JPS6144988A - Radiation image conversion method - Google Patents

Radiation image conversion method

Info

Publication number
JPS6144988A
JPS6144988A JP16674084A JP16674084A JPS6144988A JP S6144988 A JPS6144988 A JP S6144988A JP 16674084 A JP16674084 A JP 16674084A JP 16674084 A JP16674084 A JP 16674084A JP S6144988 A JPS6144988 A JP S6144988A
Authority
JP
Japan
Prior art keywords
phosphor
radiation
image conversion
light
radiation image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16674084A
Other languages
Japanese (ja)
Other versions
JPH0644080B2 (en
Inventor
Fumio Shimada
文生 島田
Koji Amitani
幸二 網谷
Hisanori Tsuchino
久憲 土野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP59166740A priority Critical patent/JPH0644080B2/en
Publication of JPS6144988A publication Critical patent/JPS6144988A/en
Publication of JPH0644080B2 publication Critical patent/JPH0644080B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Conversion Of X-Rays Into Visible Images (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To provide the titled method which is highly sensitive as compared with prior arts, by allowing a radiation passed through a material to be absorbed by a storing phosphor, exciting the phosphor with electromagnetive waves to release the stored radiation energy as fluorescence and detecting the fluorescece. CONSTITUTION:A radiation passed through a material is allowed to be absorbed by a storing phosphor contg. a rare earth element-activated composite halide phosphor of the formula (where X, X' are the different groups and each is Cl, Br, I; MI is an alkali metal; MII is an alkaline earth metal; MIII is Al, Ga, Y, La, Lu; Ln is Eu, Ce, Tb; 0.6<=a<=1.4, 0<=b<=4, 0<=c<=4, 0<=d<=0.5, 0<=e<=0.2). The phosphor is irradiated with electromagnetic waves in the wavelength region of visible light and/or infrared rays (450-1,100nm) of release radiation energy stored in the phosphor as excited fluorescense which is then detected. A radiation image conversion method which is highly sensitive as compared with methods using conventional light-stimulable phosphor, can be provided.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 不発明け、放射線画像変換方法、さらに詳しく汀蓄積性
螢光体を利用した放射@画像変換方法に関する。 (従来技術) 従来放射線画像を得るために錫塩を使用した、いわゆる
放射線写真法が利用されているが、@塙を使用しないで
放射線像を画像化する方法が望まれるようになった。 上記の放射線写真法にかわる方法として、被写体を透過
した放射線を螢光体に吸収せしめ、しかる後この螢光体
をある種のエネルギーで励起してこの螢光体が蓄積して
いる放射線エネルギーを螢光として放射せしめ、この螢
光を検出して画像化する方法が考えられている。具体的
な方法は螢光体として熱螢光性螢光体を用い、励起エネ
ルギーとして熱エネルギーを用いて放射線像を変換する
方法が提唱さ些でいる(英国特許1,462,76.9
号および特開昭51−29889号)。この変換方法は
支持体上に熱螢光性螢光体層を形成したパネルを用い、
このパネルの熱螢光性螢光体層に被写体を透過した放射
線を吸収させて放射線の強弱に対応した放射線エネルギ
〒を蓄積させ、しかる後との熱螢光性螢光体層を刃口熱
することによって蓄積された放射線エネルギーを光の信
号として取り出し、この光の強弱によって画像を得るも
のである。 しかしながらこの方法は蓄積された放射線エネルギーを
光の信号に変える際に加熱するので、パネルが耐熱性を
有し熱によって変形、変質しないことが絶対的に必要で
あり、従ってパネルを構成する熱螢光性螢光体層および
支持体の材料等に大きな制約がある。このようにして螢
光体として熱螢光性螢光体を用い、励起エネルギーとし
て熱エネルギーを用いる放射線画像変換方法は応用面で
大きな難点がある。一方、支持体上に蓄積性螢光体層を
形成したパネルを用い、励起エネルギーとして可視光線
および赤外線の一方または両方を用いる放射線画像変換
方法もまた知られCいる。(米国特許3,895,52
7号)。この方法は上記の方法のように蓄積された放射
線エネルギーを光の信号に変える際に加熱しなくてもよ
く、従ってパネルは耐熱性を有する必要はなく、この点
からより好ましい放射線画像変換方法と言える。 例えば特開昭58−109897号にはその組成式%式
% Iのうちの少なくとも1種であり、Xおよびyけそれぞ
れ0 (x≦lOおよび0<y≦0.2なる条件を満た
す数である。) で表′モされる2価のユーロピウム付活複合ノ・口  
゛ゲン化物螢光体を含む蓄積性螢光体に被写体を透過し
た放射線を吸収せしめ、しかる後この螢光体を450乃
至1100 nmの波長領域の電磁波で励起して螢光体
が蓄積している放射線エネルギーを螢光として放出せし
め、この螢光を検出することを特徴とする放射−画像変
換方法が記載されて入る。 ところで前記放射線画像変換方法が医療診断を目的とす
るX#画像変換に用いられる場合には、患者の被曝線量
を少なくするためにその方法はできるだけ高感度である
ことが望ましく、従ってその方法に用いられる蓄積性螢
光体#′i輝尽による発光輝度ができるだけ高いのが望
ましい。このような点から、上記BaFX−xNaX’
 : yEu”十の如き光輝尿性螢光体を使用する放射
線画像変換方法についても螢光体の輝尽による発光輝度
の同上等によるその感度の同上が望まれている。 (発明の目的) 本発明は被写体を透過した放射線を蓄積性螢光体に吸収
せしめ、しかる後この螢光体を可成光線および/またけ
赤外線の範囲(450〜11l100nにある電1磁波
で励起してこの螢光体が蓄積している放射線エネルギー
を螢光として放出せしめ、この螢光を検出する放射線画
像変換方法において、従来の前記BaFX−xNaX’
 : )FE11’2+の如き光輝尿性螢光体よりもよ
り高輝度の輝尽発光を示す螢光体を蓄積性螢光体として
用いた感度の高い放射線−像変換方法を提供することを
目的とする。 (発明の構成) 前記した本発明の目的は、下記一般式〔I〕で表わされ
る希土類元素付活複合ハロゲン化物螢光体を含有する蓄
積性螢光体に被写体を透過した放射線を吸収せしめ、し
かる後該螢光体に450〜1]00nmの波長領域の電
磁波を走査照射し、該螢光体が蓄積している放射線エネ
ルギーを励起螢光として放出せしめ該励起螢光を検出す
ることを特徴とする放射線画像変換方法によって達成さ
」する。 一般式〔I) BaX2 ・aBaX’2 ・bMIF−cMIIFl
 ・dMmFl : eLn式中、X及びX′は塩素、
臭素及び沃素の中の少なくとも1種であり、且つXとX
′は互に異る。 MIはLt 、 Na 、 K、 Rb及びCBから成
る群より選ばれる少なくとも1種のアルカリ金属である
。 MIIけMg、Ca、 Sr及びBeから成る群より選
ばれる少なくとも1種のアルカリ土類金属である。 MlnHLll 、 Ga 、 Y、 Lll及びLu
から成心群ヨリ選ばれる少なくとも1欅である。Lnけ
Eu、Ce及びTbの中の小なくとも1種を表わす。ま
たa、b、c、d及びeけ、夫々0.6≦a≦1.4.
0≦b≦4.0≦C≦4、O≦d≦0,5及、び0≦e
≦0.2なる条件を満す数値である。 本発明に係る螢光体は例えば以下に述べる製造方法によ
って製造される。 まず螢光体原料としては、例えば I)塩化バリウム(B、c7!2)、 II)−Itsバリウム(BaBr2 )および2水和
物臭化バリウム(BaBr2・2H20)のうちの少な
くとも1種、 ■)弗化リチウム(LiF)、弗化ストロンチウム(S
rF2)および弗化アルミニウム(An、)および ■)ハロゲン化物、酸化物等の3価ユーロピウムの化合
物、 等の螢光体原料を用いて化学量論的にBa、X −aB
aX’bMIF−CMnF、 ・dMmF、 : eL
nなる混合組成になるようにX及びX′をCA’、Br
および工のうち少なくとも1種から互に違えて選び、a
、b、c、dおよびeそれぞれの示す0.6≦a≦1.
4.0≦b≦4.0≦C≦4.0≦d≦0.5および0
≦e≦0.2なる条件を満たすように秤量し、乳鉢、ボ
ールミル、ミキサーミル等を用いて充分に混合する。次
に得られた螢光体原料混合物を石英ルツボ或はアルミナ
ルツボ等の耐熱性容器に充填して電気炉中で焼成を行な
う。焼成温度は600乃至1(100’cが適当であり
、さらに好ましくは750乃至900℃である。焼成時
間は原料混合物の充填量、焼成温度等によって異なるが
、一般にはl乃至6時間が適当である。焼成雰囲気とし
ては少量の水素ガスを含む窒素ガス雰囲気、少量の一酸
化炭素を含む炭酸ガス雰囲気等の弱還元性雰囲気、ある
いけ窒素ガス雰囲気、アルゴンガス雰囲気等の中性雰囲
気が好ましい。なお、上記の焼成条件で一腹焼成した後
、焼成物を電気炉から取り出して放冷後粉砕し、しかる
後焼成物粉末を再び耐熱性容器に充填して電気炉に入れ
、上記と同じ焼成条件で再焼成を行なえば螢光体の発光
輝度を更に萬めることかできる。 焼成後得られる螢光体を粉砕し、その後洗浄、乾燥、篩
い分は等の螢光体製造に於いて一般に採用されている各
種操作によって処理して本発明の螢光体を得る。 以上説明した製造方法などによって得られる本発明に係
る螢光体TriX線等の放射線の照射を受けた後、45
0乃至1]00nmの範囲の電磁波で励起されると近紫
外発光を示す。そしてその輝尽による発光輝度は特開昭
58−109897号に記載されている前記従来の光輝
属性螢光体よりも強く、従って、本発明に係る螢光体を
使用する本発明の放射線画像変換方法は従来の螢光体を
使用する放射線画像変換方法よりも高感度となる。 第1図は本発明に係る螢光体の輝尽による発光スヘクト
ルを例示するものであり、管1[圧80KVpのX線を
照射した後、該螢光体をHe−Neレーザー光(633
nm )で励起することによって測定した発光スペクト
ルである。螢光体の組成によって若干具なるが211:
発明の放射線画像変換方法に使用される本発明に係る螢
光体は輝尽によって第1図に示されるような近紫外発光
を示す。 第2図は本発明に係る螢光体の輝尽の励起スペクトルを
例示する4、のであり、管電圧80KVpのX線が照射
さiまた試料を用いて測定した不発明の螢光体の励起ス
ペクトルである。第2図から明らかなように本発明に係
る螢光体の励起可能な波長範囲は螢光体の組成によって
も若干具なるが、一般にI″i第2図に示した結果とほ
ぼ同じ450乃至900nmであり、最適励起波長は5
50乃至850nmである。 本発明の方法において螢光体層に蓄積された放射線エネ
ルギーを螢光として放出せしめるための励起光臨として
は450乃至900nmの波長領域の光源が使用できる
が、第2図に示す如く上記本発明の螢光体は最適励起波
長が550乃至850 nmにあるため、550乃至8
50 nmの光を放射する光源がより好ましい。 励起光源にレーザ光を用いるとより高い励起エネルギー
を得ることができ、He−Noレーザ(633nm)、
YAGレーザ(第2高調波532nm)、ルビーレーザ
(694nm) 、 Ar+レーザ(514,5nm)
、半導体レーザ等の単一波長の光を放射する光源が使用
される。本発明の螢光体は、800Hm近傍の励起光に
も効率よく発光する為、装置の小型什、低価格化を図る
上で半導体レーザな用いることが好ましい。 本発明の螢光体は上記の光源を用いて高輝度の輝尽によ
る発光が得られること以外に次に述べるような利点があ
る。 励起光を照射して放射線画像を読み取った後の放射線画
像変換パネルに対しては残存している残像を消去するた
めに光照射や加熱処理が一般に行なわれるが、本発明の
方法では光源として螢光灯の他にハロゲンラングやタン
グステンランプを好ましく使用できる為、残像消去時間
の短縮化が可能である。 本発明の放射線画像変換方法を概略図を用いて具体的に
説明する。 第3図において
(Industrial Application Field) This invention relates to a radiation image conversion method, and more specifically to a radiation@image conversion method using a phosphor that accumulates. (Prior Art) Conventionally, a so-called radiographic method using tin salt has been used to obtain a radiographic image, but a method of imaging a radiographic image without using a tin salt has become desirable. As an alternative to the above-mentioned radiographic method, the radiation transmitted through the object is absorbed by a phosphor, and the phosphor is then excited with a certain type of energy to release the radiation energy stored in the phosphor. A method has been considered in which the fluorescent light is emitted and the fluorescent light is detected and imaged. A specific method has been proposed in which a radiation image is converted using a thermofluorescent phosphor as the phosphor and thermal energy as the excitation energy (British Patent No. 1,462,76.9).
No. and Japanese Patent Publication No. 51-29889). This conversion method uses a panel with a thermally fluorescent phosphor layer formed on a support.
The thermofluorescent phosphor layer of this panel absorbs the radiation that has passed through the subject and accumulates radiation energy corresponding to the intensity of the radiation, and then The accumulated radiation energy is extracted as a light signal, and an image is obtained based on the intensity of this light. However, since this method heats the accumulated radiation energy when converting it into a light signal, it is absolutely necessary that the panel has heat resistance and will not be deformed or deteriorated by heat. There are major restrictions on the materials of the photofluorescent layer and the support. The radiation image conversion method using a thermofluorescent phosphor as the phosphor and using thermal energy as the excitation energy has major drawbacks in terms of application. On the other hand, a method of converting a radiation image using a panel having a stimulable phosphor layer formed on a support and using one or both of visible light and infrared rays as excitation energy is also known. (U.S. Pat. No. 3,895,52
No. 7). Unlike the above-mentioned method, this method does not require heating when converting the accumulated radiation energy into optical signals, so the panel does not need to be heat resistant, and from this point of view it is a more preferred radiation image conversion method. I can say it. For example, in JP-A No. 58-109897, there is at least one of the compositional formula %I, and X and y are each 0 (a number satisfying the conditions x≦lO and 0<y≦0.2). ) The divalent europium-activated complex shown in
The radiation transmitted through the object is absorbed by a storage phosphor including a fluoride phosphor, and then this phosphor is excited with electromagnetic waves in the wavelength range of 450 to 1100 nm to cause the phosphor to accumulate. A radiation-to-image conversion method is described which is characterized in that the radiation energy contained in the image is emitted as fluorescence and the fluorescence is detected. By the way, when the radiation image conversion method is used for X# image conversion for the purpose of medical diagnosis, it is desirable that the method be as sensitive as possible in order to reduce the radiation dose to the patient, and therefore It is desirable that the luminance of light emitted by the stimulable phosphor #'i is as high as possible. From this point of view, the above BaFX-xNaX'
: It is desired that the radiation image conversion method using a photoluminescent phosphor such as yEu''10 has the same sensitivity as the same due to the same emission brightness due to the stimulation of the phosphor. (Objective of the Invention) This book The invention involves absorbing the radiation transmitted through the object into a storable phosphor, and then exciting the phosphor with electromagnetic waves in the range of tunable light and/or infrared (450 to 11l100n) to emit this fluorescent light. In a radiation image conversion method in which radiation energy accumulated in the body is emitted as fluorescence and this fluorescence is detected, the conventional BaFX-xNaX'
: ) The object of the present invention is to provide a highly sensitive radiation-image conversion method using a phosphor that exhibits stimulated luminescence with higher brightness than a photoluminescent phosphor such as FE11'2+ as a storage phosphor. shall be. (Structure of the Invention) The object of the present invention described above is to allow a stimulable phosphor containing a rare earth element-activated composite halide phosphor represented by the following general formula [I] to absorb radiation transmitted through an object, After that, the phosphor is scanned and irradiated with electromagnetic waves in a wavelength range of 450 to 1]00 nm, the radiation energy accumulated in the phosphor is emitted as excitation fluorescence, and the excitation fluorescence is detected. This is accomplished by a radiographic image conversion method. General formula [I] BaX2 ・aBaX'2 ・bMIF-cMIIFl
・dMmFl: In the eLn formula, X and X' are chlorine,
At least one of bromine and iodine, and X and X
′ are different from each other. MI is at least one alkali metal selected from the group consisting of Lt, Na, K, Rb and CB. MII is at least one alkaline earth metal selected from the group consisting of Mg, Ca, Sr and Be. MlnHLll, Ga, Y, Lll and Lu
There is at least one keyaki selected from Seishingun Yori. Ln represents at least one of Eu, Ce and Tb. Also, a, b, c, d and e, each 0.6≦a≦1.4.
0≦b≦4.0≦C≦4, O≦d≦0,5, and 0≦e
This is a numerical value that satisfies the condition of ≦0.2. The phosphor according to the present invention is manufactured, for example, by the manufacturing method described below. First, as the phosphor raw material, for example, at least one of I) barium chloride (B, c7!2), II)-Its barium (BaBr2) and dihydrate barium bromide (BaBr2.2H20); ) Lithium fluoride (LiF), strontium fluoride (S
rF2) and aluminum fluoride (An), and
aX'bMIF-CMnF, ・dMmF, : eL
X and X' are changed to CA', Br so as to have a mixed composition n.
and a.
, b, c, d and e each indicate 0.6≦a≦1.
4.0≦b≦4.0≦C≦4.0≦d≦0.5 and 0
The ingredients are weighed so as to satisfy the condition ≦e≦0.2, and thoroughly mixed using a mortar, ball mill, mixer mill, etc. Next, the obtained phosphor raw material mixture is filled into a heat-resistant container such as a quartz crucible or an aluminum crucible, and fired in an electric furnace. The firing temperature is preferably 600 to 100°C, more preferably 750 to 900°C.The firing time varies depending on the filling amount of the raw material mixture, the firing temperature, etc., but in general, 1 to 6 hours is appropriate. The firing atmosphere is preferably a weakly reducing atmosphere such as a nitrogen gas atmosphere containing a small amount of hydrogen gas, a carbon dioxide gas atmosphere containing a small amount of carbon monoxide, or a neutral atmosphere such as a neutral nitrogen gas atmosphere or an argon gas atmosphere. In addition, after firing a batch under the above firing conditions, the fired product was taken out of the electric furnace, left to cool, and then pulverized.The fired product powder was then filled into a heat-resistant container again, placed in the electric furnace, and fired in the same manner as above. The luminance of the phosphor can be further increased by re-firing it under certain conditions. The phosphor of the present invention is obtained by processing by various commonly employed operations.The phosphor of the present invention obtained by the manufacturing method described above is irradiated with radiation such as Tri
When excited by electromagnetic waves in the range of 0 to 1]00 nm, it emits near-ultraviolet light. The emission brightness due to its stimulation is stronger than that of the conventional bright phosphor described in JP-A No. 58-109897, and therefore, the radiation image conversion of the present invention using the phosphor of the present invention The method is more sensitive than conventional radiographic image conversion methods using fluorophores. FIG. 1 illustrates the emission spectrum due to stimulation of the phosphor according to the present invention. After irradiating tube 1 with X-rays at a pressure of 80 KVp, the phosphor is exposed to He-Ne laser light (633 KVp).
This is the emission spectrum measured by excitation at 1 nm). Although it varies slightly depending on the composition of the phosphor, 211:
The phosphor according to the present invention used in the radiation image conversion method of the present invention exhibits near-ultraviolet light emission as shown in FIG. 1 upon stimulation. Figure 2 illustrates the excitation spectrum of the phosphor according to the present invention, and the excitation spectrum of the phosphor according to the invention measured using a sample irradiated with X-rays with a tube voltage of 80 KVp. It is a spectrum. As is clear from FIG. 2, the wavelength range in which the phosphor according to the present invention can be excited varies slightly depending on the composition of the phosphor, but generally it is from 450 to 450, which is approximately the same as the result shown in FIG. 2. 900 nm, and the optimal excitation wavelength is 5
The wavelength is 50 to 850 nm. In the method of the present invention, a light source in the wavelength range of 450 to 900 nm can be used as an excitation light source for emitting the radiation energy accumulated in the phosphor layer as fluorescent light. Since the optimal excitation wavelength of the fluorophore is between 550 and 850 nm,
More preferred is a light source that emits light at 50 nm. Higher excitation energy can be obtained by using laser light as the excitation light source, such as He-No laser (633 nm),
YAG laser (second harmonic 532nm), ruby laser (694nm), Ar+ laser (514.5nm)
, a light source emitting light of a single wavelength, such as a semiconductor laser, is used. Since the phosphor of the present invention efficiently emits even excitation light of around 800 Hm, it is preferable to use it as a semiconductor laser in order to make the device smaller and lower in price. The phosphor of the present invention has the following advantages in addition to being able to emit high-intensity stimulated light using the above-mentioned light source. After irradiating a radiation image with excitation light and reading a radiation image, the radiation image conversion panel is generally subjected to light irradiation or heat treatment to erase any remaining afterimages, but in the method of the present invention, fluorescent light is used as the light source. Since a halogen lamp or a tungsten lamp can be preferably used in addition to a light lamp, it is possible to shorten the afterimage erasing time. The radiation image conversion method of the present invention will be specifically explained using schematic diagrams. In Figure 3

【1は放射線発生装置、12は被写体、
I3は前記一般式CI)で示される螢光体を含有する可
視ないし赤外輝尽性螢光体層を有する放射線画像変換パ
ネル、14は放射線画像変換パネル13の放射線潜像を
螢光として放出させるため6励起光臨、15は放射線画
像変換パネル13より放出された螢光を検出する光電変
換装置、】6は光電変換装置15で検出された光電変換
信号を画像として再生する装置、17は再生された画像
を表示する装置、18は光源14からの反射光をカプト
し、放射線画像変換パネル13より放出された光のみを
透過させるためのフィルターである。光電変換装置15
以降はパネル13からの光情報を何らかの形で画像とし
て再生できるものであればよく、上記に限定されるもの
ではない。第3図に示されるよ5に7.被写体12を放
射線発生装置11と放射線画像変換パネル【3の間に配
置し放射線を照射すると、放射?fsは被写体12の各
部の放射線透過率の変化に従って透過し、その透過像(
すなわち放射線の強弱の像)が放射線画像変換パネル1
3に入射する。この入射した透過像は放射線画像変換パ
ネル3の螢光体層に吸収され、これによって螢光体層中
に吸収した放射線量に比例した数の電子および/または
正孔が発生し、これが螢光体のトラップレベルに1[さ
れる@すなわち放射線透過像の蓄積像(・一種の潜像)
が形成される。次にこの潜像を光エネルギーで励起して
顕著化する。すなわち450〜400nmの光を放射す
る光tri 14によって螢光体層に照射してトラップ
レベルに蓄積された電子および/または正孔を追い出し
、蓄積像を螢光として放出せしめる。 この放出された螢光の強弱は蓄積された電子および/ま
たは正孔の数、すなわち放射線画像変換パネル13の螢
光体層に吸収された放射線エネルギーの強弱に比例して
おり、この光信号を例えば光電子倍増管等の光電変換装
置15で電気信号に変換し、画像処理装置16によって
画像として再生し、画像表示装置17によっ−てこの画
像を表示する。画像処理装置16は単に電気信号を画像
信号として再生するのみでなく、いわゆる画像処理や画
像の演算、画像の記憶、保存等ができるものを使用する
とより有効である。 また本発明の方法において光エネルギーで励起する際、
励起光の反射光と螢光体層から放出される螢光とを分離
する必要があることと螢光体層から放出される螢光を受
光する光電変換器は一般に600nm以下の短波長の光
エネルギーに対して感度が高くなるという理由から、螢
光体層から放射される螢光はできるだけ短波長領域にス
ペクトル分布をもったものが望ましい。本発明に係る方
法に用いられる螢光体の発光波域は350〜450nm
であり、一方励起波長域は450〜目00nmであるの
で上記の条件を同時に満たすものである。 すなわち、本発明忙用いられる前記螢光体けいずれも4
50 nm以下に主ピークを有する発光を示し、励起光
との分離が容易でしかも受光器の分光感度とよく一致す
るため、効率よく受光できる結果、受像系の感度を高め
ることができる。 (実施例) 次に実施例によって本発明を説明する。 各螢光体原料を下記hl〜(14に示されるように秤量
した後、ボールミルを用いて充分に混合して11種類の
螢光体原料混合物を調合し、本発明に係る螢光体を下記
の通りに調整した。 (1)  BaCd2・208.3,9 (1mol 
)BaBr2297.2g(1mol )Eu2030
0.35’2g(I XtOmol )(2)  Ba
C1t208.25g(1mol)BaI、  391
.2.ji’(1mol )  −EuC130,51
711(2XIOmol )(3)  BaBr2・2
H20333,2g(1mol)BaI2391.2p
 (1mol )Eu403 0.352g(IXIO
mol )(4)  Ba(J、 208.3p(1m
’ol)BaBr2297.29 (1mol )Li
Br   86.8,9 (1mol )EuC110
,5179(2XIOmol )(5)  BaC1t
208.3Ji’(1mol)BaBr2・2H203
33,2Ji’ (1mol )NaF   42.O
fj(1mol )Eu203 0.3529 (1x
to  mol )(6)   Ba(Jt 208.
3g(1mol)BaI、  391.2.9 (1m
ol )KF     58.1.9(1mol )E
u203 0.:(52,9(IXIOmol )(7
)   BaBr2・2H20333,2g(1mol
  )HaI、   391.2.)i’(1mol)
RbF   104.5g(1mol )Eu20g 
 0.352.9(IXIOmol)(8)   Ba
C71t208.3.!il(1mol)BaBrt・
2H10333,2g(1mol )CsF   15
1.9.+9 (1mol )Euto3 0.352
 、ji’ (I XIQ  mol )(9)   
BaC7+2 208.3.9 (Lmol )BaI
2  391.2.!ii’(1mol)CaF2  
 78.089 (1mol )BuvOs  0.3
52g(I XIOmol )(10)   BaBr
t2Ht0333.2Ii(1mol)B=I、   
391.21!(1mol)MgFz    62.3
 Ji’ (1mol )Eu203 0.3529 
(I Xl0−3”’ )(11)   BaCAt 
 208.3 ’jj (1mol )BaBr2・2
H20333,2J$ (1mol )SrF2  1
25.6.li’ (1mol )Eu2030.35
2 !j(I XIOmol )(12)  BaBr
2・2H20333,2,li’(1mol )Bal
、   391.2g(1mol)YF、    14
.6 g(0,1mol )Euz03 0.3529
 (I XLOmol )(13)   BaCl2 
208.3 g(1mol )BaBrl H2H20
333,2g(1mol)Ce203 0.3289(
IXlOmol )(14)   BaC7+2 20
8.3 g(1mol  )BaBr2・2H1033
3,2g(1mol )LiF    25.9.+7
(1mol)SrF2 125.6.9(1mol )
klFs   8.40 i (I XIOmol )
Eu203 0.352Ji’(IXIQ  mol 
)次に上記14種類の螢光体原料混合物をそれぞれ石英
ボートに詰めて電気炉に入れ焼成を行なった。 焼成は2容量%の水累ガスを含む電子ガスを流速250
0cc/分で流しながら850℃で2時間行ない、その
後室温で放冷した。 得られた焼成物をボールミルを用いて粉砕した後、15
0メツシユの篩にかけて粒子径をそろえ、それぞれの下
記14種の螢光体を得た。 次に上記14種類の螢光体を用いて放射線像変換パネル
を製造した。いずれの放射線画像変換・シネルも以下の
ように製造した。 (1)  BaCl2・BaBr2 H2XlOBu(
2)  BaC7+2・BaI2・2X10  Eu(
3)  BaBr2・BaI2 ・2 Xl、OEu(
4)  BaCl2・BaBr、−LiBr2XIQ 
 Eu(5)  BaCl2−BaBr、・NaF・2
XlOEu(6)  BaClt−Ba12・kF ・
2XIOEu(7)  BaBr2・Ba11・RbF
 ・2XlOEu(8)  BaCl2・BaBr2・
CsF・2XIOEu(9)  BaCl2・BaI、
・CaF2・2XIOEu(10)  BaBr2−B
aI2・MgF2・2X10  Eu(11)  Ba
Cl2・BaBr2・SrF2・2XLOEu(12)
   BaBr2・BaI2・0.lYF32X10 
 Eu(13)   BaC/、 HBaBr212 
XIOCA’(14)  BaCA!2・BaBr、・
LiP”−8rF、・0.IA7!F3・2XlO−’
マス螢光体8重麺一部をポリビニルブチラール(結着剤
)lit部にア七トンと酢酸エチルを等量混合した溶剤
を用いて分散させ、これを水平に置いた白色顔料酸化チ
タンを練り込んだポリエチレンテレフタレートフィルム
(支持体)上にワイヤーバーを用いて均一に塗布し自然
乾燥させることによって膜厚が約300μmの放射線画
1象変換パネルを作成した。 この14種類の放射線画像変換パネルをX線管球焦点か
ら+oocmの距離において管電圧5oicvp、y電
流100mAのX線を0.1秒照射した後、これを半導
体レーザー光(800nm )で励起し、その螢光体層
から放射される輝尽による螢光を光検出器で測定した。 その結果、これらの放射線画像変換パネルの輝尽による
発光輝度は下記表−1、に示した様忙本発明に係る螢光
体は同一条件で測定した従来の螢光体を用いた放射線画
像変換パネルの輝尽による発光輝度よりも高く、従って
これ牡の放射線画像変IKu   換パネルを使用する
本発明の放射線画像変換方法は、従来の放射線画像変換
方法よりも高感度である。 表−1
[1 is the radiation generator, 12 is the subject,
I3 is a radiation image conversion panel having a visible to infrared stimulable phosphor layer containing a phosphor represented by the general formula CI), and 14 is a radiation image conversion panel that emits the latent radiation image of the radiation image conversion panel 13 as fluorescent light. 15 is a photoelectric conversion device that detects the fluorescence emitted from the radiation image conversion panel 13; 6 is a device that reproduces the photoelectric conversion signal detected by the photoelectric conversion device 15 as an image; 17 is a reproduction device; A device 18 for displaying the image is a filter that cuts out the reflected light from the light source 14 and transmits only the light emitted from the radiation image conversion panel 13. Photoelectric conversion device 15
Thereafter, any device may be used as long as it can reproduce the optical information from the panel 13 as an image in some form, and is not limited to the above. 5 to 7 as shown in Figure 3. When the subject 12 is placed between the radiation generator 11 and the radiation image conversion panel [3] and irradiated with radiation, radiation? fs is transmitted according to changes in the radiation transmittance of each part of the subject 12, and the transmitted image (
In other words, the image of the intensity of radiation) is the radiation image conversion panel 1
3. This incident transmitted image is absorbed by the phosphor layer of the radiation image conversion panel 3, and a number of electrons and/or holes are generated in proportion to the amount of radiation absorbed in the phosphor layer. An accumulated image of radiographic images (a kind of latent image) that is placed at the trap level of the body
is formed. This latent image is then excited with light energy to make it noticeable. That is, the phosphor layer is irradiated with light tri 14 emitting light of 450 to 400 nm to drive out electrons and/or holes accumulated at the trap level, and the accumulated image is emitted as fluorescent light. The intensity of this emitted fluorescent light is proportional to the number of accumulated electrons and/or holes, that is, the intensity of radiation energy absorbed by the phosphor layer of the radiation image conversion panel 13, and this optical signal is For example, it is converted into an electrical signal by a photoelectric conversion device 15 such as a photomultiplier tube, reproduced as an image by an image processing device 16, and this image is displayed by an image display device 17. It is more effective to use an image processing device 16 that is capable of not only reproducing electrical signals as image signals, but also capable of so-called image processing, image calculation, image storage, storage, etc. Furthermore, when exciting with light energy in the method of the present invention,
It is necessary to separate the reflected light of the excitation light from the fluorescent light emitted from the phosphor layer, and the photoelectric converter that receives the fluorescent light emitted from the phosphor layer generally uses light with a short wavelength of 600 nm or less. It is desirable that the fluorescent light emitted from the phosphor layer has a spectral distribution in as short a wavelength region as possible because of the high sensitivity to energy. The emission wave range of the phosphor used in the method according to the present invention is 350 to 450 nm.
On the other hand, since the excitation wavelength range is from 450 nm to 00 nm, the above conditions are satisfied at the same time. That is, all of the phosphors used in the present invention are 4
It emits light with a main peak at 50 nm or less, is easily separated from excitation light, and matches well with the spectral sensitivity of the photoreceiver, allowing efficient light reception and increasing the sensitivity of the image receiving system. (Example) Next, the present invention will be explained with reference to an example. After weighing each of the phosphor raw materials as shown in hl to (14) below, they were thoroughly mixed using a ball mill to prepare 11 types of phosphor raw material mixtures. (1) BaCd2・208.3,9 (1 mol
)BaBr2297.2g (1mol)Eu2030
0.35'2g (I XtOmol) (2) Ba
C1t208.25g (1mol) BaI, 391
.. 2. ji' (1 mol) -EuC130,51
711 (2XIOmol) (3) BaBr2・2
H20333, 2g (1 mol) BaI2391.2p
(1 mol) Eu403 0.352 g (IXIO
mol) (4) Ba(J, 208.3p(1m
'ol)BaBr2297.29 (1mol)Li
Br 86.8,9 (1 mol) EuC110
,5179(2XIOmol)(5) BaC1t
208.3Ji' (1 mol) BaBr2・2H203
33,2Ji' (1 mol) NaF 42. O
fj (1 mol) Eu203 0.3529 (1x
to mol ) (6) Ba(Jt 208.
3g (1mol) BaI, 391.2.9 (1m
ol ) KF 58.1.9 (1 mol ) E
u203 0. :(52,9(IXIOmol)(7
) BaBr2・2H20333, 2g (1mol
)HaI, 391.2. ) i' (1 mol)
RbF 104.5g (1mol) Eu20g
0.352.9 (IXIOmol) (8) Ba
C71t208.3. ! il (1 mol) BaBrt・
2H10333, 2g (1 mol) CsF 15
1.9. +9 (1mol)Euto3 0.352
, ji' (I XIQ mol) (9)
BaC7+2 208.3.9 (Lmol)BaI
2 391.2. ! ii' (1 mol) CaF2
78.089 (1 mol) BuvOs 0.3
52g (I XIOmol) (10) BaBr
t2Ht0333.2Ii (1 mol) B=I,
391.21! (1 mol) MgFz 62.3
Ji' (1 mol) Eu203 0.3529
(I Xl0-3"') (11) BaCAt
208.3'jj (1mol)BaBr2・2
H20333,2J$ (1mol)SrF2 1
25.6. li' (1 mol) Eu2030.35
2! j (I XIOmol) (12) BaBr
2・2H20333,2,li' (1 mol) Bal
, 391.2g (1mol) YF, 14
.. 6 g (0.1 mol) Euz03 0.3529
(I XLOmol) (13) BaCl2
208.3 g (1 mol) BaBrl H2H20
333.2g (1mol) Ce203 0.3289(
IXlOmol ) (14) BaC7+2 20
8.3 g (1 mol) BaBr2・2H1033
3.2 g (1 mol) LiF 25.9. +7
(1 mol) SrF2 125.6.9 (1 mol)
klFs 8.40 i (I XIOmol)
Eu203 0.352Ji'(IXIQ mol
) Next, each of the above 14 kinds of phosphor raw material mixtures was packed into a quartz boat and fired in an electric furnace. Firing is performed using an electronic gas containing 2% by volume of water gas at a flow rate of 250.
The reaction was carried out at 850° C. for 2 hours while flowing at 0 cc/min, and then allowed to cool at room temperature. After pulverizing the obtained baked product using a ball mill,
The particles were passed through a 0 mesh sieve to make the particle size uniform, and the following 14 types of phosphors were obtained. Next, radiation image storage panels were manufactured using the 14 types of phosphors described above. Both radiographic image conversion/cinels were manufactured as follows. (1) BaCl2・BaBr2 H2XlOBu (
2) BaC7+2・BaI2・2X10 Eu(
3) BaBr2・BaI2・2Xl, OEu(
4) BaCl2・BaBr, -LiBr2XIQ
Eu(5) BaCl2-BaBr, ・NaF・2
XlOEu(6) BaClt-Ba12・kF・
2XIOEu(7) BaBr2・Ba11・RbF
・2XlOEu(8) BaCl2・BaBr2・
CsF・2XIOEu(9) BaCl2・BaI,
・CaF2・2XIOEu(10) BaBr2-B
aI2・MgF2・2X10 Eu(11) Ba
Cl2・BaBr2・SrF2・2XLOEu(12)
BaBr2・BaI2・0. lYF32X10
Eu(13) BaC/, HBaBr212
XIOCA' (14) BaCA! 2.BaBr,・
LiP”-8rF,・0.IA7!F3・2XlO-'
A part of the mass phosphor 8-layer noodles was dispersed in a polyvinyl butyral (binder) lit part using a solvent mixed with equal amounts of acetate and ethyl acetate, and this was placed horizontally and the white pigment titanium oxide was kneaded. A radiographic image conversion panel having a film thickness of about 300 μm was prepared by uniformly coating the polyethylene terephthalate film (support) using a wire bar and drying it naturally. These 14 types of radiation image conversion panels were irradiated with X-rays at a tube voltage of 5 oicvp and a y-current of 100 mA for 0.1 seconds at a distance of +oocm from the X-ray tube focal point, and then excited with semiconductor laser light (800 nm). Fluorescence due to photostimulation emitted from the phosphor layer was measured with a photodetector. As a result, the emission brightness due to exhaustion of these radiation image conversion panels is as shown in Table 1 below. The radiation brightness is higher than that of the panel due to starvation, and therefore the radiation image conversion method of the present invention using the radiation image conversion panel has higher sensitivity than conventional radiation image conversion methods. Table-1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る螢光体の輝尽発光スペクトル、第
2図は励起波長と輝尽発光強度の関係を示す図である。 また第3図は本発明の放射線画像変換方法を説明する概
略のである。 11・・・放射線発生装置 12・・・被写体 13・・・放射線面像変換パネル 14・・・輝尽励起光源 15・・・光電変換装置 18・・・フィルタ 代理人 弁理士  野 1)義 親 第1図 亀も液長 (h…)
FIG. 1 is a diagram showing the stimulated emission spectrum of the phosphor according to the present invention, and FIG. 2 is a diagram showing the relationship between excitation wavelength and stimulated emission intensity. FIG. 3 is a schematic diagram for explaining the radiation image conversion method of the present invention. 11... Radiation generator 12... Subject 13... Radiation surface image conversion panel 14... Stimulation excitation light source 15... Photoelectric conversion device 18... Filter agent Patent attorney Field 1) Parent-in-law Figure 1 Tortoise liquid length (h…)

Claims (1)

【特許請求の範囲】  下記一般式〔I〕で表わされる希土類元素付活複合ハ
ロゲン化物螢光体を含有する蓄積性螢光体に複写体を透
過した放射線を吸収せしめ、しかる後該螢光体に450
〜1100nm波長領域の電磁波を走査照射し、該螢光
体が蓄積している放射線エネルギーを励起螢光として放
出せしめ該励起螢光を検出することを特徴とする放射線
画像変換方法。 一般式〔I〕 BaX_2・aBaX′_2・bMIF・cMIIF_
2・dMIIIF_3:eLn 〔式中、x及びX’は
塩素、臭素及び沃素の中の少なくとも1種であり、且つ
XとX′は互に異る。 MIはLi、Na、K、Rb及びcsから成る群より選
ばれる少なくとも1種のアルカリ金属である。 MIIはMg、Ca、Sr及びBeから成る群より選ば
れる少なくとも1種のアルカリ土類金属である。 MIIIはAL、Ga、Y、La及びLuから成る群よ
り選ばれる少なくとも1種である。LnはEu、Ce及
びTbの中の少なくとも1種を表わす。またa、b、c
、d及びeは、夫々0.6≦a≦1.4、0≦b≦4、
0≦c≦4、0≦d≦0.5及び0≦e≦0.2なる条
件を満す数値である。〕
[Scope of Claims] A stimulable phosphor containing a rare earth element-activated composite halide phosphor represented by the following general formula [I] is made to absorb radiation transmitted through a copying material, and then the phosphor is 450 to
A radiation image conversion method comprising scanning and irradiating electromagnetic waves in a wavelength range of 1100 nm to 1100 nm, causing the phosphor to emit the accumulated radiation energy as excitation fluorescence, and detecting the excitation fluorescence. General formula [I] BaX_2・aBaX′_2・bMIF・cMIIF_
2.dMIIIF_3:eLn [wherein x and X' are at least one kind of chlorine, bromine, and iodine, and X and X' are different from each other. MI is at least one alkali metal selected from the group consisting of Li, Na, K, Rb and cs. MII is at least one alkaline earth metal selected from the group consisting of Mg, Ca, Sr, and Be. MIII is at least one selected from the group consisting of AL, Ga, Y, La, and Lu. Ln represents at least one of Eu, Ce and Tb. Also a, b, c
, d and e are 0.6≦a≦1.4, 0≦b≦4, respectively.
These are numerical values that satisfy the following conditions: 0≦c≦4, 0≦d≦0.5, and 0≦e≦0.2. ]
JP59166740A 1984-08-08 1984-08-08 Radiation image conversion method Expired - Lifetime JPH0644080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59166740A JPH0644080B2 (en) 1984-08-08 1984-08-08 Radiation image conversion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59166740A JPH0644080B2 (en) 1984-08-08 1984-08-08 Radiation image conversion method

Publications (2)

Publication Number Publication Date
JPS6144988A true JPS6144988A (en) 1986-03-04
JPH0644080B2 JPH0644080B2 (en) 1994-06-08

Family

ID=15836869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59166740A Expired - Lifetime JPH0644080B2 (en) 1984-08-08 1984-08-08 Radiation image conversion method

Country Status (1)

Country Link
JP (1) JPH0644080B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172088A (en) * 1984-09-14 1986-04-14 Konishiroku Photo Ind Co Ltd Radiation image conversion method and radiation image conversion panel using therefor
JPS6172089A (en) * 1984-09-14 1986-04-14 Konishiroku Photo Ind Co Ltd Radiation image conversion method and radiation image conversion panel using therefor
JPS61120882A (en) * 1984-11-16 1986-06-07 Fuji Photo Film Co Ltd Phosphor and production thereof
JPS62211635A (en) * 1986-03-13 1987-09-17 Konishiroku Photo Ind Co Ltd Radiation image conversion method and radiation image conversion panel laminate to be applied to said method
JPS62211637A (en) * 1986-03-13 1987-09-17 Konishiroku Photo Ind Co Ltd Reading method for radiation image

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221483A (en) * 1984-04-17 1985-11-06 Fuji Photo Film Co Ltd Fluorescent substance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221483A (en) * 1984-04-17 1985-11-06 Fuji Photo Film Co Ltd Fluorescent substance

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172088A (en) * 1984-09-14 1986-04-14 Konishiroku Photo Ind Co Ltd Radiation image conversion method and radiation image conversion panel using therefor
JPS6172089A (en) * 1984-09-14 1986-04-14 Konishiroku Photo Ind Co Ltd Radiation image conversion method and radiation image conversion panel using therefor
JPH0784589B2 (en) * 1984-09-14 1995-09-13 コニカ株式会社 Radiation image conversion method and radiation image conversion panel used in the method
JPH0784590B2 (en) * 1984-09-14 1995-09-13 コニカ株式会社 Radiation image conversion method and radiation image conversion panel used in the method
JPS61120882A (en) * 1984-11-16 1986-06-07 Fuji Photo Film Co Ltd Phosphor and production thereof
JPS62211635A (en) * 1986-03-13 1987-09-17 Konishiroku Photo Ind Co Ltd Radiation image conversion method and radiation image conversion panel laminate to be applied to said method
JPS62211637A (en) * 1986-03-13 1987-09-17 Konishiroku Photo Ind Co Ltd Reading method for radiation image
JPH0731367B2 (en) * 1986-03-13 1995-04-10 コニカ株式会社 Radiation image reading method

Also Published As

Publication number Publication date
JPH0644080B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
JP2779446B2 (en) Reproduction of X-ray image using light-induced phosphor
JPS6230237B2 (en)
JPS6090286A (en) Method for converting radiation image
JPH0264193A (en) Phosphor which can be stimulated by light and use of said phosphor in radiography
JP2000192034A (en) Production of phosphor
JPS6144988A (en) Radiation image conversion method
JPH05230451A (en) Photoexcitable phosphor and its use in radiation photography
JPS5945707B2 (en) fluorescent material
JPH0784591B2 (en) Radiation image conversion method
JP2002020742A (en) Alkali halide-based fluorescent substance and radiographic transformation panel
JPH0774334B2 (en) Radiation image conversion method and radiation image conversion panel used in the method
JPH0514751B2 (en)
JPH08226998A (en) Recording and reproducing method of radiation image
JP3813794B2 (en) Alkali halide phosphor and radiation image conversion panel
JPS59155487A (en) Method of radiation image conversion
JPH058754B2 (en)
JPS6355558B2 (en)
JPH11349938A (en) Rare earth metal fluoride-based phosphor and radiation-sensitizing screen
JPS60217354A (en) Process for converting image of radiation
JPS60217287A (en) Conversion of radiographic image
JPH06130199A (en) Radiation image conversion panel and radiation image recording and reproducing method
JPH0689329B2 (en) Radiation image conversion method and radiation image conversion panel applied to the method
JPS61236891A (en) Radiation image conversion and panel therefor
JPH0625360B2 (en) Radiation image conversion method
JPS6310196B2 (en)