JP2002020742A - Alkali halide-based fluorescent substance and radiographic transformation panel - Google Patents

Alkali halide-based fluorescent substance and radiographic transformation panel

Info

Publication number
JP2002020742A
JP2002020742A JP2000202496A JP2000202496A JP2002020742A JP 2002020742 A JP2002020742 A JP 2002020742A JP 2000202496 A JP2000202496 A JP 2000202496A JP 2000202496 A JP2000202496 A JP 2000202496A JP 2002020742 A JP2002020742 A JP 2002020742A
Authority
JP
Japan
Prior art keywords
phosphor
europium
emission
cesium bromide
radiation image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000202496A
Other languages
Japanese (ja)
Inventor
Yasuo Iwabuchi
康夫 岩渕
Yuji Isoda
勇治 礒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2000202496A priority Critical patent/JP2002020742A/en
Priority to US09/887,344 priority patent/US20020041977A1/en
Publication of JP2002020742A publication Critical patent/JP2002020742A/en
Priority to US10/673,446 priority patent/US6899962B2/en
Pending legal-status Critical Current

Links

Landscapes

  • Conversion Of X-Rays Into Visible Images (AREA)
  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an alkali halide-based fluorescent substance increased in stimulated luminescent levels, and to provide a radiographic transformation panel of high sensitivity. SOLUTION: This fluorescent substance is shown by the fundamental compositional formula:CsBr:xEu (wherein, x is a numerical value satisfying the relationship: 0<x<=0.2), being a europium-activated cesium bromide-based fluorescent substance; wherein the ratio for Eu2+ and Eu3+ each contained in this fluorescent substance satisfies the relationship: 5×10-5<=Eu3+/Eu2+<=0.1 in terms of emission intensity ratio.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリハライド
系蛍光体、およびその蛍光体を用いた放射線像変換パネ
ルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkali halide phosphor and a radiation image conversion panel using the phosphor.

【0002】[0002]

【従来の技術】従来の放射線写真法に代わる方法とし
て、輝尽性蛍光体を用いる放射線像記録再生方法が知ら
れている。この方法は、輝尽性蛍光体を含有する放射線
像変換パネル(蓄積性蛍光体シート)を利用するもの
で、被写体を透過した、あるいは被検体から発せられた
放射線を該パネルの輝尽性蛍光体に吸収させ、その後に
輝尽性蛍光体を可視光線、赤外線などの電磁波(励起
光)で時系列的に励起することにより、該輝尽性蛍光体
中に蓄積されている放射線エネルギーを蛍光(輝尽発光
光)として放出させ、この蛍光を光電的に読み取って電
気信号を得て、得られた電気信号に基づいて被写体ある
いは被検体の放射線画像を可視像として再生するもので
ある。読み取りを終えた該パネルは、残存する画像の消
去が行われた後、次の撮影のために備えられる。すなわ
ち、放射線像変換パネルは繰り返し使用される。
2. Description of the Related Art A radiation image recording / reproducing method using a stimulable phosphor is known as an alternative to the conventional radiographic method. This method uses a radiation image conversion panel (a stimulable phosphor sheet) containing a stimulable phosphor, and transmits radiation transmitted through a subject or emitted from a subject to the stimulable phosphor of the panel. The radiation energy stored in the stimulable phosphor is absorbed by the body in a time-series manner by exciting the stimulable phosphor with electromagnetic waves (excitation light) such as visible light and infrared rays. The fluorescent light is emitted as (stimulated emission light), the fluorescence is read photoelectrically to obtain an electric signal, and a radiation image of a subject or a subject is reproduced as a visible image based on the obtained electric signal. After the reading, the panel is prepared for the next photographing after the remaining image is erased. That is, the radiation image conversion panel is used repeatedly.

【0003】この放射線像記録再生方法では、放射線写
真フィルムと増感紙との組合せを用いる従来の放射線写
真法の場合に比べて、はるかに少ない被曝線量で情報量
の豊富な放射線画像を得ることができるという利点があ
る。さらに、従来の放射線写真法では一回の撮影ごとに
放射線写真フィルムを消費するのに対して、この放射線
像記録再生方法では放射線像変換パネルを繰り返し使用
するので、資源保護、経済効率の面からも有利である。
According to this radiographic image recording / reproducing method, a radiographic image having a large amount of information can be obtained with a much smaller exposure dose than the conventional radiographic method using a combination of a radiographic film and an intensifying screen. There is an advantage that can be. Furthermore, in contrast to the conventional radiographic method, which consumes a radiographic film for each photographing operation, the radiographic image recording / reproducing method uses a radiographic image conversion panel repeatedly, so that resource conservation and economic efficiency are reduced. Is also advantageous.

【0004】輝尽性蛍光体は、放射線を照射した後、励
起光を照射すると輝尽発光を示す蛍光体であるが、実用
上では、波長が400〜900nmの範囲にある励起光
によって300〜500nmの波長範囲の輝尽発光を示
す蛍光体が一般的に利用される。従来より放射線像変換
パネルに用いられてきた輝尽性蛍光体の例として、アル
カリハライド系蛍光体を挙げることができる。例えば、
特公平7−84588号及び同7−84589号公報に
は、CsXやRbX(Xはハロゲンである)系蛍光体が
開示されている。しかしながら、付活剤の価数、特にE
uの価数やその比率については記載が無い。
A stimulable phosphor is a phosphor that emits stimulable light when irradiated with radiation and then with excitation light. However, in practice, the stimulable phosphor has a wavelength of 400 to 900 nm due to the excitation light. Phosphors that exhibit stimulated emission in the 500 nm wavelength range are commonly used. Examples of the stimulable phosphor conventionally used in the radiation image conversion panel include an alkali halide phosphor. For example,
Japanese Patent Publication Nos. 7-84588 and 7-84589 disclose CsX and RbX (X is a halogen) phosphor. However, the valence of the activator, especially E
There is no description about the valence of u and its ratio.

【0005】放射線像記録再生方法に用いられる放射線
像変換パネルは、基本構造として、支持体とその上に設
けられた輝尽性蛍光体層とからなるものである。ただ
し、輝尽性蛍光体層が自己支持性である場合には必ずし
も支持体を必要としない。また、輝尽性蛍光体層の上面
(支持体に面していない側の面)には通常、保護膜が設
けられていて、蛍光体層を化学的な変質あるいは物理的
な衝撃から保護している。
The radiation image conversion panel used in the radiation image recording / reproducing method has, as a basic structure, a support and a stimulable phosphor layer provided thereon. However, when the stimulable phosphor layer is self-supporting, a support is not necessarily required. In addition, a protective film is usually provided on the upper surface of the stimulable phosphor layer (the surface not facing the support) to protect the phosphor layer from chemical deterioration or physical impact. ing.

【0006】輝尽性蛍光体層は、通常は輝尽性蛍光体と
これを分散状態で含有支持する結合剤とからなる。ただ
し、輝尽性蛍光体層としては、蒸着法や焼結法によって
形成される結合剤を含まないで輝尽性蛍光体の凝集体の
みから構成されるものも知られている。また、輝尽性蛍
光体の凝集体の間隙に高分子物質が含浸されている輝尽
性蛍光体層を有する放射線像変換パネルも知られてい
る。これらのいずれの蛍光体層でも、輝尽性蛍光体はX
線などの放射線を吸収したのち励起光の照射を受けると
輝尽発光を示す性質を有するものであるから、被写体を
透過したあるいは被検体から発せられた放射線は、その
放射線量に比例して放射線像変換パネルの輝尽性蛍光体
層に吸収され、パネルには被写体あるいは被検体の放射
線像が放射線エネルギーの蓄積像として形成される。こ
の蓄積像は、上記励起光を照射することにより輝尽発光
光として放出させることができ、この輝尽発光光を光電
的に読み取って電気信号に変換することにより、放射線
エネルギーの蓄積像を画像化することが可能となる。
The stimulable phosphor layer usually comprises a stimulable phosphor and a binder containing and supporting the stimulable phosphor in a dispersed state. However, there is also known a stimulable phosphor layer which does not include a binder formed by a vapor deposition method or a sintering method and is composed of only an aggregate of the stimulable phosphor. Further, there is known a radiation image conversion panel having a stimulable phosphor layer in which a polymer substance is impregnated in a gap between stimulable phosphor aggregates. In any of these phosphor layers, the stimulable phosphor is X
When irradiated with excitation light after absorbing radiation such as radiation, it has the property of stimulating luminescence, so radiation transmitted through a subject or emitted from a subject is proportional to the amount of radiation. Absorbed by the stimulable phosphor layer of the image conversion panel, a radiation image of the subject or the subject is formed on the panel as an accumulated image of radiation energy. This accumulated image can be emitted as stimulated emission light by irradiating the excitation light, and the accumulated image of radiation energy is imaged by photoelectrically reading the stimulated emission light and converting it into an electric signal. Can be realized.

【0007】また、上記放射線像記録再生方法の別法と
して本出願人による特願平11−372978号明細書
には、輝尽性蛍光体を含有する蓄積性蛍光体層(および
放射線吸収性蛍光体層)を有する放射線像変換パネル
と、放射線を吸収して紫外乃至可視領域に発光を示す蛍
光体を含有する放射線吸収性蛍光体層を有する蛍光スク
リーンとの組合せを用いる放射線画像形成方法、並びに
それらの組合せからなる放射線画像形成材料が記載され
ている。この方法は、被検体を透過した、被検体により
回折または散乱された、もしくは被検体から放射された
放射線をまず、蛍光スクリーンまたは放射線像変換パネ
ルの放射線吸収性蛍光体層にて紫外乃至可視領域の光に
変換した後、その光をパネルの蓄積性蛍光体層にて潜像
として蓄積記録する。次いで、このパネルに励起光を照
射して蓄積性蛍光体層からの輝尽発光光を光電的に読み
取って画像信号に変換し、そして画像信号より放射線の
空間的エネルギー分布に対応した画像を再構成するもの
である。本発明の放射線像変換パネルには、上記方法に
用いられるような、輝尽性蛍光体と放射線を吸収して紫
外乃至可視領域に発光を示す蛍光体の両方を含有するパ
ネルも包含される。
As another method of the above-mentioned radiation image recording / reproducing method, Japanese Patent Application No. 11-372978 filed by the present applicant discloses a stimulable phosphor-containing stimulable phosphor layer (and a radiation-absorbing phosphor layer). A radiation image forming method using a combination of a radiation image conversion panel having a body layer) and a phosphor screen having a radiation absorbing phosphor layer containing a phosphor that absorbs radiation and emits light in the ultraviolet to visible region, and Radiation imaging materials comprising combinations thereof are described. In this method, radiation transmitted through a subject, diffracted or scattered by the subject, or emitted from the subject is first applied to a fluorescent screen or a radiation absorbing phosphor layer of a radiation image conversion panel in an ultraviolet to visible region. After that, the light is accumulated and recorded as a latent image in the stimulable phosphor layer of the panel. Next, the panel is irradiated with excitation light to photoelectrically read the stimulated emission light from the stimulable phosphor layer to convert it into an image signal, and reconstruct an image corresponding to the spatial energy distribution of radiation from the image signal. Make up. The radiation image conversion panel of the present invention also includes a panel containing both a stimulable phosphor and a phosphor that absorbs radiation and emits light in the ultraviolet to visible region as used in the above method.

【0008】放射線像記録再生方法(および放射線画像
形成方法)は上述したように数々の優れた利点を有する
方法であるが、この方法に用いられる放射線像変換パネ
ルにあっても、できる限り高感度であってかつ画質(鮮
鋭度、粒状性など)の良好な画像を与えるものであるこ
とが望まれている。
Although the radiation image recording / reproducing method (and the radiation image forming method) has many excellent advantages as described above, the radiation image conversion panel used in this method has as high a sensitivity as possible. It is desired to provide an image with good image quality (sharpness, granularity, etc.).

【0009】[0009]

【発明が解決しようとする課題】本発明は、輝尽発光量
の増加したユーロピウム付活臭化セシウム系蛍光体を提
供することにある。本発明はまた、感度の高い放射線像
変換パネルを提供することにもある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a europium-activated cesium bromide-based phosphor having an increased amount of stimulated emission. The present invention also provides a radiation image conversion panel having high sensitivity.

【0010】[0010]

【課題を解決するための手段】本発明者は、ユーロピウ
ム付活臭化セシウム系蛍光体について検討した結果、付
活剤であるEuにおけるEu2+とEu3+の存在比が輝尽
発光量に多大な影響を及ぼすことを見い出し、本発明に
到達したものである。
The present inventor has studied the cesium bromide-activated phosphor based on europium, and found that the abundance ratio of Eu 2+ and Eu 3+ in Eu as an activator is a stimulating luminescence. Have been found to have a great effect on the present invention, and have reached the present invention.

【0011】本発明は、基本組成式(I): CsBr:xEu …(I) [ただし、xは0<x≦0.2の範囲の数値である]で
表される蛍光体であって、該蛍光体に含まれるEu2+
Eu3+の比率が発光強度比で、 5×10-5≦Eu3+/Eu2+≦0.1 の範囲にあるユーロピウム付活臭化セシウム系蛍光体。
The present invention provides a phosphor represented by a basic composition formula (I): CsBr: xEu (I) wherein x is a numerical value in a range of 0 <x ≦ 0.2. Europium-activated cesium bromide-based fluorescence in which the ratio of Eu 2+ to Eu 3+ contained in the phosphor is in the range of 5 × 10 −5 ≦ Eu 3+ / Eu 2+ ≦ 0.1 in terms of emission intensity ratio. body.

【0012】なお、本明細書中に記載した蛍光体組成に
おける上記の係数xは、出来上がった蛍光体の成分の比
に対応する数値である。蛍光体製造時の焼成工程の前後
で、組成の変化が生じるため、製造時に用いた各原料の
各成分の比と出来上がった蛍光体の各成分の比は若干異
なる場合がある。
The above-mentioned coefficient x in the phosphor composition described in the present specification is a numerical value corresponding to the ratio of the components of the completed phosphor. Since the composition changes before and after the firing step in the production of the phosphor, the ratio of each component of each raw material used in the production and the ratio of each component of the completed phosphor may be slightly different.

【0013】また、本明細書において蛍光体のEu2+
よびEu3+の発光強度としてはそれぞれ、蛍光体を波長
346nmで励起したときの450nm付近の瞬時発光
のピーク強度値、および蛍光体を波長394nmで励起
したときの595nm付近の瞬時発光のピーク強度値を
用いた。
In the present specification, the emission intensity of Eu 2+ and Eu 3+ of the phosphor is defined as the peak intensity of instantaneous emission near 450 nm when the phosphor is excited at a wavelength of 346 nm, and the emission intensity of the phosphor, respectively. The peak intensity value of instantaneous emission near 595 nm when excited at a wavelength of 394 nm was used.

【0014】本発明はまた、上記のユーロピウム付活臭
化セシウム系蛍光体を含む放射線像変換パネルにもあ
る。
The present invention also provides a radiation image conversion panel including the above-mentioned europium-activated cesium bromide-based phosphor.

【0015】[0015]

【発明の実施の形態】本発明のユーロピウム付活臭化セ
シウム系蛍光体は、例えば以下のようにして製造するこ
とができる。
BEST MODE FOR CARRYING OUT THE INVENTION The europium-activated cesium bromide-based phosphor of the present invention can be produced, for example, as follows.

【0016】蛍光体原料として、臭化セシウム(CsB
r)および臭化ユーロピウム(EuBr3)を用意す
る。これらの蛍光体原料を、固相で公知の各種ミキサー
を用いて撹拌しながら混合する。さらに、所望により輝
尽発光特性の向上の目的で、酸化アルミニウム、二酸化
ケイ素および二酸化ジルコニウムなどの金属酸化物を
0.5モル以下の量で添加混合してもよい。同様に、ア
ルカリ金属(Li、Na、K、Rb)、アルカリ土類金
属(Mg、Ca、Sr)、および/または三価金属(S
c、Y、La、Al、Ga、In、Tl)のハロゲン化
物を0.5モル以下の量で添加混合してもよい。
Cesium bromide (CsB)
r) and europium bromide (EuBr 3 ) are prepared. These phosphor raw materials are mixed in a solid phase while stirring using various known mixers. Further, if desired, metal oxides such as aluminum oxide, silicon dioxide, and zirconium dioxide may be added and mixed in an amount of 0.5 mol or less for the purpose of improving photostimulated luminescence characteristics. Similarly, alkali metals (Li, Na, K, Rb), alkaline earth metals (Mg, Ca, Sr), and / or trivalent metals (S
A halide of c, Y, La, Al, Ga, In, or Tl) may be added and mixed in an amount of 0.5 mol or less.

【0017】この蛍光体原料混合物をアルミナるつぼ、
白金るつぼ、石英ボートなどの耐熱性容器に充填し、電
気炉の炉芯に入れて焼成を行う。焼成温度は、100℃
〜620℃の範囲が適当であり、特に好ましくは525
℃付近である。焼成雰囲気としては、一般には窒素雰囲
気、および少量の酸素又は水素を含む窒素雰囲気が用い
られる。酸素は通常は0〜2666Paの範囲内で含ま
れ、水素は通常は0〜2666Paの範囲内で含まれ
る。好ましくは、窒素雰囲気および少量の酸素を含む窒
素雰囲気が用いられる。焼成時間は、混合物の充填量、
焼成温度および炉からの取出し温度などによっても異な
るが、一般には0.1〜10時間が適当であり、好まし
くは0.5〜5時間である。
An alumina crucible is used for the phosphor raw material mixture.
It is filled in a heat-resistant container such as a platinum crucible or a quartz boat, and put into a furnace core of an electric furnace for firing. The firing temperature is 100 ° C
To 620 ° C., and particularly preferably 525 ° C.
It is around ° C. As the firing atmosphere, a nitrogen atmosphere and a nitrogen atmosphere containing a small amount of oxygen or hydrogen are generally used. Oxygen is usually contained in the range of 0-2666 Pa, and hydrogen is usually contained in the range of 0-2666 Pa. Preferably, a nitrogen atmosphere and a nitrogen atmosphere containing a small amount of oxygen are used. Firing time depends on the amount of mixture charged,
Although it varies depending on the firing temperature and the temperature at which it is taken out of the furnace, it is generally suitable for 0.1 to 10 hours, preferably 0.5 to 5 hours.

【0018】このようにして得られた蛍光体には、必要
に応じて更に粉砕、篩分けなど蛍光体の製造における各
種の一般的な操作を行ってもよい。これにより、目的の
下記基本組成式(I)で表されるユーロピウム付活臭化
セシウム系輝尽性蛍光体が得られる。基本組成式
(I): CsBr:xEu …(I) [ただし、xは0<x≦0.2の範囲の数値である]
The phosphor thus obtained may be subjected to various general operations in the production of the phosphor, such as pulverization and sieving, if necessary. As a result, a desired europium-activated cesium bromide-based stimulable phosphor represented by the following basic composition formula (I) is obtained. Basic composition formula (I): CsBr: xEu (I) [where x is a numerical value in the range of 0 <x ≦ 0.2]

【0019】上記の輝尽性蛍光体において付活剤である
Euは、Eu2+またはEu3+として存在している。ただ
し、製造時に用いた付活剤原料が全て蛍光体中に付活剤
成分として取り込まれるとは限らず、製造条件によって
総量としてのEu量には多少の差異が生じる。また、E
2+とEu3+の存在比は焼成時の温度、雰囲気などの条
件によって大きく異なり、換言すれば焼成条件により制
御することができる。上記蛍光体の輝尽発光量は一般
に、発光中心であるEu2+の量が多いほど増加するが、
それに加えてEu3+がある特定の比率で存在するとき増
加する。本発明においては、Eu2+とEu3+の存在比
を、それぞれによる瞬時発光の強度比により規定する。
すなわち、蛍光体のEu2+の発光強度は、蛍光体を波長
346nmで励起したときの瞬時発光の450nm付近
のピーク強度とし、蛍光体のEu3+の発光強度は、蛍光
体を波長394nmで励起したときの瞬時発光の595
nm付近のピーク強度とし、そして両者の比率をEu2+
とEu3+の存在比とする。
Eu as an activator in the stimulable phosphor described above exists as Eu 2+ or Eu 3+ . However, the activator raw materials used in the production are not always incorporated into the phosphor as activator components, and the total amount of Eu varies slightly depending on the production conditions. Also, E
The abundance ratio between u 2+ and Eu 3+ varies greatly depending on conditions such as temperature and atmosphere during firing, and in other words, can be controlled by firing conditions. In general, the amount of stimulated emission of the phosphor increases as the amount of Eu 2+ as the emission center increases,
In addition, it increases when Eu 3+ is present at a certain ratio. In the present invention, the abundance ratio of Eu 2+ and Eu 3+ is defined by the intensity ratio of the instantaneous light emission.
That is, the emission intensity of Eu 2+ of the phosphor is a peak intensity around 450 nm of the instantaneous emission when the phosphor is excited at the wavelength of 346 nm, and the emission intensity of Eu 3+ of the phosphor is the emission intensity of the phosphor at a wavelength of 394 nm. 595 of instantaneous light emission when excited
nm, and the ratio of both to Eu 2+
And the Eu 3+ abundance ratio.

【0020】本発明において上記ユーロピウム付活臭化
セシウム系蛍光体は、Eu2+とEu 3+の比率が発光強度
比で、 5×10-5≦Eu3+/Eu2+≦0.1 の範囲にあるとき、輝尽発光量が著しく増加する。好ま
しくは、Eu2+とEu3+の比率は発光強度比で、 1×10-4≦Eu3+/Eu2+≦1×10-2 の範囲にある。
In the present invention, the above-mentioned activated bromide with europium is used.
Cesium-based phosphor is Eu2+And Eu 3+Is the emission intensity
5 × 10-Five≦ Eu3+/ Eu2+When it is in the range of ≦ 0.1, the amount of stimulated emission increases remarkably. Like
Or Eu2+And Eu3+Is the emission intensity ratio, 1 × 10-Four≦ Eu3+/ Eu2+≦ 1 × 10-2 In the range.

【0021】さらに、上記蛍光体の輝尽発光量は一般
に、発光中心であるEu2+の量とともに、蛍光体の電子
トラップであるBr欠陥の数が多いほど増加する。本発
明では、Eu2+の量を、蛍光体のEu2+による瞬時発光
のピーク強度により規定し、基準として同じ領域に発光
を示す物質[(SrCaBa)5(PO43Cl:Eu2
+、商品名:NP−105、日亜化学(株)製]を用い
て、充分に励起光を吸収する濃度の上記物質の発光のピ
ーク強度で規格化する(上記物質を100とする)こと
により、Eu2+の発光強度(IE)として表す。Eu2+
の発光強度IEが高いほど、Eu2+量が多いことを意味
する。一方、Br欠陥数を、X線照射により生じるF
(Br-)中心の着色量(IF)により規定し、X線照射
前の蛍光体からの拡散反射光の強度(I0)に対するX
線照射後の着色した蛍光体からの拡散反射光の強度(I
S)の比率−log(IS/I0)で表す。着色量IFが多い
ほど、すなわち着色が濃いほどBr欠陥数が多いことを
意味する。
Further, the amount of stimulated emission of the phosphor is generally
In addition, Eu which is the emission center2+Along with the amount of electrons in the phosphor
The number increases as the number of Br defects serving as traps increases. Departure
In the Ming, Eu2+Of the phosphor Eu2+Instant flash by
Specified by the peak intensity of the light and emitted in the same area as the reference
[(SrCaBa)Five(POFour)ThreeCl: EuTwo
+Trade name: NP-105, manufactured by Nichia Corporation]
The emission peak of the above substance at a concentration that sufficiently absorbs the excitation light.
Standardize with peak strength (the above substance is set to 100)
By Eu2+Emission intensity (IE). Eu2+
Emission intensity IEIs higher, Eu2+Means a large amount
I do. On the other hand, the number of Br defects is determined by F
(Br-) Coloring amount at center (IF), X-ray irradiation
The intensity of the diffusely reflected light from the previous phosphor (I0X for
Of the diffusely reflected light from the colored phosphor after irradiation with X-rays (I
S) -Log (IS/ I0). Coloring amount IFOften
That is, the higher the coloration, the greater the number of Br defects.
means.

【0022】蛍光体のEu2+の発光強度IEとF(B
-)中心の着色量IFが、関係式: 0.2≦IE×IF を満足するとき、輝尽発光量が著しく増加する。好まし
くは蛍光体は、 0.5≦IE×IF≦30.0 なる関係式を満足する。特に好ましくは蛍光体は、 10.0≦IE×IF≦15.0 なる関係式を満足する。
The emission intensity of Eu 2+ phosphor I E and F (B
r -) pigmenting amount I F of center relationship: when satisfying 0.2 ≦ I E × I F, amount of stimulated emission significantly increases. Preferably phosphor satisfies 0.5 ≦ I E × I F ≦ 30.0 relational expression. Especially preferably the phosphor satisfies the 10.0 ≦ I E × I F ≦ 15.0 relational expression.

【0023】次に、本発明の放射線像変換パネルは、そ
の蛍光体層に、上記の基本組成式(I)で表されるユー
ロピウム付活臭化セシウム系輝尽性蛍光体を含むもので
ある。蛍光体層は通常、気相堆積法により輝尽性蛍光体
の柱状結晶からなる層として形成されるが、蛍光体層中
には更に他の輝尽性蛍光体が含まれていてもよいし、あ
るいは放射線を吸収して紫外乃至可視領域に発光を示す
蛍光体など他の蛍光体を含む蛍光体層が更に付設されて
いてもよい。以下に、蛍光体層を気相堆積法により形成
する場合を例にとり、本発明の放射線像変換パネルを製
造する方法を説明する。
Next, in the radiation image conversion panel of the present invention, the phosphor layer contains europium-activated cesium bromide-based stimulable phosphor represented by the above basic composition formula (I). The phosphor layer is usually formed as a layer composed of columnar crystals of a stimulable phosphor by a vapor deposition method, but the phosphor layer may further contain another stimulable phosphor. Alternatively, a phosphor layer containing another phosphor such as a phosphor that absorbs radiation and emits light in the ultraviolet to visible region may be further provided. Hereinafter, a method of manufacturing the radiation image storage panel of the present invention will be described by taking, as an example, a case where the phosphor layer is formed by a vapor deposition method.

【0024】支持体は、従来の放射線像変換パネルの支
持体として公知の材料から任意に選ぶことができるが、
特に好ましい支持体材料は石英、ガラスシート;アルミ
ニウム、鉄、スズ、クロムなどからなる金属シート;ア
ラミドなどからなる樹脂シートである。公知の放射線像
変換パネルにおいて、放射線像変換パネルとしての感度
もしくは画質(鮮鋭度、粒状性)を向上させるために、
二酸化チタンなどの光反射性物質からなる光反射層、も
しくはカーボンブラックなどの光吸収性物質からなる光
吸収層などを設けることが知られている。本発明で用い
られる支持体についても、これらの各種の層を設けるこ
とができ、それらの構成は所望の放射線像変換パネルの
目的、用途などに応じて任意に選択することができる。
さらに特開昭58−200200号公報に記載されてい
るように、得られる画像の鮮鋭度を向上させる目的で、
支持体の蛍光体層側の表面(支持体の蛍光体層側の表面
に下塗層(接着性付与層)、光反射層あるいは光吸収層
などの補助層が設けられている場合には、それらの補助
層の表面であってもよい)には微小な凹凸が形成されて
いてもよい。
The support can be arbitrarily selected from materials known as supports for conventional radiation image storage panels.
Particularly preferred support materials are quartz, glass sheets; metal sheets made of aluminum, iron, tin, chromium and the like; resin sheets made of aramid and the like. In a known radiation image conversion panel, in order to improve sensitivity or image quality (sharpness, granularity) as the radiation image conversion panel,
It is known to provide a light reflecting layer made of a light reflecting substance such as titanium dioxide or a light absorbing layer made of a light absorbing substance such as carbon black. The support used in the present invention can also be provided with these various layers, and the configuration thereof can be arbitrarily selected depending on the desired purpose and application of the radiation image storage panel.
Further, as described in JP-A-58-200200, for the purpose of improving the sharpness of the obtained image,
The surface of the support on the side of the phosphor layer (when an auxiliary layer such as an undercoat layer (adhesion-imparting layer), a light reflecting layer or a light absorbing layer is provided on the surface of the support on the side of the phosphor layer, Fine irregularities may be formed on the surface of these auxiliary layers).

【0025】第一の蒸着法による場合には、まず支持体
を蒸着装置内に設置し、装置内を排気して1.33×1
-4Pa程度の真空度とする。次いで、輝尽性蛍光体を
抵抗加熱法、エレクトロンビーム法などの方法で加熱蒸
発させて、支持体表面に蛍光体を所望の厚みで堆積させ
る。蒸着は、複数回に分けて行ってもよいし、あるいは
複数の抵抗加熱器またはエレクトロンビームを用いて異
なる蛍光体を共蒸着させてもよい。また、輝尽性蛍光体
の原料を用いて支持体上で蛍光体を合成すると同時に蛍
光体層を形成することも可能である。さらに、蒸着の際
に必要に応じて被蒸着物(支持体または保護膜)を冷却
または加熱してもよいし、あるいは蒸着終了後に蒸着膜
(蛍光体層)を加熱処理(アニール処理)してもよい。
In the case of the first vapor deposition method, first, a support is placed in a vapor deposition apparatus, and the inside of the apparatus is evacuated to 1.33 × 1.
The degree of vacuum is about 0 -4 Pa. Next, the stimulable phosphor is heated and evaporated by a method such as a resistance heating method or an electron beam method to deposit the phosphor to a desired thickness on the surface of the support. The deposition may be performed a plurality of times, or different phosphors may be co-deposited using a plurality of resistance heaters or electron beams. Further, it is also possible to synthesize a phosphor on a support using a raw material of the stimulable phosphor and simultaneously form a phosphor layer. Further, at the time of vapor deposition, the object to be vapor-deposited (support or protective film) may be cooled or heated as necessary, or the vapor-deposited film (phosphor layer) may be heated (annealed) after vapor deposition. Is also good.

【0026】具体的にエレクトロンビーム法による場合
には、まず、蒸発源として上記の輝尽性蛍光体またはそ
の原料混合物を加圧圧縮して錠剤(ペレット)を作製す
る。圧縮時の圧力は蛍光体の種類や状態によっても異な
るが、一般には800〜1000kg/cm2の範囲に
ある。圧縮の際に、30℃〜200℃の範囲の温度に加
温してもよい。加圧圧縮後、得られた錠剤には脱ガス処
理を施すことが好ましい。これにより、相対密度が80
%以上98%以下、好ましくは90%以上96%以下の
錠剤が得られ、錠剤表面から蛍光体を均一に蒸発させる
ことができる。
Specifically, in the case of using the electron beam method, first, a tablet (pellet) is prepared by compressing the stimulable phosphor or its raw material mixture as an evaporation source under pressure. The compression pressure varies depending on the type and state of the phosphor, but is generally in the range of 800 to 1000 kg / cm 2 . At the time of compression, it may be heated to a temperature in the range of 30C to 200C. After pressurizing and compressing, the obtained tablets are preferably subjected to a degassing treatment. This allows a relative density of 80
% Or more and 98% or less, preferably 90% or more and 96% or less, and the phosphor can be uniformly evaporated from the tablet surface.

【0027】次いで、蒸発源である輝尽性蛍光体の錠
剤、および被蒸着物である支持体を蒸着装置内に設置
し、装置内を排気して1.33×10-2〜1.33×1
-4Pa程度の真空度とする。このとき、真空度をこの
程度に保持しながら、Arガス、Neガスなどの不活性
ガスを導入してもよい。蒸発源と支持体との距離は5〜
150cmの範囲で適宜設定する。次に、電子銃から加
速電圧1.5kV以上5.0kV以下、好ましくは2.
0kV以上4.0kV以下で電子線を発生させて、蒸発
源に照射する。電子線の照射により、蒸発源である輝尽
性蛍光体は加熱されて蒸発、飛散し、支持体表面に堆積
する。蛍光体の堆積する速度、すなわち蒸着速度は一般
には0.1〜1000μm/分の範囲にあり、好ましく
は1〜100μm/分の範囲にある。蒸着終了後、蒸着
膜を加熱処理してもよく、例えば50℃〜600℃の範
囲の温度、窒素雰囲気下(少量の酸素または水素を含ん
でいてもよい)で1〜3時間かけて行う。
Next, a stimulable phosphor tablet as an evaporation source and a support as an object to be deposited are placed in a deposition apparatus, and the inside of the apparatus is evacuated to 1.33 × 10 -2 to 1.33. × 1
The degree of vacuum is about 0 -4 Pa. At this time, an inert gas such as an Ar gas or a Ne gas may be introduced while maintaining the degree of vacuum at this level. The distance between the evaporation source and the support is 5-
It is set appropriately within a range of 150 cm. Next, the acceleration voltage from the electron gun is 1.5 kV or more and 5.0 kV or less, preferably 2.
An electron beam is generated at 0 kV or more and 4.0 kV or less, and the electron beam is irradiated to the evaporation source. The irradiation of the electron beam causes the stimulable phosphor, which is the evaporation source, to be heated, evaporated, scattered, and deposited on the surface of the support. The deposition rate of the phosphor, that is, the deposition rate, is generally in the range of 0.1 to 1000 μm / min, preferably in the range of 1 to 100 μm / min. After the deposition is completed, the deposited film may be subjected to a heat treatment, for example, in a temperature range of 50 ° C. to 600 ° C. in a nitrogen atmosphere (which may contain a small amount of oxygen or hydrogen) for 1 to 3 hours.

【0028】第二のスパッタ法による場合には、まず支
持体をスパッタ装置内に設置し、装置内を一旦排気して
1.33×10-4Pa程度の真空度にした後、スパッタ
用の気体としてArガス、Neガスなどの不活性ガスを
導入して0.133Pa程度のガス圧とする。次いで、
輝尽性蛍光体をターゲットとして放電し、イオン化した
気体の衝撃により蛍光体を飛散させて支持体表面に蛍光
体を所望の厚みで堆積させる。スパッタリングは、複数
回に分けて行ってもよいし、あるいはそれぞれ異なる蛍
光体からなる複数のターゲットを用いて、同時にまたは
順次スパッタリングして蛍光体層を形成してもよい。ま
た、複数の輝尽性蛍光体原料を用いて同時にまたは順次
スパッタリングして、支持体上で蛍光体を合成すると同
時に蛍光体層を形成することも可能である。必要に応じ
て、装置内にO2ガス、H2ガスを導入して反応性スパッ
タリングを行ってもよい。さらに、スパッタリングの際
に必要に応じて被蒸着物(支持体または保護膜)を冷却
または加熱してもよいし、あるいはスパッタリング終了
後に蛍光体層を加熱処理(アニール処理)してもよい。
In the case of the second sputtering method, a support is first placed in a sputtering apparatus, and the inside of the apparatus is once evacuated to a degree of vacuum of about 1.33 × 10 −4 Pa. An inert gas such as an Ar gas or a Ne gas is introduced as a gas to a gas pressure of about 0.133 Pa. Then
Discharge is performed using the stimulable phosphor as a target, and the phosphor is scattered by the impact of the ionized gas to deposit the phosphor to a desired thickness on the surface of the support. Sputtering may be performed a plurality of times, or a plurality of targets made of different phosphors may be used simultaneously or sequentially to form a phosphor layer. Further, it is also possible to simultaneously or sequentially sputter using a plurality of stimulable phosphor materials to synthesize a phosphor on a support and simultaneously form a phosphor layer. If necessary, reactive sputtering may be performed by introducing O 2 gas and H 2 gas into the apparatus. Further, at the time of sputtering, an object to be deposited (a support or a protective film) may be cooled or heated as necessary, or the phosphor layer may be subjected to a heat treatment (annealing treatment) after completion of the sputtering.

【0029】このようにして、輝尽性蛍光体の柱状結晶
がほぼ厚み方向に成長した蛍光体層が得られる。蛍光体
層は、結合剤を含有せず、輝尽性蛍光体のみからなり、
輝尽性蛍光体の柱状結晶と柱状結晶の間には空隙(クラ
ック)が存在する。蛍光体層の層厚は、目的とする放射
線像変換パネルの特性、気相堆積法の実施手段や条件な
どによって異なるが、通常は100μm〜1mmの範囲
にあり、好ましくは200μm〜700μmの範囲にあ
る。なお、蛍光体層は、必ずしも上記のように支持体上
に直接蛍光体を気相成長させて形成する必要はなく、例
えば、別にガラス板、金属板、プラスチックシートなど
の仮支持体上に蛍光体を気相成長させて蛍光体層を形成
した後、接着剤を用いるなどして支持体上に蛍光体層を
接合する方法を利用してもよい。
In this way, a phosphor layer in which the columnar crystals of the stimulable phosphor have grown substantially in the thickness direction is obtained. The phosphor layer does not contain a binder and consists only of a stimulable phosphor,
Voids (cracks) exist between the columnar crystals of the stimulable phosphor. The thickness of the phosphor layer varies depending on the characteristics of the target radiation image conversion panel, the means and conditions of the vapor deposition method, etc., but is usually in the range of 100 μm to 1 mm, preferably in the range of 200 μm to 700 μm. is there. Note that the phosphor layer does not necessarily need to be formed by vapor phase growth of the phosphor directly on the support as described above. For example, the phosphor layer may be separately formed on a temporary support such as a glass plate, a metal plate, or a plastic sheet. After forming the phosphor layer by vapor-phase growth of the body, a method of bonding the phosphor layer on the support using an adhesive or the like may be used.

【0030】あるいは、蛍光体層は上記輝尽性蛍光体と
これを分散状態で含有支持する結合剤とから構成されて
いてもよく、蛍光体層中には更に他の輝尽性蛍光体や着
色剤などの添加剤が含まれていてもよい。その場合に蛍
光体層は、次のような公知の方法により支持体上に形成
することができる。まず、輝尽性蛍光体と結合剤とを適
当な有機溶剤に加え、これを充分に混合して、結合剤溶
液中に蛍光体が均一に分散した塗布液を調製する。結合
剤については様々な種類の樹脂材料が知られており、本
発明の放射線像変換パネルの形成においても、それらの
公知の結合剤樹脂を中心とした任意の樹脂材料から適宜
選択して用いることができる。塗布液における結合剤と
蛍光体との混合比は、一般には1:1乃至1:100
(重量比)の範囲から選ばれ、そして特に1:8乃至
1:40(重量比)の範囲から選ぶのが好ましい。調製
された塗布液を、次に支持体の表面に均一に塗布して塗
膜を形成する。この塗布操作は、通常の塗布手段、例え
ばドクターブレード、ロールコータ、ナイフコータ等を
用いることにより行うことができる。
Alternatively, the phosphor layer may be composed of the above-mentioned stimulable phosphor and a binder containing and supporting the stimulable phosphor in a dispersed state. An additive such as a coloring agent may be included. In that case, the phosphor layer can be formed on the support by the following known method. First, a stimulable phosphor and a binder are added to an appropriate organic solvent and mixed well to prepare a coating solution in which the phosphor is uniformly dispersed in a binder solution. Various types of resin materials are known for the binder, and in the formation of the radiation image conversion panel of the present invention, any known resin material, mainly those known binder resins, may be appropriately selected and used. Can be. The mixing ratio between the binder and the phosphor in the coating solution is generally 1: 1 to 1: 100.
(Weight ratio), and particularly preferably in the range of 1: 8 to 1:40 (weight ratio). The prepared coating solution is then uniformly applied on the surface of the support to form a coating film. This coating operation can be performed by using ordinary coating means, for example, a doctor blade, a roll coater, a knife coater, or the like.

【0031】上記のようにして支持体上に塗膜を形成し
たのち塗膜を乾燥して、支持体上への蛍光体層の形成を
完了する。蛍光体層の層厚は、目的とする放射線像変換
パネルの特性、結合剤と蛍光体との混合比などによって
異なるが、一般には20μm〜1mmの範囲にあり、好
ましくは50μm〜500μmの範囲にある。なお、こ
の場合にも蛍光体層は必ずしも支持体上に直接塗布して
形成する必要はなく、例えば仮支持体上に塗布乾燥して
蛍光体層を形成した後、これを支持体上に押圧するか、
あるいは接着剤を用いるなどして支持体と蛍光体層とを
接合してもよい。
After forming the coating on the support as described above, the coating is dried to complete the formation of the phosphor layer on the support. The thickness of the phosphor layer varies depending on the characteristics of the intended radiation image conversion panel, the mixing ratio of the binder and the phosphor, etc., but is generally in the range of 20 μm to 1 mm, preferably in the range of 50 μm to 500 μm. is there. In this case as well, the phosphor layer does not necessarily need to be formed by directly coating on the support. For example, after coating and drying on a temporary support to form a phosphor layer, the phosphor layer is pressed onto the support. Or,
Alternatively, the support and the phosphor layer may be joined using an adhesive or the like.

【0032】蛍光体層の表面には、放射線像変換パネル
の搬送および取扱い上の便宜や特性変化の回避のため
に、保護膜を設けることが望ましい。保護膜は、励起光
の入射や輝尽発光光の出射に殆ど影響を与えないよう
に、透明であることが望ましく、また外部から与えられ
る物理的衝撃や化学的影響から放射線像変換パネルを充
分に保護することができるように、化学的に安定で防湿
性が高くかつ高い物理的強度を持つことが望ましい。保
護膜は、例えば弗化マグネシウムなどの無機化合物を用
いて前記エレクトロンビーム法などの蒸着法により、真
空度1.33×10 -2〜1.33×10-4Pa、蒸発源
と被蒸着物の距離5〜150cm、加速電圧1.5〜
5.0kV、蒸着速度約1μm/分の条件で、蒸着膜を
形成することにより蛍光体層上に設けることができる。
A radiation image conversion panel is provided on the surface of the phosphor layer.
For convenience in transporting and handling of materials and avoiding property changes
It is desirable to provide a protective film on the substrate. The protective film is
Has little effect on the incidence of light or emission of photostimulated light
It is desirable to be transparent and
The radiation image conversion panel from physical impacts and chemical influences.
Chemically stable and moisture proof so that it can be protected in minutes
It is desirable to have high physical properties and high physical strength. Security
For the protective film, use an inorganic compound such as magnesium fluoride.
And the evaporation method such as the electron beam method.
1.33 × 10 -2~ 1.33 × 10-FourPa, evaporation source
5 to 150 cm distance from the object to be deposited, acceleration voltage 1.5 to
Under the condition of 5.0 kV and a deposition rate of about 1 μm / min,
By forming, it can be provided on the phosphor layer.

【0033】あるいは保護膜は、セルロース誘導体やポ
リメチルメタクリレートなどのような透明な有機高分子
物質を適当な溶媒に溶解して調製した溶液を蛍光体層の
上に塗布することにより形成してもよいし、またポリエ
チレンテレフタレートなどの有機高分子フィルムや透明
なガラス板などの保護膜形成用シートを別に形成して蛍
光体層の表面に適当な接着剤を用いて設けてもよい。ま
た、有機溶媒可溶性のフッ素系樹脂の塗膜により形成さ
れ、パーフルオロオレフィン樹脂粉末もしくはシリコー
ン樹脂粉末を分散、含有させた保護膜であってもよい。
保護膜の膜厚は一般に約0.1〜20μmの範囲にあ
る。
Alternatively, the protective film may be formed by applying a solution prepared by dissolving a transparent organic polymer such as a cellulose derivative or polymethyl methacrylate in a suitable solvent onto the phosphor layer. Alternatively, an organic polymer film such as polyethylene terephthalate or a protective film forming sheet such as a transparent glass plate may be separately formed and provided on the surface of the phosphor layer using an appropriate adhesive. Further, a protective film formed of a coating film of a fluorine-based resin soluble in an organic solvent, in which a perfluoroolefin resin powder or a silicone resin powder is dispersed and contained, may be used.
The thickness of the protective film is generally in the range of about 0.1 to 20 μm.

【0034】上述のようにして本発明の放射線像変換パ
ネルが得られるが、本発明のパネルの構成は、公知の各
種のバリエーションを含むものであってもよい。たとえ
ば、得られる画像の鮮鋭度を向上させることを目的とし
て、上記の少なくともいずれかの層を、励起光を吸収し
輝尽発光光は吸収しないような着色剤によって着色して
もよい(特公昭59−23400号公報参照)。
Although the radiation image conversion panel of the present invention is obtained as described above, the configuration of the panel of the present invention may include various known variations. For example, for the purpose of improving the sharpness of the obtained image, at least one of the above-mentioned layers may be colored with a coloring agent that absorbs excitation light but does not absorb stimulating light (Japanese Patent Publication No. No. 59-23400).

【0035】[0035]

【実施例】[実施例1]CsBr:0.01Eu蛍光体の製
造 臭化セシウム15g(0.07モル)、および臭化ユー
ロピウム0.2761g(7.0×10-4モル)を秤量
した後、ミキサーで混合した。得られた混合物を石英容
器に入れ、電気炉の炉芯に置いて、初期真空引きした後
窒素ガスを大気圧まで導入し、525℃の温度にて1時
間焼成した。次いで、5分間中間真空引きした後、酸素
ガスを133Pa導入し、更に窒素ガスを大気圧まで導
入し、同温度にて1時間焼成した。焼成後、炉内を排気
して真空状態で焼成物を室温まで冷却した。焼成物を取
り出し、乳鉢で粉砕して、標記の組成式で表されるユー
ロピウム付活臭化セシウム蛍光体粒子を得た。
EXAMPLES Example 1 Production of CsBr: 0.01Eu Phosphor After weighing 15 g (0.07 mol) of cesium bromide and 0.2761 g (7.0 × 10 −4 mol) of europium bromide, Mix with a mixer. The obtained mixture was placed in a quartz container, placed on the core of an electric furnace, evacuated initially, nitrogen gas was introduced to atmospheric pressure, and baked at a temperature of 525 ° C. for 1 hour. Then, after evacuation was performed for 5 minutes, oxygen gas was introduced into the chamber at 133 Pa, and nitrogen gas was further introduced to atmospheric pressure, followed by firing at the same temperature for 1 hour. After firing, the furnace was evacuated and the fired product was cooled to room temperature in a vacuum. The fired product was taken out and pulverized in a mortar to obtain europium-activated cesium bromide phosphor particles represented by the composition formula described above.

【0036】[実施例2]蛍光体の製造 実施例1において、焼成工程で中間真空引きした後、酸
素ガスを133Paの代わりに266Pa導入したこと
以外は実施例1と同様にして、ユーロピウム付活臭化セ
シウム蛍光体粒子を得た。
Example 2 Manufacture of Phosphor In the same manner as in Example 1, except that 266 Pa of oxygen gas was introduced instead of 133 Pa after the intermediate evacuation in the firing step, europium activation was performed. Cesium bromide phosphor particles were obtained.

【0037】[実施例3]蛍光体の製造 実施例1において、焼成工程で中間真空引きをしない
で、窒素雰囲気にて2時間焼成したこと以外は実施例1
と同様にして、ユーロピウム付活臭化セシウム蛍光体粒
子を得た。
Example 3 Manufacture of Phosphor Example 1 was the same as Example 1 except that firing was performed in a nitrogen atmosphere for 2 hours without intermediate evacuation in the firing step.
In the same manner as described above, europium-activated cesium bromide phosphor particles were obtained.

【0038】[実施例4]蛍光体の製造 実施例1において、焼成工程で中間真空引きした後、酸
素ガスを133Paの代わりに399Pa導入したこと
以外は実施例1と同様にして、ユーロピウム付活臭化セ
シウム蛍光体粒子を得た。
Example 4 Production of Phosphor In Example 1, after evacuating to an intermediate vacuum in the firing step, europium activation was performed in the same manner as in Example 1 except that 399 Pa was introduced instead of 133 Pa. Cesium bromide phosphor particles were obtained.

【0039】[実施例5]蛍光体の製造 実施例1において、焼成工程で初期真空引きした後、水
素ガスを39.9Pa導入し、更に窒素ガスを大気圧ま
で導入し、500℃の温度にて2時間焼成して焼成を終
了したこと以外は実施例1と同様にして、ユーロピウム
付活臭化セシウム蛍光体粒子を得た。
Example 5 Production of Phosphor In Example 1, after initial evacuation in the firing step, hydrogen gas was introduced at 39.9 Pa, nitrogen gas was further introduced to atmospheric pressure, and the temperature was raised to 500 ° C. In this manner, europium-activated cesium bromide phosphor particles were obtained in the same manner as in Example 1 except that firing was completed for 2 hours.

【0040】[実施例6]蛍光体の製造 実施例1において、焼成工程で中間真空引きした後、酸
素ガスを133Paの代わりに1330Pa導入したこ
と以外は実施例1と同様にして、ユーロピウム付活臭化
セシウム蛍光体粒子を得た。
Example 6 Production of Phosphor In Example 1, after evacuating to an intermediate vacuum in the firing step, europium was activated in the same manner as in Example 1 except that oxygen gas was introduced at 1330 Pa instead of 133 Pa. Cesium bromide phosphor particles were obtained.

【0041】[比較例1]CsBr:0.0001Eu蛍光体
の製造 臭化セシウム15g(0.07モル)、および臭化ユー
ロピウム0.0028g(7.0×10-6モル)を秤量
した後、ミキサーで混合した。得られた混合物を石英容
器に入れ、電気炉の炉芯に置いて、初期真空引きした後
窒素ガスを大気圧まで導入し、550℃の温度にて2時
間焼成した。焼成後、炉内を排気して真空状態で焼成物
を室温まで冷却した。焼成物を取り出し、乳鉢で粉砕し
て、標記の組成式で表されるユーロピウム付活臭化セシ
ウム蛍光体粒子を得た。
Comparative Example 1 Production of CsBr: 0.0001 Eu Phosphor 15 g (0.07 mol) of cesium bromide and 0.0028 g (7.0 × 10 −6 mol) of europium bromide were weighed and then mixed. And mixed. The resulting mixture was placed in a quartz container, placed on the core of an electric furnace, evacuated initially, nitrogen gas was introduced to atmospheric pressure, and baked at a temperature of 550 ° C. for 2 hours. After firing, the furnace was evacuated and the fired product was cooled to room temperature in a vacuum. The fired product was taken out and pulverized in a mortar to obtain europium-activated cesium bromide phosphor particles represented by the composition formula described above.

【0042】[蛍光体の評価]上記の輝尽性蛍光体につ
いて、下記のようにしてEu2+とEu3+の発光強度比、
およびIE×IF(Eu2+発光強度×F(Br-)中心着
色量)を決定し、また輝尽発光量により評価を行った。
[Evaluation of Phosphor] Regarding the stimulable phosphor described above, the emission intensity ratio between Eu 2+ and Eu 3+ was determined as follows.
And I E × I F (Eu 2+ emission intensity × F (Br ) center coloring amount) were determined, and evaluation was made based on the stimulated emission amount.

【0043】 (1)Eu2+とEu3+の発光強度比(Eu3+/Eu2+) まず、使用する分光蛍光光度計(F−4500、日立製
作所(株)製)のスペクトル補正を行った。 励起波長の補正:各波長に対する量子効率がほぼ一定で
あるローダミンBを石英セルに注入し、上記分光蛍光光
度計にて640nmの発光波長における励起スペクトル
を、光電子増倍管の電圧400V、励起側のスリット
5.0nm、発光側のスリット20nm、走査速度60
nm/分の条件で測定し、各波長でのスペクトル強度が
一定になるように励起波長の補正係数を求めた。
(1) Emission Intensity Ratio of Eu 2+ and Eu 3+ (Eu 3+ / Eu 2+ ) First, spectral correction of a spectrofluorometer (F-4500, manufactured by Hitachi, Ltd.) is used. went. Excitation wavelength correction: Rhodamine B, whose quantum efficiency for each wavelength is almost constant, is injected into a quartz cell, and the excitation spectrum at an emission wavelength of 640 nm is measured by the above-mentioned spectrofluorometer at a voltage of 400 V of the photomultiplier tube on the excitation side. Slit 5.0 nm, emission side slit 20 nm, scanning speed 60
The measurement was performed under the condition of nm / min, and the correction coefficient of the excitation wavelength was determined so that the spectrum intensity at each wavelength became constant.

【0044】発光波長の補正:各波長に対する散乱強度
がほぼ一定であるガラスの拡散素子の散乱スペクトル
を、上記分光蛍光光度計にて光電子増倍管の電圧400
V、励起側のスリット5.0nm、発光側のスリット2
0nm、走査速度60nm/分の条件で励起と発光の分
光器を同時に走査させて測定し、各波長での散乱スペク
トル強度が一定になるように発光波長の補正係数を求め
た。
Correction of emission wavelength: The scattering spectrum of a glass diffusion element whose scattering intensity for each wavelength is substantially constant is measured by the spectrofluorometer at a voltage of 400 V of a photomultiplier tube.
V, slit 5.0 nm on excitation side, slit 2 on emission side
The excitation and emission spectrometers were simultaneously scanned under the conditions of 0 nm and a scanning speed of 60 nm / min, and the measurement was performed. The emission wavelength correction coefficient was determined so that the scattering spectrum intensity at each wavelength was constant.

【0045】次いで、試料の蛍光体粒子を窓材が石英で
作られたホルダに詰めて、上記分光蛍光光度計にて蛍光
体のEu2+による瞬時発光を測定した。測定は、光電子
増倍管の電圧400V、励起側のスリット2.5nm、
発光側のスリット2.5nm、走査速度60nm/分の
条件で、波長346nmで励起して行い、発光スペクト
ルを得た。得られた発光スペクトルの450nm付近の
発光ピーク強度を読み取った。次に、蛍光体のEu3+
よる瞬時発光スペクトルを、同じ測定条件で波長394
nmで励起して測定した後、595nm付近の発光ピー
ク強度を読み取った。上記補正係数に基づいて、各波長
における励起光強度および発光強度の補正をそれぞれ行
った後、得られたEu2+の発光ピーク強度に対するEu
3+の発光ピーク強度の比を、Eu3+/Eu2+発光強度比
とした。
Next, the phosphor particles of the sample were packed in a holder whose window material was made of quartz, and the instantaneous emission of Eu 2+ of the phosphor was measured by the above-mentioned spectrofluorometer. The measurement was performed at a voltage of 400 V of the photomultiplier, a slit of 2.5 nm on the excitation side,
Excitation was performed at a wavelength of 346 nm under the conditions of a slit on the emission side of 2.5 nm and a scanning speed of 60 nm / min, and an emission spectrum was obtained. The emission peak intensity around 450 nm of the obtained emission spectrum was read. Next, the instantaneous emission spectrum of Eu 3+ of the phosphor was measured under the same measurement conditions at a wavelength of 394.
After excitation at 550 nm, the emission peak intensity around 595 nm was read. After correcting the excitation light intensity and the emission intensity at each wavelength based on the above-mentioned correction coefficient, respectively, Eu relative to the emission peak intensity of Eu 2+ obtained is obtained.
The ratio of the 3+ emission peak intensities was defined as the Eu 3+ / Eu 2+ emission intensity ratio.

【0046】(2)IE×IF(Eu2+発光強度×F(B
-)中心着色量) Eu2+発光強度IEの測定:蛍光体粒子を窓材が石英で
作られたホルダに詰めて、上記分光蛍光光度計にて蛍光
体のEu2+による瞬時発光を測定した。測定は、光電子
増倍管の電圧400V、励起側のスリット2.5nm、
発光側のスリット2.5nm、走査速度60nm/分の
条件で、波長346nmで励起して行い、発光スペクト
ルを得た。得られた発光スペクトルの450nm付近の
発光ピーク強度を読み取った。次に、同領域に発光を示
す物質[(SrCaBa)5(PO43Cl:Eu2+
商品名:NP−105、日亜化学(株)製]を同じホルダ
に詰め、同様にして波長370nmで励起して発光スペ
クトルを測定し、450nm付近の発光ピーク強度を読
み取った。蛍光体の発光ピーク強度を、上記物質の発光
ピーク強度を100としたときの相対値で表し、Eu2+
発光強度IEとした。
(2) I E × I F (Eu 2+ emission intensity × F (B
r ) Center coloring amount) Measurement of Eu 2+ emission intensity IE : Phosphor particles are packed in a holder made of quartz as a window material, and instantaneous emission by Eu 2+ of the phosphor is performed by the above-mentioned spectrofluorometer. Was measured. The measurement was performed at a voltage of 400 V of the photomultiplier, a slit of 2.5 nm on the excitation side,
Excitation was performed at a wavelength of 346 nm under the conditions of a slit on the emission side of 2.5 nm and a scanning speed of 60 nm / min, and an emission spectrum was obtained. The emission peak intensity around 450 nm of the obtained emission spectrum was read. Next, materials showing light emission in the region [(SrCaBa) 5 (PO 4 ) 3 Cl: Eu 2+,
(Trade name: NP-105, manufactured by Nichia Chemical Co., Ltd.)], packed in the same holder, similarly excited at a wavelength of 370 nm, measured the emission spectrum, and read the emission peak intensity around 450 nm. The emission peak intensity of the phosphor is expressed as a relative value when the emission peak intensity of the substance is 100, and Eu 2+
The emission intensity IE was used.

【0047】F(Br-)中心の着色量IFの測定:蛍光
体粒子200mgを黒色の円筒状ホルダ(凹部開口径1
0mm、深さ250μm)に均一に詰めた。ホルダ開口
部の蛍光体表面に、波長633nmの非常に微弱なプロ
ーブ光を照射し、蛍光体からの拡散反射光を光学フィル
タ(O−50、保谷硝子(株)製)を通して光電子増倍管
(R−1848、浜松ホトニクス(株)製)により受光し
て、蛍光体からの拡散反射光の強度(I0)を測定し
た。次に、蛍光体に40kVp、30mAのX線を20
分間照射し、そのときの蛍光体からの拡散反射光の強度
(IS)を同様にして測定した。−log(IS/I0)を算
出し、F(Br-)中心の着色量IFとした。
[0047] F (Br -) Measurement of pigmenting amount I F of the central: phosphor particles 200mg black cylindrical holder (recess opening diameter 1
(0 mm, depth 250 μm). A very weak probe light having a wavelength of 633 nm is irradiated to the phosphor surface of the holder opening, and diffused reflected light from the phosphor is passed through an optical filter (O-50, manufactured by Hoya Glass Co., Ltd.) to a photomultiplier tube ( R-1848, manufactured by Hamamatsu Photonics KK), and the intensity (I 0 ) of diffusely reflected light from the phosphor was measured. Next, an X-ray of 40 kVp and 30 mA was applied to the phosphor for 20 minutes.
And the intensity (I S ) of the diffusely reflected light from the phosphor at that time was measured in the same manner. Calculates -log (I S / I 0) , F - centering the pigmenting amount I F (Br).

【0048】(3)輝尽発光量 蛍光体粒子200mgを黒色の円筒状ホルダ(凹部開口
径10mm、深さ250μm)に均一に詰めた。暗室内
にてホルダ開口部の蛍光体表面に、X線発生装置(MG
164、フィリップス社製)より発生した管電圧80k
VpのX線を、3mm厚のAlフィルタを通して100
mR照射した。その20秒後に、半導体レーザ(ML−
1016R、三菱電機(株)製)により波長660nmの
レーザ光を、蛍光体表面に均一に広げて励起エネルギー
4.3J/m2で照射し、蛍光体表面から放射された輝
尽発光光を、光学フィルタ(B−410、保谷硝子(株)
製)を通して光電子増倍管(R−1848、浜松ホトニ
クス(株)製)により受光して、輝尽発光量を測定した。
(3) Stimulated Luminescence Amount 200 mg of phosphor particles were uniformly packed in a black cylindrical holder (recess opening diameter 10 mm, depth 250 μm). In the dark room, an X-ray generator (MG)
164, made by Philips)
Vp X-rays were passed through a 3 mm thick Al filter for 100
Irradiated with mR. Twenty seconds later, the semiconductor laser (ML-
1016R, manufactured by Mitsubishi Electric Corporation), a laser beam having a wavelength of 660 nm is uniformly spread on the phosphor surface and irradiated with excitation energy of 4.3 J / m 2 , and the stimulated emission light emitted from the phosphor surface is Optical filter (B-410, Hoya Glass Co., Ltd.)
Manufactured by Hamamatsu Photonics KK, and the amount of stimulated emission was measured.

【0049】CsBr:0.01Eu蛍光体のEu2+による
発光スペクトル、およびEu3+による発光スペクトルを
それぞれ図1、2に示す。また、得られた結果をまとめ
て図3、4および表1〜3に示す。
The emission spectrum of Eu2 + and the emission spectrum of Eu3 + of the CsBr: 0.01Eu phosphor are shown in FIGS. 1 and 2, respectively. In addition, the obtained results are shown in FIGS.

【0050】図1は、CsBr:0.01Eu蛍光体(実施
例1)のEu2+の発光スペクトルを示すグラフである。
図2は、CsBr:0.01Eu蛍光体(実施例1)のEu
3+の発光スペクトルを示すグラフである。図3は、Eu
3+/Eu2+発光強度比と輝尽発光量との関係を示すグラ
フである。図4は、IE×IF(Eu2+発光強度×F(B
-)中心着色量)と輝尽発光量との関係を示すグラフ
である。
FIG. 1 is a graph showing the emission spectrum of Eu 2+ of the CsBr: 0.01Eu phosphor (Example 1).
FIG. 2 shows Eu of the CsBr: 0.01Eu phosphor (Example 1).
It is a graph which shows the emission spectrum of 3+ . FIG.
It is a graph which shows the relationship between 3 + / Eu2 + luminescence intensity ratio and the amount of photostimulated luminescence. FIG. 4 shows I E × I F (Eu 2+ emission intensity × F (B
r -) center pigmenting amount) and a graph showing the relationship between amount of stimulated emission.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 表2 ───────────────────────────────── Eu2+ Eu3+ Eu3+/Eu2+ 輝尽発光量 発光強度 発光強度 発光強度比 ───────────────────────────────── 実施例1 56 0.010 1.9×10-4 37.7 実施例2 51 0.014 2.8×10-4 45.2 実施例3 55 0.022 4.0×10-4 47.6 実施例4 47 0.029 6.1×10-4 43.1 実施例5 11 0.044 3.9×10-3 16.9 実施例6 2 0.073 3.1×10-2 12.6 ───────────────────────────────── 比較例1 2 2.6×10-5 1.3×10-5 1.5 ─────────────────────────────────[Table 2] Eu 2+ Eu 3+ Eu 3+ / Eu 2+ photostimulated luminescence amount luminescence intensity luminescence intensity luminescence intensity ratio 例 Example 1 56 0.010 1.9 × 10 −4 37.7 Example 2 51 0.014 2.8 × 10 −4 45.2 Example 3 55 0.022 4.0 × 10 −4 47.6 Example 4 47 0.029 6.1 × 10 −4 43.1 Example 5 11 0.044 3.9 × 10 −3 16.9 Example 6 2 0.073 3.1 × 10 −2 12.6} ─────────────────────────────── Comparative Example 1 2 2.6 × 10 -5 1.3 × 10 -5 1 .5─────────────────────────────── ─

【0053】[0053]

【表3】 表3 ──────────────────────────────── IEFE×IF 輝尽発光量 ──────────────────────────────── 実施例1 56 0.1799 10.0 37.7 実施例2 51 0.2639 13.5 45.2 実施例3 55 0.2362 13.0 47.6 実施例4 47 0.2245 10.6 43.1 実施例5 11 0.1679 1.9 16.9 実施例6 2 0.2635 0.6 12.6 ──────────────────────────────── 比較例1 2 0.1237 0.1 1.5 ────────────────────────────────TABLE 3 TABLE 3 ──────────────────────────────── I E I F I E × I F stimulated emission Amount ──────────────────────────────── Example 1 56 0.1799 10.0 37.7 Example 2 51 0.2639 13.5 45.2 Example 3 55 0.2362 13.0 47.6 Example 4 47 0.2245 10.6 43.1 Example 5 11 0.1679 1.9 16.9 Example 6 2 0.2635 0.6 12.6 比較 Comparative Example 1 2 0.1237 0.1 1.5 ────────────────────────────────

【0054】図3および表2から明らかなように、Eu
2+とEu3+の存在比が発光強度比で5×10-5〜0.1
の範囲にある本発明のユーロピウム付活臭化セシウム蛍
光体(実施例1〜6)は、比較のための蛍光体(比較例
1)に比べて輝尽発光量が非常に増加しており、特にE
2+/Eu3+発光強度比が1×10-4〜1×10-2の範
囲にある場合に、極めて大きな輝尽発光量を示した。こ
のようなEu2+とEu 3+の存在比は、表1に示すよう
に、蛍光体原料焼成時の焼成温度および焼成雰囲気を好
適に調整することにより達成することができる。
As is clear from FIG. 3 and Table 2, Eu
2+And Eu3+Is 5 × 10 in emission intensity ratio-Five~ 0.1
Activated cesium bromide fired with europium of the present invention in the range of
The light bodies (Examples 1 to 6) are phosphors for comparison (Comparative Examples).
Compared with 1), the amount of stimulated emission is significantly increased.
u2+/ Eu3+Emission intensity ratio is 1 × 10-Four~ 1 × 10-2Range of
When it was in the box, an extremely large amount of stimulated emission was exhibited. This
Eu like2+And Eu 3+Is as shown in Table 1.
In particular, it is preferable to set the firing temperature and firing atmosphere during firing of the phosphor raw material.
It can be achieved by appropriate adjustment.

【0055】また、図4および表3から明らかなよう
に、蛍光体のEu2+発光強度IEとF(Br-)中心着色
量IFの積が0.2以上である場合には(実施例1〜
6)、比較のための蛍光体(比較例1)に比べて輝尽発
光量が非常に増加しており、特に積IE×IFが10.0
以上である場合には(実施例1〜4)、極めて大きな輝
尽発光量を示した。
[0055] Further, as apparent from FIGS. 4 and Table 3, Eu 2+ emission intensity of the phosphor I E and F (Br -) in the case the product of the center pigmenting amount I F is 0.2 or more ( Example 1
6), the amount of stimulated emission is much higher than that of the comparative phosphor (Comparative Example 1), and especially the product IE × IF is 10.0.
In the cases described above (Examples 1 to 4), an extremely large amount of stimulated emission was exhibited.

【0056】[実施例7]放射線像変換パネルの製造 (1)蒸着源の作製 臭化セシウム100g(0.47モル)と臭化ユーロピ
ウム1.8404g(4.7×10-3モル)とを乳鉢で
粉砕混合した後、更に撹拌振動器で15分間撹拌混合し
た。得られた混合物を炉内に置いて、3分間真空引きし
たのち窒素ガスを大気圧まで導入し、窒素雰囲気下で温
度525℃にて2時間焼成した。焼成後、炉内を15分
間真空引きして焼成物を冷却した。次いで、得られたユ
ーロピウム付活臭化セシウム(CsBr:0.01Eu)輝
尽性蛍光体を乳鉢で粉砕した後、圧力950kg/cm
2にて加圧圧縮して、蒸着用の錠剤を作製した。錠剤
に、更に温度150℃で2時間真空引きして脱ガス処理
を施した。
Example 7 Production of Radiation Image Conversion Panel (1) Production of Evaporation Source 100 g (0.47 mol) of cesium bromide and 1.8404 g (4.7 × 10 −3 mol) of europium bromide were used. After crushing and mixing in a mortar, the mixture was further stirred and mixed for 15 minutes with a stirring vibrator. The obtained mixture was placed in a furnace, evacuated for 3 minutes, and then nitrogen gas was introduced to atmospheric pressure, followed by firing at 525 ° C. for 2 hours in a nitrogen atmosphere. After firing, the furnace was evacuated for 15 minutes to cool the fired product. Next, the obtained europium-activated cesium bromide (CsBr: 0.01 Eu) stimulable phosphor was crushed in a mortar, and then the pressure was 950 kg / cm.
Pressing and compression at 2 produced tablets for vapor deposition. The tablets were further degassed by evacuation at 150 ° C. for 2 hours.

【0057】(2)蛍光体層の形成 支持体として、アルミニウムシートをメチルエチルケト
ン、次いで紫外線オゾンで洗浄した後、クリーンブース
内で自然乾燥したもの、並びにガラスシートおよび石英
シートをそれぞれアルカリ洗浄した後、クリーンブース
内で自然乾燥したものを用意した。これらの支持体を順
に蒸着装置内に設置し、上記の蒸着源を装置内の所定位
置に置いた後、装置内を真空引きして4.0×10-4
aの真空度とした。次いで、蒸着源に電子銃で加速電圧
4.0kV、電流28mAの電子線を16分間照射し
て、支持体上に輝尽性蛍光体を25μm/分の速度で堆
積させた。その後、電子線の照射を止め、装置内を大気
圧に戻し、装置から支持体を取り出した。アルミニウム
シート、ガラスシート、石英シート上にはそれぞれ、幅
約30μm、長さ約400μmの蛍光体の柱状結晶がほ
ぼ垂直方向に密に林立した構造の蛍光体層(層厚:40
0μm)が形成されていた。このようにして、支持体と
蛍光体層とからなる放射線像変換パネルを製造した。
(2) Formation of Phosphor Layer As a support, an aluminum sheet was washed with methyl ethyl ketone and then with ultraviolet ozone, then dried naturally in a clean booth, and a glass sheet and a quartz sheet were washed with alkali, respectively. What was dried naturally in the clean booth was prepared. These supports were sequentially placed in a vapor deposition apparatus, and after the above-mentioned vapor deposition source was placed at a predetermined position in the apparatus, the inside of the apparatus was evacuated to 4.0 × 10 -4 P
The degree of vacuum was a. Next, an electron source was irradiated with an electron beam having an accelerating voltage of 4.0 kV and a current of 28 mA for 16 minutes by an electron gun to deposit a stimulable phosphor on the support at a rate of 25 μm / min. Thereafter, the irradiation of the electron beam was stopped, the inside of the apparatus was returned to the atmospheric pressure, and the support was taken out of the apparatus. Phosphor layers having a structure in which columnar crystals of a phosphor having a width of about 30 μm and a length of about 400 μm are densely formed almost vertically in an aluminum sheet, a glass sheet, and a quartz sheet (layer thickness: 40)
0 μm). In this way, a radiation image conversion panel including the support and the phosphor layer was manufactured.

【0058】[0058]

【発明の効果】本発明によれば、付活剤であるEu2+
Eu3+の存在比を特定の範囲とすることにより、ユーロ
ピウム付活臭化セシウム系蛍光体の輝尽発光量を顕著に
増加させることができる。よって、この蛍光体を含有す
る本発明の放射線像変換パネルは、高い感度を示す。特
に、蛍光体層を気相堆積法により形成した場合には、よ
り一層高感度であって高画質の放射線画像を与える放射
線像変換パネルが得られる。このため、医療診断のため
の放射線像記録再生方法に使用した場合に、本発明の放
射線像変換パネルは特に有利となる。
According to the present invention, the stimulable luminescence of the europium-activated cesium bromide-based phosphor is reduced by setting the abundance ratio of the activators Eu 2+ and Eu 3+ to a specific range. Can be significantly increased. Therefore, the radiation image conversion panel of the present invention containing this phosphor exhibits high sensitivity. In particular, when the phosphor layer is formed by a vapor deposition method, a radiation image conversion panel that has higher sensitivity and provides a high-quality radiation image can be obtained. For this reason, the radiation image conversion panel of the present invention is particularly advantageous when used in a method for recording and reproducing a radiation image for medical diagnosis.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のCsBr:0.01Eu蛍光体のEu2+
発光スペクトルを示すグラフである。
FIG. 1 is a graph showing the emission spectrum of Eu 2+ of the CsBr: 0.01Eu phosphor of the present invention.

【図2】本発明のCsBr:0.01Eu蛍光体のEu3+
発光スペクトルを示すグラフである。
FIG. 2 is a graph showing the emission spectrum of Eu 3+ of the CsBr: 0.01Eu phosphor of the present invention.

【図3】Eu3+/Eu2+発光強度比と輝尽発光量との関
係を示すグラフである。
FIG. 3 is a graph showing the relationship between the Eu 3+ / Eu 2+ emission intensity ratio and the amount of stimulated emission.

【図4】IE×IFと輝尽発光量との関係を示すグラフで
ある。
FIG. 4 is a graph showing the relationship between I E × I F and the amount of stimulated emission.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G083 AA03 BB01 CC02 CC03 DD01 DD02 DD11 DD12 DD14 DD15 EE03 4H001 CA02 CF02 XA35 XA55 YA63 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G083 AA03 BB01 CC02 CC03 DD01 DD02 DD11 DD12 DD14 DD15 EE03 4H001 CA02 CF02 XA35 XA55 YA63

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基本組成式(I): CsBr:xEu …(I) [ただし、xは0<x≦0.2の範囲の数値である]で
表される蛍光体であって、該蛍光体に含まれるEu2+
Eu3+の比率が発光強度比で、 5×10-5≦Eu3+/Eu2+≦0.1 の範囲にあるユーロピウム付活臭化セシウム系蛍光体。
1. A phosphor represented by a basic composition formula (I): CsBr: xEu (I) wherein x is a numerical value in a range of 0 <x ≦ 0.2. A europium-activated cesium bromide-based phosphor in which the ratio of Eu 2+ to Eu 3+ contained in the body is in the range of 5 × 10 −5 ≦ Eu 3+ / Eu 2+ ≦ 0.1 in terms of emission intensity ratio.
【請求項2】 Eu2+とEu3+の比率が発光強度比で、 1×10-4≦Eu3+/Eu2+≦1×10-2 の範囲にある請求項1に記載のユーロピウム付活臭化セ
シウム系蛍光体。
2. The europium according to claim 1, wherein the ratio between Eu 2+ and Eu 3+ is in the range of 1 × 10 −4 ≦ Eu 3+ / Eu 2+ ≦ 1 × 10 −2 in terms of emission intensity ratio. Activated cesium bromide phosphor.
【請求項3】 蛍光体のEu2+の発光強度IEとF(B
-)中心の着色量I Fが、関係式: 0.2≦IE×IF を満足する請求項1または2に記載のユーロピウム付活
臭化セシウム系蛍光体。
3. The phosphor of Eu2+Emission intensity IEAnd F (B
r-) Coloring amount at center I FIs the relational expression: 0.2 ≦ IE× IF The europium activation according to claim 1 or 2, which satisfies the following.
Cesium bromide phosphor.
【請求項4】 少なくとも臭化セシウムおよび臭化ユー
ロピウムを含む蛍光体原料混合物を、100℃〜620
℃の範囲の温度で、窒素雰囲気もしくは少量の酸素又は
水素を含む窒素雰囲気中で、0.1〜10時間焼成する
ことにより製造される請求項1乃至3のうちのいずれか
の項に記載のユーロピウム付活臭化セシウム系蛍光体。
4. A phosphor raw material mixture containing at least cesium bromide and europium bromide at 100 ° C. to 620 ° C.
The method according to any one of claims 1 to 3, which is produced by calcining in a nitrogen atmosphere or a nitrogen atmosphere containing a small amount of oxygen or hydrogen at a temperature in the range of 0 ° C for 0.1 to 10 hours. Active cesium bromide phosphor with europium.
【請求項5】 請求項1乃至4のうちのいずれかの項に
記載のユーロピウム付活臭化セシウム系蛍光体を含む放
射線像変換パネル。
5. A radiation image conversion panel comprising the europium-activated cesium bromide-based phosphor according to any one of claims 1 to 4.
【請求項6】 気相堆積法により形成されたユーロピウ
ム付活臭化セシウム系蛍光体からなる蛍光体層を有する
請求項5に記載の放射線像変換パネル。
6. The radiation image conversion panel according to claim 5, further comprising a phosphor layer formed of europium-activated cesium bromide-based phosphor formed by a vapor deposition method.
【請求項7】 ユーロピウム付活臭化セシウム系蛍光体
を分散支持する結合剤からなる蛍光体層を有する請求項
5に記載の放射線像変換パネル。
7. The radiation image conversion panel according to claim 5, further comprising a phosphor layer made of a binder that supports and supports the europium-activated cesium bromide-based phosphor.
JP2000202496A 2000-06-23 2000-07-04 Alkali halide-based fluorescent substance and radiographic transformation panel Pending JP2002020742A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000202496A JP2002020742A (en) 2000-07-04 2000-07-04 Alkali halide-based fluorescent substance and radiographic transformation panel
US09/887,344 US20020041977A1 (en) 2000-06-23 2001-06-25 Europium activated cesium bromide phosphor and radiation image storage sheet
US10/673,446 US6899962B2 (en) 2000-06-23 2003-09-30 Europium activated cesium bromide phosphor and radiation image storage sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000202496A JP2002020742A (en) 2000-07-04 2000-07-04 Alkali halide-based fluorescent substance and radiographic transformation panel

Publications (1)

Publication Number Publication Date
JP2002020742A true JP2002020742A (en) 2002-01-23

Family

ID=18700016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000202496A Pending JP2002020742A (en) 2000-06-23 2000-07-04 Alkali halide-based fluorescent substance and radiographic transformation panel

Country Status (1)

Country Link
JP (1) JP2002020742A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232454A (en) * 2004-02-20 2005-09-02 Agfa Gevaert Nv Storage phosphor screen having dopant homogeneously incorporated therewith
JP2006098796A (en) * 2004-09-29 2006-04-13 Fuji Photo Film Co Ltd Radiological image reading method
JP2006105596A (en) * 2004-09-30 2006-04-20 Fuji Photo Film Co Ltd Radiological image conversion panel
JP2006343123A (en) * 2005-06-07 2006-12-21 Konica Minolta Medical & Graphic Inc Method of manufacturing radiological image conversion panel, and radiological image conversion panel
JP2009133869A (en) * 2009-03-09 2009-06-18 Konica Minolta Holdings Inc Radiation image conversion panel and method of manufacturing the same
JP2011064699A (en) * 2010-11-25 2011-03-31 Konica Minolta Holdings Inc Radiation image conversion panel and method of manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232454A (en) * 2004-02-20 2005-09-02 Agfa Gevaert Nv Storage phosphor screen having dopant homogeneously incorporated therewith
JP2006098796A (en) * 2004-09-29 2006-04-13 Fuji Photo Film Co Ltd Radiological image reading method
JP2006105596A (en) * 2004-09-30 2006-04-20 Fuji Photo Film Co Ltd Radiological image conversion panel
JP2006343123A (en) * 2005-06-07 2006-12-21 Konica Minolta Medical & Graphic Inc Method of manufacturing radiological image conversion panel, and radiological image conversion panel
JP4517945B2 (en) * 2005-06-07 2010-08-04 コニカミノルタエムジー株式会社 Radiation image conversion panel manufacturing method and radiation image conversion panel
JP2009133869A (en) * 2009-03-09 2009-06-18 Konica Minolta Holdings Inc Radiation image conversion panel and method of manufacturing the same
JP4687799B2 (en) * 2009-03-09 2011-05-25 コニカミノルタホールディングス株式会社 Radiation image conversion panel and manufacturing method thereof
JP2011064699A (en) * 2010-11-25 2011-03-31 Konica Minolta Holdings Inc Radiation image conversion panel and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US6899962B2 (en) Europium activated cesium bromide phosphor and radiation image storage sheet
JP3987287B2 (en) Radiation image conversion panel
EP0345904B1 (en) Photostimulable phosphor and radiographic application
US5629125A (en) Photostimulable phosphor and radiation image recording and reproducing method
JP2002020742A (en) Alkali halide-based fluorescent substance and radiographic transformation panel
US7446323B2 (en) Radiation image storage panel suitable for use in mammographic applications
JPH0673372A (en) Photoexcitable storage phosphor and its use in radiography
JP3813794B2 (en) Alkali halide phosphor and radiation image conversion panel
US5514298A (en) Photostimulable phosphor for use in radiography
JPH08226998A (en) Recording and reproducing method of radiation image
JP2727273B2 (en) Phosphor and radiation image conversion panel
JP3264650B2 (en) Cerium-activated alkaline earth metal fluoride halide-based phosphor and radiation image conversion panel
JP2003307597A (en) Radiological image conversion panel
JP2002296398A (en) Method for manufacturing radiographic image conversion panel
JP2003028996A (en) Manufacturing method for radiation image conversion panel
JP2003302497A (en) Manufacturing method of radiological image conversion panel
JP2004340892A (en) Radiographic image conversion panel and its manufacturing method
JP2003183651A (en) Alkali halide-based phosphor and radiation image conversion panel
JP2657595B2 (en) Phosphor and radiation image conversion panel
JP2002256263A (en) Cesium halide storage phosphor with narrow emission spectrum by uv-excitation
JP2004245640A (en) Radiation image conversion panel
JPH06158041A (en) Production of stimulable phosphor, and x-ray image conversion panel obtained using the stimulable phosphor
JP2002022896A (en) Method for manufacturing radiation image conversion panel
US20070075282A1 (en) Radiation image storage panel and process for producing the same
JPH11349939A (en) Pare earth metal oxyhalide-based phosphor and panel for converting radiation image

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A711 Notification of change in applicant

Effective date: 20061208

Free format text: JAPANESE INTERMEDIATE CODE: A712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070406

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070605

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070608

A02 Decision of refusal

Effective date: 20070907

Free format text: JAPANESE INTERMEDIATE CODE: A02