JPS60114555A - Sintered iron alloy and manufacture - Google Patents

Sintered iron alloy and manufacture

Info

Publication number
JPS60114555A
JPS60114555A JP22090983A JP22090983A JPS60114555A JP S60114555 A JPS60114555 A JP S60114555A JP 22090983 A JP22090983 A JP 22090983A JP 22090983 A JP22090983 A JP 22090983A JP S60114555 A JPS60114555 A JP S60114555A
Authority
JP
Japan
Prior art keywords
powder
strength
iron
sintering
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22090983A
Other languages
Japanese (ja)
Inventor
Hiroshi Hamamoto
弘 浜本
Taku Saito
卓 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP22090983A priority Critical patent/JPS60114555A/en
Publication of JPS60114555A publication Critical patent/JPS60114555A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve the strength and toughness by sintering prescribed percentages of Mo, Ni, Cr, Mn, Cu, C and Fe. CONSTITUTION:An alloy consisting of, by weight, two or more among 0.2-1% Mo, 0.2-2% Ni, 0.2-2% Cr and 0.2-0.7% Mn and the balance Fe is refined and powdered. This alloy powder is mixed with 1.5-4% Cu powder and 0.2- 0.6% C powder, and the powdery mixture is press-molded and sintered to obtain a sintered iron alloy having bainite as the principal structure. The sintered iron alloy has superior strength and toughness.

Description

【発明の詳細な説明】 本究明は高強度かつ高靭性の鉄系焼結合金およびその製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present research relates to a high-strength and high-toughness iron-based sintered alloy and a method for producing the same.

尚強度高靭性の鉄系焼結合金の製造方法としては、再圧
権再焼結法、焼結鍛造法などにより高密化や合金化した
り、更に熱処理を行なって組織を変える等の方法があり
、これ等の方法では引張強さ7 Q Irg/ tut
′程度ないしそれ以上の焼結合金が得られる。しかしな
がら、これ等の方法は工程がLq雑であり、製造に必要
なエネルギもJIJ’l常のか゛ム結法よりも大きくな
)高コストとなっている。
In addition, there are methods for manufacturing iron-based sintered alloys with high strength and toughness, such as increasing the density and alloying by repressing resintering method, sinter forging method, etc., and changing the structure by further heat treatment. , these methods have a tensile strength of 7 Q Irg/tut
A sintered alloy of about 100% or more can be obtained. However, these methods require Lq complex steps and are expensive (the energy required for production is also greater than that of the conventional laminate method).

一方、鉄粉末に銅粉末と更に黒鉛、ボロン粉末を混合し
、あるいは鉄粉末に銅粉末と更に黒鉛、リン粉末を混合
し、通常の成形、焼結のみで面強度高靭性焼結合金が製
造されているが、この方法で得られる・製品の引張り強
式は65 kg/mm ”程度が最高である。
On the other hand, a sintered alloy with high surface strength and toughness can be produced by mixing iron powder with copper powder and graphite or boron powder, or by mixing copper powder with iron powder and graphite or phosphorus powder, and by just normal forming and sintering. However, the maximum tensile strength of the product obtained by this method is about 65 kg/mm.

そこで本発明は、引張強さが65 JT9/ mX程度
ないしそれ以上であシ、かつ靭性にもすぐれた鉄系焼結
合金、およびこの焼結合金を再ffM再焼結、高温焼結
、焼結鍛造、熱処理等の手段を用いることなく成形圧力
4 ton/c+J 〜7 ton/cJ程度、焼結温
度1100°C〜1160℃程度の通常の成形、焼結に
て製造する方法を提供することを目的とするものである
Therefore, the present invention provides an iron-based sintered alloy that has a tensile strength of about 65 JT9/mX or more and has excellent toughness, and that processes this sintered alloy by re-ffM re-sintering, high-temperature sintering, and sintering. To provide a method for manufacturing by normal forming and sintering at a forming pressure of about 4 ton/c+J to 7 ton/cJ and a sintering temperature of about 1100° C. to 1160° C. without using means such as forging or heat treatment. The purpose is to

即ち、本発明の提供する第1の鉄系焼結合金は、第1火
成分としてモリブデン(MO)0.2%〜1.0%、ニ
ッケ/L/ (Nl) 0.2%〜2.0%、クロム(
Cr)o、z%〜2.096、マンガン(Mn)0.2
条〜0.7%のうちの少くとも2柚を含み、史に第2火
成分として銅(Cu)1.5%〜4.0%およそして、
この第1の焼結合金は、上記第1火成分を含み残部が実
質的に鉄よシなる低合金粉末に、上記第2火成分の粉末
を混合した混合粉末を用いることにより、高温焼結、熱
処理等の手段を用いることなく上記通常の成形、焼結に
て製造することができる。
That is, the first iron-based sintered alloy provided by the present invention contains molybdenum (MO) 0.2% to 1.0% and nickel/L/(Nl) 0.2% to 2.0% as the first flammable component. 0%, chromium (
Cr) o, z% ~ 2.096, manganese (Mn) 0.2
Contains at least 2 yuzu of ~0.7%, and copper (Cu) of approximately 1.5%~4.0% as the second fire component,
This first sintered alloy is produced by high-temperature sintering by using a mixed powder obtained by mixing powder of the second pyrotechnic component with a low alloy powder containing the first pyrotechnic component and the remainder being substantially iron. , it can be manufactured by the above-mentioned normal molding and sintering without using any means such as heat treatment.

また、本発明の提供する第2の鉄系焼結合金は、第1の
焼結合金と同様の第1火成分および第2火成分を含み、
これに更にWI3次成分色してボロン(B)0.01%
〜0.296、モリブデン(MO) 0.1 % 〜 
2.0 % 、!J ン (P ) 0.1 96〜0
.5%のうちの少くとも1棟を含み、残部は実質的に鉄
よりなり、ベーナイトを主成分とする組織を有する。
Further, the second iron-based sintered alloy provided by the present invention includes the same first sintered alloy and second sintered alloy as the first sintered alloy,
In addition to this, the WI tertiary component color is boron (B) 0.01%
~0.296, Molybdenum (MO) 0.1% ~
2.0%! J N (P) 0.1 96~0
.. 5%, the remainder is substantially made of iron, and has a structure mainly composed of bainite.

そして、この第2の焼結合金は、上記第1火成分を含み
残部が実質的に鉄よりなる低合金粉末に、上記第2火成
分および第3火成分を混合した混合粉末を用いることに
ょシ、通常の成形、焼結にて製造することができる。
The second sintered alloy is produced by using a mixed powder obtained by mixing the second and third pyrotechnic components with a low-alloy powder that contains the first pyrotechnic component and the remainder is substantially iron. It can be manufactured by conventional molding and sintering.

次に本発明の詳細を以下の実施例により従来例と対比し
て説明する。
Next, details of the present invention will be explained using the following examples in comparison with a conventional example.

笑施例1゜ 次の3種の混合粉末を準備した。lol example 1゜ The following three types of mixed powders were prepared.

(a) Fe−1,9% N’i −0,5% Mn合
金粉末にCu粉末を2%、黒鉛粉末’ii 0.5 %
添加し、史に潤滑剤としてステアリン酸亜鉛を0.8%
混合したもの。
(a) Fe-1,9% N'i -0,5% Mn alloy powder with 2% Cu powder, graphite powder'ii 0.5%
Added 0.8% zinc stearate as a lubricant
A mixture.

(b) Fe−1,040r−o、 23%MO−0.
654Mn合金粉末にCu粉末を296、黒鉛粉末を0
.5%混合し、更に潤滑剤としてステアリン酸亜鉛を0
.8%混合したもの。
(b) Fe-1,040r-o, 23%MO-0.
654Mn alloy powder with 296% Cu powder and 0% graphite powder
.. 5% mixed and further added 0 zinc stearate as a lubricant.
.. 8% mixture.

そしてこれ等の混合粉末を5ton/c++f の匝力
で成形後、1150℃で30分間焼結して、本発明の第
1の焼結体を得た。
These mixed powders were molded with a crushing force of 5 tons/c++f and then sintered at 1150° C. for 30 minutes to obtain a first sintered body of the present invention.

なお比較材として、Fe粉末にCu粉末を2優、黒鉛粉
末を14混合し、更に潤滑剤としてステアリン酸亜鉛を
0.896混合した混合粉末(d)を、上記と同一条件
で成形、焼結した。
As a comparative material, a mixed powder (d) was prepared by mixing Fe powder with 20% of Cu powder and 14% of graphite powder, and further mixed with 0.896% of zinc stearate as a lubricant, and was molded and sintered under the same conditions as above. did.

第1図は上記によりそれぞれ得られた焼結体の引張強さ
と伸びを焼結体密度に対してプロ・ノドしたものである
。なお図において、a、b。
FIG. 1 shows the tensile strength and elongation of the sintered bodies obtained as described above plotted against the density of the sintered body. In the figure, a, b.

(1けに記(lす、(切、(中に対応する。図より知ら
れるように本発明の焼結体(す、(至)は従来の強高度
焼結合金(中罠比べ、同一密度で引張強さで約201「
9/叩2高い値を示し′CCオシ、わずか7.0 Q 
/ c、Jの密度において90 Trt) / mm”
以上という高い強度に達している。また、伸びは従来品
と同程度の値を示t7ている。
(corresponds to the inside). Density and tensile strength are approximately 201"
9/knock 2 shows high value 'CC oshi, only 7.0 Q
/ c, J density at 90 Trt) / mm”
It has reached a high level of strength. Furthermore, the elongation was t7, which was comparable to that of the conventional product.

実施1xl 2 t(のン3□1ち□fY粉末イヒjす遮貿有しブこ。Implementation 1xl 2 t(No 3□1chi□fY powder is interfering with trade.

軽)′実施例1の混合粉末(a)の黒鉛粉末混合量を0
.2 ’:Yy〜07%の間で変体させ、それぞれにF
l t5)末をQ、1%混合したもの。
Light)' The amount of graphite powder mixed in the mixed powder (a) of Example 1 was 0.
.. 2': Transformed between Yy and 07%, and F
l t5) powder mixed with Q and 1%.

(a)′−ヒ記(a)<の混合粉末におけるBに代えて
Pを0.1%混fヤしたもの。
(a)' - B in the mixed powder of (a)< is mixed with 0.1% P in place of B.

(bど天施例14+混合粉末(1))のム1.1.21
)粉末混合量を0.2%−〇、7%の間で変化させ、そ
れぞれにtAoを0.9%r、!4合したもの。
(B Doten Example 14 + Mixed Powder (1)) 1.1.21
) The powder mixture amount was varied between 0.2% - 〇, 7%, and tAo was 0.9%r,! 4 go.

(L))//−に記(1)どの混a粉末におけるMOに
代えてBを0.1%ノ16合したもの。
(L))//- (1) In place of MO in any of the mixed a powders, 0.1% of B was added.

(c) F’e−0,24% Ni、−0,21%Cr
−0,3096M0−0.40%Mn 合金粉末にCu
粉末を2%、黒鉛粉末を0.2%〜0,7%混合し、更
に潤滑剤としてステアリン酸亜鉛を0.8%混合し、か
つMoを0.9%混合したもの。
(c) F'e-0,24% Ni, -0,21%Cr
-0,3096M0-0.40%Mn alloy powder with Cu
A mixture of 2% powder, 0.2% to 0.7% graphite powder, 0.8% zinc stearate as a lubricant, and 0.9% Mo.

(Cト 上記(0)の混合粉末におけるMOに代えてB
をO,1%混合したもの。
(C) B in place of MO in the mixed powder of (0) above
A mixture of O and 1%.

これ等6種の混合物を5ton/ crl の圧力で成
形後、1150°Cで30分間焼結して本発明の第2の
焼結体を製造した。第2図に、焼結体の引張強さ、伸び
と混合黒鉛量の関係を示す。
A mixture of these six types was molded at a pressure of 5 tons/crl and then sintered at 1150°C for 30 minutes to produce a second sintered body of the present invention. FIG. 2 shows the relationship between the tensile strength and elongation of the sintered body and the amount of mixed graphite.

使用した混合粉末により若干傾向が異るが、いずれの場
合においても0.496〜0.5%黒鉛添加で引張強さ
はピークを示し、ピーク値はいずれも”70ky/mt
n2をはるかに越えている。
Although the trends differ slightly depending on the mixed powder used, in all cases, the tensile strength shows a peak with the addition of 0.496 to 0.5% graphite, and the peak value is 70ky/mt in all cases.
It far exceeds n2.

伸びは、いずれのものも混合黒鉛量の減少とともに増加
する傾向にあシ、引張強さがピークを示す黒鉛量におい
て1%を越える高い値を示している。中でも(a)′は
引張強さl OOkg/mx’以上、伸びも2%と、極
めて強靭な合金である。
The elongation tends to increase as the amount of mixed graphite decreases in all cases, and shows a high value exceeding 1% at the amount of graphite where the tensile strength peaks. Among them, (a)' is an extremely strong alloy with a tensile strength of lOOkg/mx' or more and an elongation of 2%.

なお、上記実施例の成形圧は5 ton / c++t
であるが、これを史に上げると引張強さも向上し、例え
ば6しon/cJとすれば、第2図において比較的引張
強度の低い黒鉛量0.296のa′、および黒鉛量0.
3%のCの場合でも引張強さは65kg/關以上となる
In addition, the molding pressure in the above example was 5 tons/c++t
However, if we take this into account, the tensile strength also improves, for example, if it is 6 on/cJ, then in Figure 2, if the tensile strength is relatively low, the graphite amount a' is 0.296, and the graphite amount is 0.296.
Even in the case of 3% C, the tensile strength is 65 kg/square or more.

第3図は上記(a)合金糸においてBの混合量を変化さ
せた場合の引張強さ、伸びを密度に対してプロットした
ものである。B量はalが0.06%、a、が0.08
 LS、 as が0.04%である。
FIG. 3 shows the tensile strength and elongation plotted against the density when the amount of B mixed in the alloy yarn (a) was varied. The amount of B is 0.06% for al and 0.08% for a.
LS, as is 0.04%.

なおaはB無添加(第1図のaと同じ)である。Note that a is B-free (same as a in FIG. 1).

先に説明したように第1図および第3図においてaで示
される本発明の焼結体は従来品よりも引張強さが20 
hy / mtn”高いが、第3図で知られるようにB
をわずか0.06%混合した場合(al)、引張強さは
更に約2Q try / m♂内向上、焼結体密度約7
 Q / c++!において引張強さはl 201+y
 / mtn”近くに達し、かつ伸びも2%に達する。
As explained earlier, the sintered body of the present invention indicated by a in FIGS. 1 and 3 has a tensile strength of 20% higher than that of the conventional product.
hy/mtn” is high, but as known from Figure 3, B
When only 0.06% of (al) is mixed, the tensile strength further improves by approximately 2Q try/m♂, and the sintered body density increases to approximately 7.
Q/c++! The tensile strength is l 201+y
/ mtn” and the elongation reaches 2%.

第4図はCu量と焼結体の引張強さおよび伸びの関係を
示すものである。図においてa4 は実施例1において
用いた混合粉末(a)について、b4 は同じく混合粉
末(b)について、a4は実施例2に用いた混合粉末(
a)について、それぞJtCu量を変化せしめた結果を
示す。いずれの場合も成形圧力5 ton/ crl、
焼結条件1150°C130分とした。いずれの場合も
Cuff12%〜3%で強度は最大となる。
FIG. 4 shows the relationship between the amount of Cu and the tensile strength and elongation of the sintered body. In the figure, a4 is the mixed powder (a) used in Example 1, b4 is the mixed powder (b), and a4 is the mixed powder (a) used in Example 2.
Regarding a), the results of varying the amount of JtCu are shown. In both cases, the molding pressure is 5 ton/crl,
The sintering conditions were 1150°C and 130 minutes. In either case, the strength is maximum at Cuff of 12% to 3%.

一般に焼結体の強度向上のためには(1)粒子間結合部
の強化、(2)密度の向上、(3)粒子内部のマトリッ
クスの強化の3つの要素を考慮する必要がある。従来の
高強度焼結体はこれ等要素のうち(1)、 (2)の要
素を重視するのがほとんどであった。しかし、(1八(
2)の要素だけでは到達強度に限界がある。このため最
近は鉄粉にM≦加金合金成分混合し、高温焼結によシ合
金成分を鉄粉内部へ拡散させ、その後に熱処理を施して
(3)の要素をも満たす工夫がされる傾向にある。
Generally, in order to improve the strength of a sintered body, it is necessary to take into consideration three factors: (1) strengthening of interparticle bonds, (2) improvement of density, and (3) strengthening of the matrix inside the particles. Most conventional high-strength sintered bodies have focused on elements (1) and (2) among these elements. However, (18(
There is a limit to the strength that can be achieved with only the element 2). For this reason, recently, efforts have been made to mix M≦metal alloy components in iron powder, diffuse the alloy components into the interior of the iron powder through high-temperature sintering, and then perform heat treatment to satisfy element (3). There is a tendency.

しかしこの高温焼結および熱処理を行なう方法は、エネ
ルギ的にも、生産性からみても通常の焼結法に比べて極
めて不利である。このように純鉄粉を用いた混合物では
置換型の合金元素を均−化させることは(!j3めて困
ψWである。
However, this method of performing high-temperature sintering and heat treatment is extremely disadvantageous compared to normal sintering methods in terms of energy and productivity. In this way, in a mixture using pure iron powder, it is difficult to equalize the substitutional alloying elements (!j3, ψW).

・1(発明は強靭なベーナイトを主たる組織とし、品強
度高イパシ性の鉄系焼結体を提供するものであり、該焼
結体の製造に1際しては、予め合金化した粉末を用いる
ため木質的に合金成分の均一化が容易であることに加え
、純鉄粉に比べ合金粉は結晶粒がe failなため混
合したCuの拡散が純鉄粉中への拡散よりもはるかに速
いという現象と和甘って、焼結後の冷却過程で粒子内部
まで均一なベーナイト組織とすることができ、上記(3
)の要素を、いわゆる普通焼結のみによって充分満たす
ことが口J能となった。特にMOo、2%〜2.096
、Ni 0.296〜2.0 %、Cr0.2%〜2.
0%、Mn o、 24〜O,’7%のうちの少くとも
2猟を含む合金粉に(U、黒鉛の他にB、 lφO,P
を添加することテE’e −B−C,Fe−Mo−C,
Fe −P−C糸を主体とする低融点液相が生成され、
これにより焼結時の緻密化が進行し、高密度な焼結体を
得ることを可能とする。このように液AI4焼結を利用
し−Cいるために、あえて高温焼結を行なう必要なく1
100°Cないし1160°Cの焼結で充分な強度が得
られる。しかも液相焼結によシ組織内の残留空孔も球状
化し、粒子間結合部の強度も良好である。特にBを添加
した場合の効果が顕著である。
・1 (The invention provides an iron-based sintered body that has a strong bainite as its main structure and has high product strength and resistance. When producing the sintered body, pre-alloyed powder is used. In addition to the fact that it is easy to homogenize the alloy components due to the wood quality, alloy powder has e-fail crystal grains compared to pure iron powder, so the diffusion of mixed Cu is much faster than that in pure iron powder. Coupled with the phenomenon of high speed, a uniform bainite structure can be formed even inside the particles during the cooling process after sintering, and the above (3)
) It has now become possible to fully satisfy the above requirements only by so-called ordinary sintering. Especially MOo, 2% ~ 2.096
, Ni 0.296-2.0%, Cr 0.2%-2.
0%, Mno, 24~O,'7% (in addition to U, graphite, B, lφO, P
Adding TeE'e -B-C, Fe-Mo-C,
A low melting point liquid phase mainly composed of Fe-P-C yarns is generated,
This promotes densification during sintering, making it possible to obtain a high-density sintered body. Since liquid AI4 sintering is used in this way, there is no need for high-temperature sintering.
Sufficient strength can be obtained by sintering at 100°C to 1160°C. Moreover, residual pores in the structure are made spherical by liquid phase sintering, and the strength of the interparticle bonds is also good. In particular, the effect when B is added is remarkable.

次に各成分の含有量については、合金粉中の各成分(M
o、 Cr、、Ni、Mn)の下限値は上記強化要素(
3)を満たすべく焼結後の冷却時にベーナイトを主たる
組織とするに必要な最低量であυ、また各上限値は合金
粉末の圧縮性を極端に低下させないだめの限度斌である
Next, regarding the content of each component, each component (M
o, Cr, , Ni, Mn) are determined by the above-mentioned reinforcement elements (
In order to satisfy 3), this is the minimum amount required to make bainite the main structure during cooling after sintering, and each upper limit is a limit that does not extremely reduce the compressibility of the alloy powder.

またCuの添加量は第4図に示し、かつ上記したように
ほぼ2%〜3%で強度は最大となる。
Further, the amount of Cu added is shown in FIG. 4, and as mentioned above, the strength is maximum at about 2% to 3%.

1.5%未満では粒子結合部の強化が不充分であシ、ま
た4%を越えると靭性が低下し、また寸法精度が低下す
るので1.5%〜4%が適当である。黒鉛量は0.2%
未満ではパーライト、0.6%を越えるとマルテンサイ
トが主体となり、ベーナイトを主たる組織にするには0
.2%〜0.6%の範囲にする必要がある。0.4%〜
0.596が第2図で知られるように最適である。
If it is less than 1.5%, the reinforcement of the bonded part of the particles will be insufficient, and if it exceeds 4%, the toughness and dimensional accuracy will decrease, so 1.5% to 4% is suitable. Graphite amount is 0.2%
If it is less than 0.6%, martensite will be the main structure, and if it exceeds 0.6%, martensite will be the main structure.
.. It needs to be in the range of 2% to 0.6%. 0.4%~
0.596 is optimal as seen in FIG.

液相生成成分B、 Mo、 P については上記したよ
うにB : 0.01 % 〜0.2 %、MO:O,
1%〜2.0 %、P:O,1%〜0.596が適当で
sb、これ等の下限値は焼結時の組織緻密化のための最
低量であシ、上限値は残留液相成分増加に伴なう靭性低
下および寸法精度の低下に鑑みて決定した。
Regarding the liquid phase forming components B, Mo, and P, as described above, B: 0.01% to 0.2%, MO:O,
1% to 2.0%, P:O, 1% to 0.596 are suitable sb, the lower limit of these is the minimum amount for densification of the structure during sintering, and the upper limit is the residual liquid This was determined in view of the decrease in toughness and dimensional accuracy associated with an increase in phase components.

第5図は第1実施例における混合粉未開を用いた従来の
焼結合金、第6図は実施例2の混合粉末(りを用いた本
発明の焼結合金の光学顕敞鏡組懺を示す写真である。従
来材がパーライト組織であるのに対し、本発明合金は均
一なベーナイト組織になっている。
Figure 5 shows a conventional sintered alloy using the mixed powder in Example 1, and Figure 6 shows an optical microscope assembly of the sintered alloy of the present invention using mixed powder in Example 2. This is a photograph showing the conventional material having a pearlite structure, whereas the present alloy has a uniform bainite structure.

なお、焼結温度は高いほど焼結体の強度向上には有利で
はあるが、高くすることは省費エネルギや生産性の点か
ら好ましくない。本発明では1100°C〜1160℃
という通常の焼結温度で高強度焼結体を得ることができ
る。
Note that although a higher sintering temperature is advantageous for improving the strength of the sintered body, increasing the sintering temperature is not preferable from the viewpoint of energy saving and productivity. In the present invention, 1100°C to 1160°C
A high-strength sintered body can be obtained at the normal sintering temperature.

鉄系焼結合金は車両、事務機器など各分野で多く使われ
るようになってきた。特にクラッチ、ギヤ等の自動車用
部品として多く使われており、使用部品は小型、薄肉化
が要求され、かつ高負荷に耐える必要があって毘強度化
が要望されている。現用の焼結合金ではパーライト組織
を主とする場合、芦温焼結などにより高密度化したり、
組織を変える場合では焼入れ、焼もどしなどの熱処理を
行なって高強度化をはかつている。
Iron-based sintered alloys are increasingly used in various fields such as vehicles and office equipment. In particular, it is widely used as automobile parts such as clutches and gears, and the parts used are required to be small and thin, and also to withstand high loads and are required to be strong. If the current sintered alloy has a pearlite structure as its main structure, it can be made denser by Ashion sintering, etc.
When changing the structure, heat treatments such as quenching and tempering are used to increase strength.

本発明はパーライトよシ強靭なベーナイトを主たる組織
とする晶強度晶靭性焼結合金を提供し、かつこの焼結合
金を1160°C程度ないしそれ以下という比較的低い
湿度の焼結によって、かつ焼結後の熱処理を行なうこと
なく製造し得る製造方法を提供し、現下の上記要望にこ
たえるものである。
The present invention provides a sintered alloy with crystal strength and crystal toughness mainly composed of bainite, which is stronger than pearlite. The object of the present invention is to provide a manufacturing method that allows manufacturing without performing post-curing heat treatment, thereby meeting the above-mentioned current demands.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の焼結合金および比較材の、引張強さ、
伸びと密度の関係を示す図、第2図は本発明の焼結合金
の引張強さ、伸びと黒鉛量との関係を示す図、第3図は
本発明のボロンを含むii’i□結a金の引張強さ、伸
びと密度の関係を示す図、第4図は本発明の焼結合金の
;制量と引張強さ、伸びの関係を示す図、第5図は従来
のた゛L結金合金)を学顛餞鏡組織を示す写真(100
0倍)、第61メ1は本発明のり“L結今金の光学顕は
鏡組織を示す写真(1000倍)である。 第3図 り祭 カロ Cu 肩」 (重量0ん)第5図
Figure 1 shows the tensile strength of the sintered alloy of the present invention and comparative materials.
Figure 2 is a diagram showing the relationship between elongation and density, Figure 2 is a diagram showing the relationship between tensile strength, elongation, and graphite content of the sintered alloy of the present invention, Figure 3 is a diagram showing the relationship between the tensile strength and elongation of the sintered alloy of the present invention, and Figure 3 is a diagram showing the relationship between the boron-containing ii'i□ sintered alloy of the present invention. Figure 4 shows the relationship between tensile strength, elongation, and density of the sintered alloy of the present invention; Figure 5 shows the relationship between the tensile strength and elongation of the sintered alloy of the present invention; Figure 5 shows the relationship between the tensile strength and elongation of the conventional sintered alloy. A photograph showing the mirror structure of the metal alloy (100
0x), 61st image 1 is a photograph (1000x) showing the optical microstructure of the glue of the present invention, ``L-Imakine optical microscope''.

Claims (6)

【特許請求の範囲】[Claims] (1) モリブデン0.2重量%(以下、%という)〜
1.0%、ニッケ/l/ 0.2%〜2. OtA、ク
ロム0、2%〜2.0%、マンガン0.2%〜O,’?
96のうちの少くとも2種と、銅1,5%〜4.096
、黒鉛0.2%〜0.6%とを含み、残部が実質的に鉄
よりなる、ベーナイトを主たる組織とする高強度高靭性
鉄系焼結合金。
(1) Molybdenum 0.2% by weight (hereinafter referred to as %) ~
1.0%, Nickel/l/0.2%~2. OtA, chromium 0.2%~2.0%, manganese 0.2%~O,'?
At least two of 96 and copper 1.5% to 4.096
A high-strength, high-toughness iron-based sintered alloy having a bainite-based structure, containing 0.2% to 0.6% of graphite, and the remainder substantially consisting of iron.
(2)モリブデン0.2%〜1.0%、ニッケル0.2
%〜2.0%、クロム0.2%〜2.0%、マンガン0
.2%〜0.7%の少くとも2種を含み、残部が実質的
に鉄よりなる合金粉末に、銅粉末1.5%〜4.0%お
よび黒鉛粉末0,2%〜0.64 i混合した混合粉末
を加圧成形し、焼結することを特徴とする高強度高靭性
鉄系焼結合金の製造方法。
(2) Molybdenum 0.2% to 1.0%, nickel 0.2
%~2.0%, chromium 0.2%~2.0%, manganese 0
.. 2% to 0.7% of at least two types of alloy powder, the balance being substantially iron, copper powder 1.5% to 4.0% and graphite powder 0.2% to 0.64 i A method for producing a high-strength, high-toughness iron-based sintered alloy, which comprises pressurizing and sintering a mixed powder mixture.
(3) 上記焼結を1.1LOO”c−1160°Cの
温度範囲で行なう特t′P請求の範囲第2項記載の高強
度高靭性鉄系焼結合金の製造方法。
(3) The method for producing a high-strength, high-toughness iron-based sintered alloy according to claim 2, wherein the sintering is carried out at a temperature range of 1.1 LOO''c to 1160°C.
(4) モリブデン0.2%〜1.0%、ニッケ、+v
0.296〜2.0%、クロム0.2%〜2.0%、マ
ンガン0.2%〜0.7%のうちの少くとも2棟と、銅
1.596〜4.0%と黒鉛0.2%〜0,6%と、更
にボロン0.0196〜0,2%、モリブデン0.1%
〜2.0%、リン0.1%〜0.5%のうちの少くとも
l aXとを含み、残部が実質的に鉄よシなる、ベーナ
イトを主たる組織とする高強度高靭性鉄系焼結合金。
(4) Molybdenum 0.2% to 1.0%, nickel, +v
At least two of the following: 0.296-2.0%, chromium 0.2%-2.0%, manganese 0.2%-0.7%, copper 1.596-4.0% and graphite 0.2% to 0.6%, further boron 0.0196 to 0.2%, molybdenum 0.1%
A high-strength, high-toughness iron-based sintered material whose main structure is bainite, containing at least la Combined gold.
(5) モリブデン0.2%〜1.0%、ニッケル0.
2%〜2.0%、クロム0.2%〜2.0%、マンガン
0.2%〜0.7%のうちの少くとも2種を含み、残部
が実質的に鉄よυなる合金粉末に、銅粉末1.5%〜4
.0%および黒鉛粉末0.2%〜0.6%を混合し、更
に液相生成成分としてボロン、モリブデンおよびリンの
うちの少くとも1種を含む粉末をボロン、モリブデンお
よびリン量に換算してボロン0.01%〜0.296、
モリブデン0.196〜2.0%、リン0.1%〜0.
5%混合した混合粉末を加圧成形し、焼結することを特
徴とする高強度高靭性鉄系焼結合金の製造方法。
(5) Molybdenum 0.2% to 1.0%, nickel 0.
Alloy powder containing at least two of 2% to 2.0%, chromium 0.2% to 2.0%, and manganese 0.2% to 0.7%, with the remainder being substantially iron. , copper powder 1.5%~4
.. 0% and graphite powder 0.2% to 0.6%, and further contains powder containing at least one of boron, molybdenum and phosphorus as a liquid phase forming component, converted into the amount of boron, molybdenum and phosphorus. Boron 0.01% ~ 0.296,
Molybdenum 0.196-2.0%, phosphorus 0.1%-0.
A method for producing a high-strength, high-toughness iron-based sintered alloy, which comprises pressurizing and sintering a 5% mixed powder.
(6)上記焼結を1100℃〜1160°Cの温度11
11′L囲で行なう特許請求の範囲第5項記載の高強度
高靭性鉄系焼結合金の製造方法。
(6) The above sintering was carried out at a temperature of 1100°C to 1160°C.
A method for manufacturing a high-strength, high-toughness iron-based sintered alloy according to claim 5, which is carried out in a 11'L area.
JP22090983A 1983-11-24 1983-11-24 Sintered iron alloy and manufacture Pending JPS60114555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22090983A JPS60114555A (en) 1983-11-24 1983-11-24 Sintered iron alloy and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22090983A JPS60114555A (en) 1983-11-24 1983-11-24 Sintered iron alloy and manufacture

Publications (1)

Publication Number Publication Date
JPS60114555A true JPS60114555A (en) 1985-06-21

Family

ID=16758428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22090983A Pending JPS60114555A (en) 1983-11-24 1983-11-24 Sintered iron alloy and manufacture

Country Status (1)

Country Link
JP (1) JPS60114555A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09195012A (en) * 1996-01-19 1997-07-29 Hitachi Powdered Metals Co Ltd Wear resistant sintered alloy and its production
JP2010111937A (en) * 2008-11-10 2010-05-20 Kobe Steel Ltd High-strength composition iron powder and sintered component using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09195012A (en) * 1996-01-19 1997-07-29 Hitachi Powdered Metals Co Ltd Wear resistant sintered alloy and its production
JP2010111937A (en) * 2008-11-10 2010-05-20 Kobe Steel Ltd High-strength composition iron powder and sintered component using the same

Similar Documents

Publication Publication Date Title
US6610120B2 (en) Alloyed steel powder for powder metallurgy
JP2648519B2 (en) Method of manufacturing synchronizer hub
US3901661A (en) Prealloyed steel powder for formation of structural parts by powder forging and powder forged article for structural parts
US3864809A (en) Process of producing by powder metallurgy techniques a ferritic hot forging of low flow stress
JP2799235B2 (en) Valve seat insert for internal combustion engine and method of manufacturing the same
US4954171A (en) Composite alloy steel powder and sintered alloy steel
US5462577A (en) Water-atomized iron powder and method
EP0302430B1 (en) Alloyed steel powder for powder metallurgy
CN105903952A (en) Rare earth alloy composite material and preparation method
US4049429A (en) Ferritic alloys of low flow stress for P/M forgings
CN113621899A (en) Stainless steel-based composite material and preparation method and application thereof
KR960003721B1 (en) Mixed powder for powder metallurgy and the sintered product thereof
JPS60114555A (en) Sintered iron alloy and manufacture
US3890105A (en) Metallic sintering powder or alloy
US5753005A (en) Source powder for wear-resistant sintered material
JPH11302787A (en) Alloy steel powder and powdery mixture for high strength sintered part
US20090142220A1 (en) Sinter-hardening powder and their sintered compacts
US20180282844A1 (en) Method of producing wear-resistant iron-based sintered alloy
US4321091A (en) Method for producing hot forged material from powder
JPH0689363B2 (en) High strength alloy steel powder for powder metallurgy
WO2021044869A1 (en) Iron-based pre-alloyed powder for powder metallurgy, diffusion-bonded powder for powder metallurgy, iron-based alloy powder for powder metallurgy, and sinter-forged member
JPH01123001A (en) High strength ferrous powder having excellent machinability and its manufacture
EP0334968B1 (en) Composite alloy steel powder and sintered alloy steel
CN114226708B (en) Steel powder for 3D printing and preparation method thereof
JPH0751721B2 (en) Low alloy iron powder for sintering