成温度等によつて異なるが、一般には0.5乃至
6時間が適当である。焼成雰囲気としては少量の
水素ガスを含む窒素ガス雰囲気、少量の一酸化炭
素を含む炭酸ガス雰囲気等の弱還元性雰囲気、あ
るいは窒素ガス雰囲気、アルゴンガス雰囲気等の
中性雰囲気が好ましい。なお、上記の焼成条件で
一度焼成した後、焼成物を電気炉から取り出して
粉砕し、しかる後焼成物粉末を再び耐熱性容器に
充填して電気炉に入れ、上記と同じ焼成条件で再
焼成を行えば蛍光体の発光輝度を更に高めること
ができる。また、焼成物を焼成温度より室温に冷
却する際、焼成物を電気炉から取り出して空気中
で放冷することによつても所望の蛍光体を得るこ
とができるが、焼成時と同じ、弱還元性雰囲気も
しくは中性雰囲気のままで冷却する方が、得られ
た蛍光体の輝尽発光輝度をさらに高めることがで
きる。また、焼成物を電気炉内で加熱部より冷却
部へ移動させて、弱還元性雰囲気もしくは中性雰
囲気で急冷することにより、得られた蛍光体の輝
尽発光輝度をより一層高めることができる。 焼成後得られる蛍光体を粉砕し、その後洗浄、
乾燥、篩い分け等の蛍光体製造に於いて一般に採
用されている各種操作によつて処理して本発明に
係る蛍光体を得る。 以上のようにして得られた本発明の蛍光体 (1−x)RbBr・xM〓I・aM〓X′2・bM〓
X″3:cTl・dAの輝尽発光スペクトルを第1図に
例示した。具体的な組成は下記の通りである。 0.97RbBr・0.03CsF:0.002Tl すなわち前記蛍光体に80KVpのX線を照射し
た後、該蛍光体を発振波長が780nmの半導体レー
ザーで励起することによつて測定した発光スペク
トルである。 また第2図に本発明の蛍光体 (1−x)RbBr・xM〓I・aM〓X′2・bM〓
X″3:cTl・dAの輝尽励起スペクトルの一例を図
示した。80KVpのX線を照射した前記蛍光体の
輝尽励起スペクトルである。 (実施例) 次に実施例及び参照例、比較例によつて本発明
を具体的に説明する。尚試料(1)〜(9)及び(13)〜(18)は
参照例である。 実施例1、参照例1 各蛍光体原料を下記(1)〜(18)に示されるように秤
量した後、ボールミルを用いて充分に混合して18
種類の蛍光体原料混合物を調合した。
(Industrial Application Field) The present invention relates to a radiation image conversion method using an alkali halide phosphor activated with a thallium element activation system. (Prior art) CsI is a conventional alkali halide phosphor:
Na, CsI: Tl, CsBr: Tl, RbBr: Eu, RbCl:
Eu, KCl:Tl, LiF:Mg, etc. are known, and among these, CsI:Na and CsI:Tl are applied to X-ray II tubes, and attempts are being made to apply CsBr:Tl to similar applications. It is being Also, RbBr:Eu, RbCl:Eu and
LiF:Mg is known to be a thermally photostimulable phosphor, and KCl:Tl is also known to exhibit a photostimulable phenomenon. By the way, this phosphor is a stimulable phosphor that absorbs the radiation that passes through the subject, and then irradiates it with long-wavelength visible light and/or infrared rays, thereby converting the accumulated radiation energy into fluorescence. It is known that it can also be used as a storage type radiation image conversion panel that obtains a radiation image of a subject by emitting radiation and detecting it. Since there are many situations where this occurs, it is necessary to reduce the exposure dose of the subject as much as possible, so a phosphor with higher stimulated luminescence efficiency is desired as the phosphor used there. In addition, due to the relationship between reading time, resolution, and reading area of the radiation image conversion panel, in practice, the scanning time per pixel is
Since this is about 10 μsec, a phosphor having a stimulated luminescence lifetime shorter than this is desired. Furthermore, if there is afterglow due to stimulated luminescence during reading, it will cause a deterioration of the signal-to-noise ratio, so a phosphor that does not exhibit this afterglow phenomenon is desired. That is, a radiation image conversion method that satisfies these demands is desired. (Object of the invention) The present invention was made based on such a demand, and provides a phosphor that exhibits stimulated luminescence with higher brightness,
It is an object of the present invention to provide a radiation image conversion method using a phosphor that has a short luminescence time when stimulated and is also free from afterglow due to stimulated emission. (Structure of the Invention) As a result of studies conducted by the present inventors in accordance with the object of the present invention; After that, this stimulable phosphor is excited with electromagnetic waves selected from visible light and/or infrared rays, and the energy of the radiation accumulated in the stimulable phosphor is released as fluorescence. This is achieved by a radiation image conversion method characterized in that a radiation image is obtained by detecting this fluorescence. General formula () (1-x) RbBr・xM〓I・aM〓X′ 2・bM〓X″ 3 :cTl
・dA (However, M〓 is at least one kind of alkali metal selected from Rb or Cs, and M〓 is Be,
At least one divalent metal selected from Mg, Ca, Sr, Ba, Zn, Cd and Ni, M〓 is Sc,
At least one trivalent metal selected from Y, La, Pm, Lu, Al, Ga and In, and X' and
X'' is at least one kind of halogen selected from F, Cl, Br and I, and A is Eu, Tb, Ce,
Tm, Dy, Pr, Ho, Nd, Yb, Er, Gd, Sm,
At least one metal selected from Na, Ag, Cu, Pb, Bi, and Mn. Also, x, a, b, c and d are each 0
<x<0.9, 0≦a<0.5, 0≦b<0.5, 0<c<
0.2, a numerical value in the range of 0≦d<0.2. ) The alkali halide phosphor according to the present invention having the general formula (1) is irradiated with radiation such as X-rays, ultraviolet rays, and electron beams, and then the phosphor is irradiated with visible light and/or infrared rays. When stimulated by photostimulation, it exhibits clearly stronger stimulated luminescence than when the same operation is performed using conventionally known alkali halide phosphors. Further, after irradiating the alkali halide phosphor according to the present invention having the above compositional formula with radiation such as X-rays, ultraviolet rays, and electron beams, the phosphor is irradiated with visible light and/or infrared rays in a rectangular shape with an intensity of visible light and/or infrared rays. When the phosphor is irradiated in a variable manner for photostimulation, the response to the photostimulation excitation light is clearly better than when the same operation is performed using a conventionally known alkali halide phosphor, and There is also little afterglow from Koujin. That is, the stimulable phosphor having the composition according to the present invention exhibits stimulated luminescence with higher brightness than conventionally known stimulable phosphors when excited by electromagnetic waves in the visible to infrared region, and particularly in the near-infrared region. A practically highly sensitive radiation image conversion method can be obtained. The radiation image conversion method of the present invention is carried out using a radiation image conversion panel containing the stimulable phosphor of the general formula (). As is conventionally known, a radiation image conversion panel basically consists of a support and at least one stimulable phosphor layer provided on one or both sides of the support. Generally, a protective layer for chemically or physically protecting the stimulable phosphor layer is provided on the surface of the stimulable phosphor layer opposite to the support. That is, the radiation image conversion method of the present invention provides a radiation image conversion panel consisting essentially of a support and at least one stimulable phosphor layer containing a stimulable phosphor provided on the support. The method is carried out using a radiation image conversion panel characterized in that at least one of the stimulable phosphor layers contains a stimulable phosphor represented by the general formula (). The stimulable phosphor of the general formula () absorbs radiation such as X-rays and then radiates when irradiated with light in the visible or infrared region, preferably light in the wavelength range of 500 to 900 nm (excitation light). Shows exhaustion. Therefore, the radiation transmitted through the subject or emitted from the subject is absorbed by the stimulable phosphor included in the stimulable phosphor layer of the radiation image conversion panel in proportion to the radiation dose, and the radiation image is converted into a radiation image. A subject or a radiation image of the subject is formed on a conversion panel as a latent image in which radiation energy is accumulated.
Next, this latent image is excited with excitation light in a wavelength range of 500 nm or more to emit stimulated luminescence proportional to the accumulated radiation energy, and this stimulated luminescence is read photoelectrically with a photodetector. This makes it possible to visualize a latent image in which radiation energy has been accumulated. The excitation light source used in the method of the present invention includes:
A light source that includes the stimulable excitation wavelength of the stimulable phosphor used in radiation image conversion panels can be used, and He-Ne
Laser semiconductor laser light and the like are suitable. As the photodetector, a conventionally used phototube, photomultiplier tube, photodiode, or the like is used. Next, the alkali halide phosphor according to the present invention will be explained in detail. The phosphor represented by the general formula () of the present invention is manufactured by the manufacturing method described below. First, as a phosphor raw material, one of () RbBr () RbI, CsI () BeF 2 , BeCl 2 , BeBr 2 , BeI 2 , MgF 2 ,
MgCl 2 , MgBr 2 , MgI 2 , CaF 2 , CaCl 2 ,
CaBr 2 , CaI 2 , SrF 2 , SrCl 2 , SrBr 2 , SrI 2 ,
BaF 2 , BaCl 2 , BaBr 2 , BaBr 2・2H 2 O, BaI 2 ,
ZnF 2 , ZnCl 2 , ZnBr 2 , ZnI 2 , CdF 2 , CdCl 2 ,
One or more of CdBr 2 , CdI 2 , NiF 2 , NiCl 2 , NiBr 2 , NiI 2 () ScF 3 , ScCl 3 , ScBr 3 , ScI 3 , YF 3 , YCl 3 ,
YBr 3 , Yl 3 , LaF 3 , LaCl 3 , LaBr 3 , LaI 3 ,
PmF 3 , PmCl 3 , PmBr 3 , PmI 3 , LuF 3 ,
LuCl 3 , LuBr 3 , LuI 3 , AlF 3 , AlCl 3 , AlBr 3 ,
AlI 3 , GaF 3 , GaCl 3 , GaBr 3 , GaI 3 , InF 3 ,
One or more of InCl 3 , InBr 3 , InI 3 , () One or more of thallium compounds such as TIF, TlCl, TlBr, TlI, Tl 2 O, Hl 2 O 3 , and () Eu compound group, Tb compound group, Ce compound group,
Tm compound group, Dy compound group, Pr compound group, Ho
Compound group, Nd compound group, Yb compound group, Er compound group, Gd compound group, Sm compound group, Na compound group, Ag compound group, Cu compound group, Pb compound group,
One or more co-activator raw materials selected from the Bi compound group and the Mn compound group are used. The above raw materials are stoichiometrically (1-x)RbBr・xM〓I・aM〓X′ 2・bM〓
X″ 3 : cTl・dA (However, M〓 is at least one kind of alkali metal selected from Rb or Cs,
M〓 is Be, Mg, Ca, Sr, Ba, Zn, Cd and Ni
at least one divalent metal selected from
M〓 is Sc, Y, La, Pm, Lu, Al, Ga and In
at least one trivalent metal selected from
X' and X'' are at least one kind of halogen selected from F, Cl, Br and I, and A is Eu,
Tb, Ce, Tm, Dy, Pr, Ho, Nd, Yb, Gd,
At least one metal selected from Sm, Na, Ag, Cu, Pb, Bi, and Mn. Also, x, a, b, c and each are 0<x
<0.9, 0≦a<0.5, 0≦b<0.5, 0<c<0.2,
It is a numerical value in the range of 0≦d<0.2. ) The above () ~ () so that the mixed composition formula becomes
The phosphor raw materials are weighed and thoroughly mixed using a ball mill, mixer mill, mortar, etc. In the phosphor according to the present invention, b and c in the composition formula are 0≦b<10 -2 and 10 -6 ≦c≦0.1, and M〓 is Y, La, Lu, Al,
Preferably, it is at least one trivalent metal selected from Ga and In, and X″ is F, Cl and Br.
Preferably, M is at least one halogen selected from Be, Mg, Ca, Sr, and Ba. Next, the obtained phosphor raw material mixture is filled into a heat-resistant container such as a quartz crucible or an aluminum crucible, and fired in an electric furnace. Firing temperature is 450 to 1000℃
is appropriate. The firing time depends on the filling amount of the raw material mixture,
Although it varies depending on the firing temperature etc., 0.5 to 6 hours is generally appropriate. The firing atmosphere is preferably a weakly reducing atmosphere such as a nitrogen gas atmosphere containing a small amount of hydrogen gas, a carbon dioxide gas atmosphere containing a small amount of carbon monoxide, or a neutral atmosphere such as a nitrogen gas atmosphere or an argon gas atmosphere. In addition, after firing once under the above firing conditions, the fired product is taken out of the electric furnace and pulverized, and then the fired product powder is again filled into a heat-resistant container, placed in the electric furnace, and re-fired under the same firing conditions as above. If this is done, the luminance of the phosphor can be further increased. In addition, when cooling the fired product from the firing temperature to room temperature, the desired phosphor can also be obtained by taking the fired product out of the electric furnace and leaving it to cool in the air. Cooling in a reducing atmosphere or a neutral atmosphere can further increase the stimulated luminance of the obtained phosphor. In addition, by moving the fired product from the heating section to the cooling section in the electric furnace and rapidly cooling it in a weakly reducing atmosphere or neutral atmosphere, the stimulated luminescence brightness of the obtained phosphor can be further increased. . The phosphor obtained after firing is crushed, then washed,
The phosphor according to the present invention is obtained by processing by various operations generally employed in the production of phosphors, such as drying and sieving. Phosphor of the present invention obtained as above (1-x)RbBr・xM〓I・aM〓X′ 2・bM〓
The stimulated emission spectrum of X″ 3 : cTl・dA is illustrated in Figure 1. The specific composition is as follows: 0.97RbBr・0.03CsF: 0.002Tl In other words, the phosphor is irradiated with X-rays of 80 KVp. This is the emission spectrum measured by exciting the phosphor with a semiconductor laser with an oscillation wavelength of 780 nm. 〓X′ 2・bM〓
X″ 3 : An example of the photostimulation spectrum of cTl・dA is illustrated. This is the photostimulation spectrum of the phosphor irradiated with 80KVp X-rays. (Example) Next, Examples, Reference Examples, and Comparative Examples The present invention will be specifically explained using the following. Samples (1) to (9) and (13) to (18) are reference examples. Example 1, Reference Example 1 Each phosphor raw material was prepared using the following (1) ) to (18), mix thoroughly using a ball mill, and
Various phosphor raw material mixtures were prepared.

【表】【table】

【表】【table】

【表】 次に前記18種類の蛍光体原料混合物をそれぞれ
石英ボートに詰めて電気炉に入れ焼成を行つた。
焼成は2容量%の水素ガスを含む窒素ガスを流速
2500c.c./分で流しながら650℃で2時間行い、そ
の後室温まで放冷した。 得られた焼成物をボールミルを用いて粉砕した
後、150メツシユの篩にかけて粒子径をそろえ、
それぞれの蛍光体試料(1)〜(18)を得た。 前記蛍光体試料(1)〜(18)を夫々測定用ホルダに詰
めX線管球焦点から100cmの距離において管電圧
80KVp、管電流100mAのX線を0.1秒照射した
後、これを10mWのHe−Neレーザ光(633nm)
で励起し、その蛍光体から放射される輝尽による
蛍光を光検出器で測定した。結果を第1表に示
す。 比較例 1 実施例1において蛍光体原料をKCl74.56g
(1モル)、Tl2O 0.424g(0.001モル)としたこ
と以外は実施例1と同様にして蛍光体KCl:
0.002Tlを得た。この蛍光体を用いて実施例1と
同様にして比較試料(1)を得、更に実施例1と同様
にHe−Neレーザ(633nm、10mW)を用いて輝
尽発光輝度を測定した。結果を第1表に併記す
る。
[Table] Next, each of the above 18 types of phosphor raw material mixtures was packed into a quartz boat and fired in an electric furnace.
Firing is performed using nitrogen gas containing 2% by volume of hydrogen gas at a flow rate.
The reaction was carried out at 650°C for 2 hours while flowing at 2500 c.c./min, and then allowed to cool to room temperature. After pulverizing the obtained baked product using a ball mill, it was passed through a 150-mesh sieve to make the particle size uniform.
Each phosphor sample (1) to (18) was obtained. The phosphor samples (1) to (18) were each placed in a measurement holder and the tube voltage was measured at a distance of 100 cm from the focus of the X-ray tube.
After irradiating X-rays at 80KVp and tube current 100mA for 0.1 seconds, this is irradiated with 10mW He-Ne laser light (633nm).
The fluorescence emitted from the phosphor due to photostimulation was measured using a photodetector. The results are shown in Table 1. Comparative Example 1 In Example 1, 74.56g of KCl was used as the phosphor raw material.
Phosphor KCl :
Obtained 0.002Tl. Comparative sample (1) was obtained using this phosphor in the same manner as in Example 1, and the stimulated luminescence luminance was also measured in the same manner as in Example 1 using a He--Ne laser (633 nm, 10 mW). The results are also listed in Table 1.

【表】 第1表より本発明に係る前記蛍光体試料(10)〜(12)
の輝尽による発光輝度は、比較例1に示した従来
の蛍光体KCl:0.002Tlよりなる比較試料(1)を同
一条件で測定した輝尽による発光輝度より大であ
る。 また、本発明に係る前記試料(10)〜(12)の蛍光体
は、本発明に近い組成を有する参照例の試料(1)〜
(9)及び(13)〜(18)の蛍光体に比較して平均して3〜4
割の高感度を有している。 (発明の効果) 以上説明したように、本発明に係る蛍光体は放
射線を照射した後に、可視光および赤外線の一方
またはその両方を照射して輝尽励起したときの輝
尽発光輝度が、従来のアルカリハライド蛍光体に
比較して著しく増大するものである。また、本発
明に係る蛍光体は放射線を照射した後に、可視光
および赤外線の一方またはその両方を照射して輝
尽励起したときの輝尽発光の応答特性および輝尽
の残光特性についても、従来のアルカリハライド
蛍光体に比較して改善される。 従つて、本発明に係る輝尽性蛍光体は放射線に
対する感度が高いため、本発明の放射線画像変換
方法をX線診断等に利用する場合、被写体のX線
被曝量を低減することが可能となる。 また本発明に係る輝尽性蛍光体は励起光に対す
る応答速度および蓄積エネルギー(残光)の消去
速度が速いため、本発明の放射線画像変換方法に
おける放射線画像読取り速度を高速化し、残像の
消去時間を短縮してシステムの運転効率を向上さ
せることが可能である。 さらにまた、本発明に係る輝尽性蛍光体の輝尽
励起スペクトルは半導体レーザの発振波長領域に
まで拡大しているので半導体レーザによる励起が
可能であり、放射線画像読取り装置の小型化、低
価格化、簡略化が可能である。
[Table] From Table 1, the phosphor samples (10) to (12) according to the present invention
The luminescence brightness due to stimulation is higher than the luminance luminance due to stimulation measured under the same conditions for comparative sample (1) made of the conventional phosphor KCl:0.002Tl shown in Comparative Example 1. In addition, the phosphors of the samples (10) to (12) according to the present invention are the reference example samples (1) to (1) having compositions close to the present invention.
Compared to the phosphors of (9) and (13) to (18), the average
It has relatively high sensitivity. (Effects of the Invention) As explained above, the phosphor according to the present invention has a stimulated luminescence luminance that is higher than that of the conventional one when stimulated by irradiating with radiation and then irradiating one or both of visible light and infrared rays. This is a significant increase compared to the alkali halide phosphor. In addition, the response characteristics of stimulated luminescence and the afterglow characteristics of stimulated emission when the phosphor according to the present invention is stimulated and excited by irradiating one or both of visible light and infrared rays after being irradiated with radiation, Improved compared to conventional alkali halide phosphors. Therefore, since the stimulable phosphor according to the present invention has high sensitivity to radiation, when the radiation image conversion method of the present invention is used for X-ray diagnosis etc., it is possible to reduce the amount of X-ray exposure of the subject. Become. In addition, since the stimulable phosphor according to the present invention has a fast response speed to excitation light and a fast erasing speed of stored energy (afterglow), the radiation image reading speed in the radiation image conversion method of the present invention can be increased, and the afterimage erasing time can be increased. It is possible to improve the operating efficiency of the system by shortening the time. Furthermore, since the stimulable excitation spectrum of the stimulable phosphor according to the present invention extends to the oscillation wavelength region of a semiconductor laser, it can be excited by a semiconductor laser, resulting in miniaturization and low cost of radiation image reading devices. It is possible to simplify and simplify the process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る輝尽性蛍光体例の輝尽発
光スペクトル、第2図は該蛍光体例の輝尽励起ス
ペクトルである。
FIG. 1 shows the stimulated emission spectrum of an example of the stimulable phosphor according to the present invention, and FIG. 2 shows the stimulated excitation spectrum of the example of the phosphor.

Claims (1)

【特許請求の範囲】 1 被写体を透過した放射線を下記一般式()
で示されるタリウム元素付活ハロゲン化ルビジウ
ム輝尽性蛍光体の少なくとも一つに吸収せしめ、
しかる後、この輝尽性蛍光体を可視光及び/また
は赤外線から選ばれる電磁波で励起して前記輝尽
性蛍光体が蓄積している前記放射線のエネルギー
を蛍光として放出せしめ、この蛍光を検出して放
射線画像を得ることを特徴とする放射線画像変換
方法。 一般式() (1−x)RbBr・xM〓I・aM〓X′2・bM〓X″3:cTl
・dA (ただし、M〓はRbまたはCsから選ばれる少な
くとも一種のアルカリ金属であり、M〓はBe,
Mg,Ca,Sr,Ba,Zn,CdおよびNiから選ばれ
る少なくとも一種の二価金属であり、M〓はSc,
Y,La,Pm,Lu,Al,GaおよびInから選ばれ
る少なくとも一種の三価金属であり、X′および
X″はF,Cl,BrおよびIから選ばれる少なくと
も一種のハロゲンであり、AはEu,Tb,Ce,
Tm,Dy,Pr,Ho,Nd,Yb,Er,Gd,Sm,
Na,Ag,Cu,Pb,BiおよびMnから選ばれる少
なくとも一種の金属である。 また、x,a,b,cおよびdはそれぞれ、0
<x<0.9、0≦a<0.5、0≦b<0.5、0<c<
0.2、0≦d<0.2の範囲の数値である。) 2 前記一般式(1)におけるbが0≦b<10-2であ
ることを特徴とする特許請求の範囲第1項記載の
放射線画像変換方法。 3 前記一般式(1)におけるM〓がY,La,Lu,
Al,GaおよびInから選ばれる少なくとも一種の
三価金属であることを特徴とする特許請求の範囲
第1項もしくは第2項記載の放射線画像変換方
法。 4 前記一般式(1)におけるX″がF,ClおよびBr
から選ばれる少なくとも一種のハロゲンであるこ
とを特徴とする特許請求の範囲第1項乃至第3項
のいずれかの項記載の放射線画像変換方法。 5 前記一般式(1)におけるM〓がBe,Mg,Ca,
SrおよびBaから選ばれる少なくとも一種のアル
カリ土類金属であることを特徴とする特許請求の
範囲第1項乃至第4項のいずれかの項記載の放射
線画像変換方法。 6 前記一般式(1)におけるcが10-6≦c≦0.1で
あることを特徴とする特許請求の範囲第1項乃至
第5項のいずれかの項記載の放射線画像変換方
法。
[Claims] 1. The radiation that has passed through the object is expressed by the following general formula ()
Absorbed in at least one of the thallium element-activated rubidium halide stimulable phosphors represented by
Thereafter, this stimulable phosphor is excited with electromagnetic waves selected from visible light and/or infrared rays to cause the energy of the radiation accumulated in the stimulable phosphor to be emitted as fluorescence, and this fluorescence is detected. A radiographic image conversion method characterized by obtaining a radiographic image. General formula () (1-x) RbBr・xM〓I・aM〓X′ 2・bM〓X″ 3 :cTl
・dA (However, M〓 is at least one kind of alkali metal selected from Rb or Cs, and M〓 is Be,
At least one divalent metal selected from Mg, Ca, Sr, Ba, Zn, Cd and Ni, M〓 is Sc,
At least one trivalent metal selected from Y, La, Pm, Lu, Al, Ga and In, and X' and
X'' is at least one kind of halogen selected from F, Cl, Br and I, and A is Eu, Tb, Ce,
Tm, Dy, Pr, Ho, Nd, Yb, Er, Gd, Sm,
At least one metal selected from Na, Ag, Cu, Pb, Bi, and Mn. Also, x, a, b, c and d are each 0
<x<0.9, 0≦a<0.5, 0≦b<0.5, 0<c<
0.2, a numerical value in the range of 0≦d<0.2. 2. The radiation image conversion method according to claim 1, wherein b in the general formula (1) satisfies 0≦b<10 −2 . 3 M〓 in the general formula (1) is Y, La, Lu,
3. The radiation image conversion method according to claim 1, wherein the radiation image conversion method is at least one trivalent metal selected from Al, Ga, and In. 4 X″ in the above general formula (1) is F, Cl and Br
4. The radiation image conversion method according to claim 1, wherein the halogen is at least one kind of halogen selected from the following. 5 M〓 in the above general formula (1) is Be, Mg, Ca,
The radiation image conversion method according to any one of claims 1 to 4, characterized in that at least one alkaline earth metal is selected from Sr and Ba. 6. The radiation image conversion method according to any one of claims 1 to 5, wherein c in the general formula (1) satisfies 10 -6 ≦c≦0.1.
JP19636784A 1984-09-14 1984-09-18 Alkali halide phosphor Granted JPS6173787A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP19636784A JPS6173787A (en) 1984-09-18 1984-09-18 Alkali halide phosphor
EP19850306567 EP0174875B1 (en) 1984-09-14 1985-09-16 Method for converting radiographic image and radiation energy storage panel having stimulable phosphor-containing layer
DE8585306567T DE3578081D1 (en) 1984-09-14 1985-09-16 METHOD FOR CONVERTING A RADIOGRAPHIC IMAGE AND SCREEN FOR STORING RADIATION ENERGY WITH AN EXCITABLE PHOSPHORIC LAYER.
US07/344,543 US5028509A (en) 1984-09-14 1989-04-25 Method for converting radiographic image, radiation energy storage panel having stimulable phosphor-containing layer and alkali halide phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19636784A JPS6173787A (en) 1984-09-18 1984-09-18 Alkali halide phosphor

Publications (2)

Publication Number Publication Date
JPS6173787A JPS6173787A (en) 1986-04-15
JPH0514751B2 true JPH0514751B2 (en) 1993-02-25

Family

ID=16356672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19636784A Granted JPS6173787A (en) 1984-09-14 1984-09-18 Alkali halide phosphor

Country Status (1)

Country Link
JP (1) JPS6173787A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2261932A3 (en) 2002-11-27 2011-09-28 Konica Minolta Holdings, Inc. Radiographic image conversion panel, method for manufacturing the same, method for forming phosphor particle, method for forming photostimulable phosphor precursor, phosphor precursor and photostimulable phosphor
EP1533816A3 (en) 2003-11-18 2008-02-13 Konica Minolta Medical & Graphic, Inc. Radiation image conversion panel and preparation method thereof
EP1533655A3 (en) 2003-11-18 2008-07-30 Konica Minolta Medical & Graphic, Inc. Radiation image conversion panel and preparation method thereof
JP4321395B2 (en) 2004-07-22 2009-08-26 コニカミノルタエムジー株式会社 Radiation image conversion panel and manufacturing method thereof
KR100766585B1 (en) 2006-04-18 2007-10-11 장상구 Phosphor for display and process for preparing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172088A (en) * 1984-09-14 1986-04-14 Konishiroku Photo Ind Co Ltd Radiation image conversion method and radiation image conversion panel using therefor
JPS6172087A (en) * 1984-09-14 1986-04-14 Konishiroku Photo Ind Co Ltd Radiation image conversion method and radiation image conversion panel using therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172088A (en) * 1984-09-14 1986-04-14 Konishiroku Photo Ind Co Ltd Radiation image conversion method and radiation image conversion panel using therefor
JPS6172087A (en) * 1984-09-14 1986-04-14 Konishiroku Photo Ind Co Ltd Radiation image conversion method and radiation image conversion panel using therefor

Also Published As

Publication number Publication date
JPS6173787A (en) 1986-04-15

Similar Documents

Publication Publication Date Title
US5028509A (en) Method for converting radiographic image, radiation energy storage panel having stimulable phosphor-containing layer and alkali halide phosphor
US4512911A (en) Phosphor
US4532071A (en) Process for the preparation of phosphor
JPH0784588B2 (en) Radiation image conversion method and radiation image conversion panel used in the method
JPH0412316B2 (en)
US6290873B1 (en) Phosphor preparation method
EP0252991B1 (en) Alkali halide phosphor
JPH0784589B2 (en) Radiation image conversion method and radiation image conversion panel used in the method
US5554319A (en) Phosphor
JPH0514751B2 (en)
JPH0784591B2 (en) Radiation image conversion method
JPS5945707B2 (en) fluorescent material
JPH0774334B2 (en) Radiation image conversion method and radiation image conversion panel used in the method
JPS6144988A (en) Radiation image conversion method
JPH058754B2 (en)
JP2007161952A (en) Radiation image conversion panel and method for producing the same
JPH0629405B2 (en) Alkali halide phosphor
JPH0784590B2 (en) Radiation image conversion method and radiation image conversion panel used in the method
JPH0689329B2 (en) Radiation image conversion method and radiation image conversion panel applied to the method
JP2003329798A (en) Radiation image conversion panel and method for manufacturing the same
JPS6310196B2 (en)
JPS59221380A (en) Fluorescent substance
JPH06200246A (en) Alkali halide phosphor
JPH0548275B2 (en)
JPS59226090A (en) Fluorescent material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term