JPS6011453B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPS6011453B2
JPS6011453B2 JP6345579A JP6345579A JPS6011453B2 JP S6011453 B2 JPS6011453 B2 JP S6011453B2 JP 6345579 A JP6345579 A JP 6345579A JP 6345579 A JP6345579 A JP 6345579A JP S6011453 B2 JPS6011453 B2 JP S6011453B2
Authority
JP
Japan
Prior art keywords
silicon layer
crystal silicon
single crystal
sapphire substrate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6345579A
Other languages
Japanese (ja)
Other versions
JPS55154749A (en
Inventor
頴 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Original Assignee
CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHO ERU ESU AI GIJUTSU KENKYU KUMIAI filed Critical CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Priority to JP6345579A priority Critical patent/JPS6011453B2/en
Publication of JPS55154749A publication Critical patent/JPS55154749A/en
Publication of JPS6011453B2 publication Critical patent/JPS6011453B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • H01L21/86Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body the insulating body being sapphire, e.g. silicon on sapphire structure, i.e. SOS

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に関し、特に素子が形成
される単結晶シリコン層とサファイア基板からなるSO
S基板を改良した半導体装置の製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device, in particular an SO semiconductor device comprising a single crystal silicon layer and a sapphire substrate on which an element is formed.
The present invention relates to a method of manufacturing a semiconductor device using an improved S substrate.

サファイア基板上に単結晶シリコン層を被着した、いわ
ゆるSOS基板を用いて半導体装置を製造するには、良
好なトランジスタ特性を得る観点から、結晶性の良好な
単結晶シリコン層を成長させたSOS基板を使用するこ
とが重要である。
In order to manufacture semiconductor devices using a so-called SOS substrate in which a single crystal silicon layer is deposited on a sapphire substrate, it is necessary to grow a single crystal silicon layer with good crystallinity in order to obtain good transistor characteristics. It is important to use a substrate.

このため、従来、サファイア基板に単結晶シリコン層を
被着する方法として、シリコンのヱピタキシアル成長反
応時の圧力を1気圧より低い状態で行なう低圧気相ェピ
タキシャル法が採用されている。この方法によればサフ
ァイア基板中のアルミニウムが単結晶シリコン層へ入り
込む。いわゆるオートドーピングの量を減少できる。し
かしながら、上記従来法では、(11サファイア基板と
単結晶シリコン層の界面付近に生じる欠陥、【21界面
付近に生じる単結晶シリコン層中の転位、‘3}界面付
近の単結晶シリコン層中の積層欠陥及び格子欠陥、など
は減少せず、単結晶シリコン層の結晶性は充分には改善
されない。その結果このSOS基板を用いてMOSトラ
ンジスタを製造すると、シリコンウェハ−を用いて製造
した場合に比べて単結晶シリコン層中のキャリア移動度
が低下するなどの電気特性の劣化を招く欠点が生じる。
このようなことから、本発明者は上言己欠点を克服すべ
く種々検討し、レーザ光をSOS基板の単結晶シリコン
層側に照射することを試みた。
For this reason, conventionally, as a method for depositing a single-crystal silicon layer on a sapphire substrate, a low-pressure vapor phase epitaxial method has been adopted in which the epitaxial growth reaction of silicon is carried out at a pressure lower than 1 atmosphere. According to this method, aluminum in the sapphire substrate penetrates into the single crystal silicon layer. The amount of so-called autodoping can be reduced. However, in the above conventional method, (11) defects occurring near the interface between the sapphire substrate and the single-crystal silicon layer, [21] dislocations in the single-crystal silicon layer occurring near the interface, and '3' stacking in the single-crystal silicon layer near the interface. Defects, lattice defects, etc. are not reduced, and the crystallinity of the single crystal silicon layer is not sufficiently improved.As a result, when MOS transistors are manufactured using this SOS substrate, compared to when manufactured using silicon wafers, This results in drawbacks such as deterioration of electrical characteristics such as a decrease in carrier mobility in the single crystal silicon layer.
For these reasons, the inventors of the present invention have conducted various studies to overcome the above-mentioned drawbacks, and have attempted to irradiate the single crystal silicon layer side of the SOS substrate with laser light.

このように単結晶シリコン層にレーザ光を照射すると、
レーザ光が照射された単結晶シリコン層表面付近が最も
高温になり、その付近での欠陥や転位が減少するものの
、単結晶シリコン層中の欠陥や転位の数に比してはるか
に多い単結晶シリコン層とサファイア基板の界面付近の
欠陥や転位を効果的に減少し得ない不都合さがあった。
しかして、本発明者は上記知見に基づき更に鋭意研究を
重ねた結果、サファイアの光吸収係数は単結晶シリコン
のそれに比べてはるかに小さいことに着目し、レーザ光
をSOS基板のサファイア基板側に照射することにつて
、サファイア基板と単結晶シリコン層の界面付近の単結
晶シリコン層部分にレーザ光が多く吸収され、その部分
が高温となって溶融と再結晶の過程を起こし、サファイ
ア基板から単結晶シリコン層側へのアルミニウムの新た
なドーピングが生じることなく、単結晶シリコン層中の
欠陥や転位の数に比してはるかに多いサファイア基板と
単結晶シリコン層の界面の欠陥や転移を効果的に減少で
きると共に単結晶シリコン層中の欠陥や転位も減少でき
、単結晶シリコン層の結晶性が著しく改善されたSOS
基板を究明した。
When the single crystal silicon layer is irradiated with laser light in this way,
The temperature near the surface of the single-crystal silicon layer irradiated with laser light is highest, and although defects and dislocations decrease in that area, the number of defects and dislocations in the single-crystal silicon layer is far greater than that in the single-crystal silicon layer. There is a disadvantage that defects and dislocations near the interface between the silicon layer and the sapphire substrate cannot be effectively reduced.
However, as a result of further intensive research based on the above findings, the inventors of the present invention focused on the fact that the optical absorption coefficient of sapphire is much smaller than that of single crystal silicon. Regarding irradiation, a large amount of laser light is absorbed by the single crystal silicon layer near the interface between the sapphire substrate and the single crystal silicon layer, and that part becomes high temperature, causing a process of melting and recrystallization, and the single crystal silicon layer is removed from the sapphire substrate. Effectively eliminates defects and dislocations at the interface between the sapphire substrate and single-crystal silicon layer, which are far more numerous than the number of defects and dislocations in the single-crystal silicon layer, without creating new doping of aluminum into the crystalline silicon layer. In addition to reducing defects and dislocations in the single crystal silicon layer, SOS has significantly improved crystallinity of the single crystal silicon layer.
I investigated the board.

しかして、このSOS基板に素子を形成することによっ
て、電子の移動が高く、電気特性が良好な半導体装置を
製造し得る方法を見し、出した。すなわち、本発明はサ
ファイア基板上に単結晶シリコン層を被着してなるSO
S基板に素子を形成して半導体装置を製造するにあたり
「 レーザ光を上記サファイア基板側からSOS基板に
照射せしめることを特徴とするものである。本発明で用
いるレーザ光は光から熱へのエネルギー変換によってェ
ピタキシャル成長させた単結晶シリコン層を高効率で加
熱させる観点から、単結晶シリコンに対して大きな光吸
収係数をもつ波長で発振するものであることが必要であ
る。
Therefore, we discovered and developed a method for manufacturing a semiconductor device with high electron mobility and good electrical characteristics by forming elements on this SOS substrate. That is, the present invention is an SO film formed by depositing a single crystal silicon layer on a sapphire substrate.
In manufacturing a semiconductor device by forming an element on an S substrate, the method is characterized in that a laser beam is irradiated onto the SOS substrate from the sapphire substrate side.The laser beam used in the present invention converts energy from light into heat. From the viewpoint of heating a single crystal silicon layer epitaxially grown by conversion with high efficiency, it is necessary to oscillate at a wavelength having a large optical absorption coefficient relative to single crystal silicon.

かかるレーザ光源としては、例えば発振波長が0.69
4ム仇のルビーレーザ、発振波長が0.442〃の「0
.325山肌のヘリウムカドミウムレーザし近紫外及び
可視光領域に発振波長をもつアルゴンイオンレーザ、紫
外光領域に発振波長をもつェキシマレーザ、或いは基本
発振波長が1.06AmのNd−YAGレーザやNd−
glassレーザ等の高調波光を挙げることができる。
担し、アルゴンィオンレ−ザ、或いはオキシマレーザを
レーザ光源として用いる場合は、発振波長に対するレー
ザ光出力と単結晶シリコンの光吸収係数との関係より加
熱に最も適した波長を選ぶことによって加熱効率を高め
ることが必要である。本発明におけるレーザ照射による
単結晶シリコン層への入熱量制御はサファイア基板と単
結晶シリコン層の界面でのし−ザ光のスポットサイズを
変えることにより行なえる。
For example, such a laser light source has an oscillation wavelength of 0.69.
A 4-meter ruby laser with an oscillation wavelength of 0.442
.. 325 mountain helium cadmium laser, an argon ion laser with an oscillation wavelength in the near-ultraviolet and visible light regions, an excimer laser with an oscillation wavelength in the ultraviolet region, or an Nd-YAG laser or Nd-YAG laser with a fundamental oscillation wavelength of 1.06 Am.
Examples include harmonic light such as glass laser.
When using an argon ion laser or an oxymer laser as a laser light source, heating efficiency can be improved by selecting the most suitable wavelength for heating based on the relationship between the laser light output for the oscillation wavelength and the light absorption coefficient of single crystal silicon. It is necessary to increase the In the present invention, the amount of heat input into the single crystal silicon layer by laser irradiation can be controlled by changing the spot size of laser light at the interface between the sapphire substrate and the single crystal silicon layer.

連続発振レーザ光或いは高速繰り返しパルスレーザ光を
用いる場合は、サファイア基板に対するレーザ光の走査
速度を変えることによって単結晶シリコン層への入熱量
の制御を行なうことができる。但しL出力パワーの4・
さし、レーザ光を使用する時は、レーザ光が入射される
サファイア基板表面に予め鏡面研摩を施し、サファイア
基板表面でのレーザ光の散乱をさげながらサファイア基
板と単結晶シリコン層との界面上にレーザ光を集光させ
単結晶シリコン層への単位面積当りの入熱量の低下を防
ぐ必要がある。これに反し、出力パワーの大きいレーザ
光を使用する場合は、サファイア基板と単結晶シリコン
層との界面上でレーザ光を集光させる必要はなくその結
果サファイア基板表面でのレーザ光の散乱による単結晶
シリコン層への単位面積当りの入熱量の低下はほとんど
問題にならないため、サファイア基板表面側の鏡面研摩
は必要ない。本発明におけるレーザ光照射時のSOS基
板の雰囲気はしーザ光照射によって高温となった単結晶
シリコン層が外界のガス、とりわけ酸素と顕しく反応す
るのを阻止する観点から、低圧空気、低真空「低圧ヘリ
ウム或いは低圧窒素等が望ましい。
When continuous wave laser light or high-speed repetitive pulse laser light is used, the amount of heat input to the single crystal silicon layer can be controlled by changing the scanning speed of the laser light with respect to the sapphire substrate. However, the L output power is 4.
However, when using a laser beam, the surface of the sapphire substrate into which the laser beam is incident is mirror-polished in advance to reduce scattering of the laser beam on the sapphire substrate surface while polishing the surface of the sapphire substrate on the interface between the sapphire substrate and the single crystal silicon layer. It is necessary to focus the laser beam to prevent the amount of heat input per unit area into the single crystal silicon layer from decreasing. On the other hand, when using a laser beam with a large output power, it is not necessary to focus the laser beam on the interface between the sapphire substrate and the single crystal silicon layer, and as a result, the laser beam is scattered on the sapphire substrate surface. Since a decrease in the amount of heat input per unit area to the crystalline silicon layer is of little concern, mirror polishing of the surface side of the sapphire substrate is not necessary. In the present invention, the atmosphere of the SOS substrate during laser beam irradiation is low-pressure air, low-pressure air, Vacuum: Low-pressure helium or low-pressure nitrogen is preferable.

但し〜 レーザ光照射による入熱条件によっては空気中
においてもしーザ光照射が行なえる。なお「レーザ光照
射時の雰囲気にかかわらず、SOS基板の外部からの汚
染を回避するために、入熱のためのレーザ光照射を高速
、短時間で行なうことが望ましい。次に、本発明の実施
例を説明する。
However, laser light irradiation can be performed in air depending on the heat input conditions for laser light irradiation. Note that ``regardless of the atmosphere at the time of laser beam irradiation, it is desirable to perform laser beam irradiation for heat input at high speed and in a short time in order to avoid contamination of the SOS board from the outside. An example will be explained.

実施例 第1図に示ように両面を鏡面研摩した厚さ0.4肋のサ
ファイア基板1上に「反応温度1100oo、圧力1ぴ
Paの条件でシランガスを供給して気相ェピタキシャル
成長を行なって厚さ1.3仏肌の単結晶シリコン層2を
成長させSOS基板を製作した。
EXAMPLE As shown in FIG. 1, vapor phase epitaxial growth was carried out on a sapphire substrate 1 with a thickness of 0.4 ribs, mirror-polished on both sides, by supplying silane gas at a reaction temperature of 1100 OO and a pressure of 1 Pa. Then, a single crystal silicon layer 2 having a thickness of 1.3 cm was grown to produce an SOS substrate.

この時のサファイア基板1の表面の結晶面は(1102
)であり、単結晶シリコン層2の結晶面は(100)で
あった。その後「真空中にてSOS基板のサファイア基
板1側に発振波長0.694仏の、出力IKWノパルス
のルビーレーザ光3を照射した。しかして、ルビーレー
ザ光の照射前後のSOS基板の単結晶シリコン層に加速
電圧720keVのプロトンを入射し「後方散乱法によ
りプロトンの後方散乱エネルギーと個数とを測定して単
結晶シリコン層の結晶性を調べたところ、第2図の如き
特性図を得た。なお、図中の一点鎖線はプロトンの入射
方向が単結晶シリコン層のく100>方向とは異なる場
合のランダムオリエンテーション曲線、破線はしーザ光
照射を行わないSOS基板の単結晶シリコン層のく10
0>方向にプ。トンを入射した場合の結晶性特性曲線、
実線はしーザ光照射を行なったSOS基板の単結晶シリ
コン層のく100>方向にプロトンを入射した場合の結
晶性特性曲線、である。この第2図から明らかな如く、
レーザ光照射をサファイア基板側から行なったSOS基
板はサファイア基板と単結晶シリコンの界面付近の単結
晶シリコン層部分及び他のシリコン層部分のカウント数
の変化がレーザ光照射を行なわないSOS基板に比して
小さく、これよりサファイア基板と単結晶シリコン層の
界面付近での欠陥や転位が減少し、かつ単結晶シliコ
ン層中の欠陥や転位も減少し結晶性が改善された単結晶
シリコン層を有するSOS基板が得られることがわかっ
た。次いで、レーザ光照射を行なったSOS基板及びレ
ーザ光照射を行なわなかったSOS基板を用いて、ホウ
素イオンを1び7ノ地の濃度にイオン打ち込みを行なっ
たチャンネルを有するMOSトランジスタを造り「夫々
について電子の移動度を測定した。
At this time, the crystal plane on the surface of the sapphire substrate 1 is (1102
), and the crystal plane of the single crystal silicon layer 2 was (100). After that, the sapphire substrate 1 side of the SOS substrate was irradiated with a ruby laser beam 3 with an oscillation wavelength of 0.694 French and an output IKW nopulse in a vacuum. When protons were introduced into the layer at an accelerating voltage of 720 keV and the backscattered energy and number of protons were measured using a backscattering method to examine the crystallinity of the single crystal silicon layer, a characteristic diagram as shown in FIG. 2 was obtained. In addition, the dashed-dotted line in the figure is a random orientation curve when the incident direction of protons is different from the 100> direction of the single crystal silicon layer, and the broken line is the random orientation curve when the incident direction of protons is different from the 100> direction of the single crystal silicon layer, and the broken line is the random orientation curve when the incident direction of protons is different from the 100> direction of the single crystal silicon layer. 10
0> direction. Crystallinity characteristic curve when ton is incident,
The solid line is a crystallinity characteristic curve when protons are incident in the 100> direction of the single crystal silicon layer of the SOS substrate irradiated with laser light. As is clear from this figure 2,
The SOS substrate that was irradiated with laser light from the sapphire substrate side had a change in the count number of the single crystal silicon layer near the interface between the sapphire substrate and single crystal silicon and other silicon layer parts compared to the SOS substrate that was not irradiated with laser light. This results in a single crystal silicon layer with improved crystallinity due to fewer defects and dislocations near the interface between the sapphire substrate and the single crystal silicon layer, and fewer defects and dislocations in the single crystal silicon layer. It has been found that an SOS substrate having the following characteristics can be obtained. Next, using the SOS substrates that were irradiated with laser light and the SOS substrates that were not irradiated with laser light, MOS transistors with channels in which boron ions were implanted at concentrations of 1 and 7 were made. Electron mobility was measured.

その結果、電子の移動度は、レーザ光照射を行なわなか
ったSOS基板から造ったMOSトランジスタでは30
0城′Vsecであったのに対し、レーザ光照射を行な
ったSOS基板から造ったMOSトランジスタは380
の′Vsecであった。このように「 レーザ光照射に
より結晶性を改善した単結晶シリコン層を有するSOS
基板から造られたMOSトランジス外ま移動度が大きく
電気特性等が向上されることがわかる。以上詳述した如
く、本発明によればサファイア基板上にヱピタキシャル
成長させた単結晶シリコン層からなるSOS基板にレー
ザ光を該サファイア基板側から照射することによって、
良質な結晶性をもつ単結晶シリコン層が形成されたSO
S基板を造ることができ、もってこのSOS基板に素子
を形成することにより電子の移動度が大きく、電気特性
の優れた半導体装置を製造し得る方法を提供できるもの
である。
As a result, the electron mobility was 30% in a MOS transistor made from an SOS substrate that was not irradiated with laser light.
0 'Vsec, whereas a MOS transistor made from an SOS substrate irradiated with laser light had a voltage of 380 Vsec.
'Vsec. In this way, "SOS with a single crystal silicon layer whose crystallinity has been improved by laser beam irradiation"
It can be seen that the external mobility of the MOS transistor made from the substrate is large and the electrical characteristics etc. are improved. As detailed above, according to the present invention, by irradiating a SOS substrate made of a single crystal silicon layer epitaxially grown on a sapphire substrate with laser light from the sapphire substrate side,
SO with a single crystal silicon layer with good crystallinity
The present invention can provide a method for manufacturing a semiconductor device with high electron mobility and excellent electrical characteristics by forming an SOS substrate and forming elements on this SOS substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における半導体装置の製造時の
レーザ光照射工程を示す概略図、第2図はしーザ光照射
を行なったSOS基板及びレーザ光照射を行なわなかっ
たSOS基板における単結晶シリコン層の結晶性を示す
特性図である。 1・・・・・・サファイア基板、2…・・・単結晶シリ
コン層、3・・…・レーザ光。 第1図 第2図
FIG. 1 is a schematic diagram showing the laser beam irradiation process during the manufacturing of a semiconductor device in an embodiment of the present invention, and FIG. 2 is a schematic diagram showing an SOS substrate subjected to laser beam irradiation and an SOS substrate not subjected to laser beam irradiation. FIG. 3 is a characteristic diagram showing the crystallinity of a single-crystal silicon layer. 1...Sapphire substrate, 2...Single crystal silicon layer, 3...Laser light. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 サフアイア基板上に単結晶シリコン層を被着してな
るSOS基板に素子を形成して半導体装置を製造するに
あたり、レーザ光を上記サフアイア基板側からSOS基
板に照射せしめることを特徴とする半導体装置の製造方
法。
1. A semiconductor device characterized in that when manufacturing a semiconductor device by forming an element on an SOS substrate formed by depositing a single crystal silicon layer on a sapphire substrate, a laser beam is irradiated onto the SOS substrate from the sapphire substrate side. manufacturing method.
JP6345579A 1979-05-23 1979-05-23 Manufacturing method of semiconductor device Expired JPS6011453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6345579A JPS6011453B2 (en) 1979-05-23 1979-05-23 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6345579A JPS6011453B2 (en) 1979-05-23 1979-05-23 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS55154749A JPS55154749A (en) 1980-12-02
JPS6011453B2 true JPS6011453B2 (en) 1985-03-26

Family

ID=13229719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6345579A Expired JPS6011453B2 (en) 1979-05-23 1979-05-23 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6011453B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2651146B2 (en) * 1987-03-02 1997-09-10 キヤノン株式会社 Crystal manufacturing method

Also Published As

Publication number Publication date
JPS55154749A (en) 1980-12-02

Similar Documents

Publication Publication Date Title
US5795795A (en) Method of processing semiconductor device with laser
JP4455804B2 (en) INGOTING CUTTING METHOD AND CUTTING DEVICE, WAFER AND SOLAR CELL MANUFACTURING METHOD
EP0127323B1 (en) A process for producing a single crystal semiconductor island on an insulator
JPH0582442A (en) Manufacture of polycrystalline semiconductor thin film
JPH0132648B2 (en)
JPS60224282A (en) Manufacture of semiconductor device
JPH0360026A (en) Manufacture of crystalline silicon film
JPS6011453B2 (en) Manufacturing method of semiconductor device
JP2004039660A (en) Method for manufacturing polycrystalline semiconductor film, method for manufacturing thin film transistor, display device, and pulse laser annealing apparatus
JP2005005323A (en) Method and apparatus for processing semiconductor
JP3203706B2 (en) Method for annealing semiconductor layer and method for manufacturing thin film transistor
JP2840081B2 (en) Semiconductor thin film manufacturing method
JP3047424B2 (en) Method for manufacturing semiconductor device
JPH0376129A (en) Manufacture of electronic device using boron nitride
JPH0319218A (en) Formation process and device of soi substrate
JP3208201B2 (en) Method for manufacturing polycrystalline semiconductor thin film
JPH07118444B2 (en) Heat treatment method for semiconductor thin film
JP2648683B2 (en) Method for manufacturing semiconductor device
JPH11121765A (en) Manufacture of semiconductor device
JP4581764B2 (en) Method for manufacturing thin film semiconductor device
JPS59228713A (en) Manufacture of semiconductor device
JPH0352214B2 (en)
JPH03201440A (en) Formation of rear distortion of semiconductor substrate
JP2605268B2 (en) Method for manufacturing semiconductor device
JPS6234129B2 (en)