JPS60114520A - Method for controlling temperature of continuous heating furnace - Google Patents

Method for controlling temperature of continuous heating furnace

Info

Publication number
JPS60114520A
JPS60114520A JP22124683A JP22124683A JPS60114520A JP S60114520 A JPS60114520 A JP S60114520A JP 22124683 A JP22124683 A JP 22124683A JP 22124683 A JP22124683 A JP 22124683A JP S60114520 A JPS60114520 A JP S60114520A
Authority
JP
Japan
Prior art keywords
temperature
extraction
value
temp
billets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22124683A
Other languages
Japanese (ja)
Inventor
Kenichi Sakamoto
賢一 坂元
Isao Yada
矢田 勲男
Yoji Shimizu
洋二 清水
Takuji Wataya
和田谷 卓司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP22124683A priority Critical patent/JPS60114520A/en
Publication of JPS60114520A publication Critical patent/JPS60114520A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Heat Treatment Processes (AREA)

Abstract

PURPOSE:To control the ejection temp. of billets to a target temp. with less errors in the stage of heating the billet in a continuous heating furnace by operating in combination of the temp. control basing on a mathematical expression model for heat transfer and the measured value of the surface temp. of the billets by a radiation thermometer, etc. CONSTITUTION:Many billets 2 are continuously heated in a continuous heating furnace 1 and are ejected from the furnace then the billets are rolled with a hot roughing mill group 3. The average calculated value thetaSa of the ejection temp. of the billets 2 from the furnace 1 is calculated by a mathematical expression model for heat transfer and the temp. on the billet surface of the billets ejected from the furnace 1 and prior to entrance to the group 3 is measured with a radiation thermometer 4. The temp. of the billet surface is distributed in the rolling direction and therefore such a characteristic value as an average value is calculated by the signal processing function of a calculator 6 for control and is made the measured value thetaEa of the surface temp. of the billets. The target ejection temp. of the billets 2 is corrected from the thetaEa and the calculated value thetaSa and the billets are heated to the temp. optimum to rolling.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、伝熱数式モデル等を適用して鋼片を目標抽出
温度まで加熱する連続式加熱炉の温度制御方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a temperature control method for a continuous heating furnace that heats a steel billet to a target extraction temperature by applying a heat transfer mathematical model or the like.

〔従来技術〕[Prior art]

連続式加熱炉の操業においては、を温の鋼片またはホッ
トチャージ材の温鋼片を連続式加熱炉に装入し、圧延に
適する温度まで加熱するよう炉内温度及び抽出ピッチが
制御されている。
In the operation of a continuous heating furnace, hot steel billets or hot charge steel billets are charged into the continuous heating furnace, and the furnace temperature and extraction pitch are controlled to heat them to a temperature suitable for rolling. There is.

従来、連続式加熱炉では、各操炉者の長い経験と勘に頼
った操業が行なわれてきたが、近年、制御用側算機が盛
んに使用されるようになり、鋼片を所定の圧延順序で抽
出して圧延工程に供給しながら鋼片を適切な温度に加熱
しつつ燃料原単位を最小とすることが試みられるように
なった。
Traditionally, continuous heating furnaces have been operated by relying on the long experience and intuition of each furnace operator, but in recent years, control computers have come into widespread use, Attempts have been made to minimize the fuel consumption while heating the billet to an appropriate temperature while extracting it in the rolling order and feeding it to the rolling process.

計算機による温度制御としては、たとえば、特公昭58
−12325号公報や特公昭5g−19727号公報に
開示された発明がある。
As for temperature control by computer, for example,
There are inventions disclosed in Japanese Patent Publication No. 12325 and Japanese Patent Publication No. 5G-19727.

これらにおいては、加熱炉内の各鋼片の位置と温度を追
跡し、今後の圧延スケジュールから炉内位置と在炉時間
を予測し、各鋼片を加熱炉より抽出するまでの温度上昇
を推定し、この推定した温度上昇が所定の条件を満足す
るように炉内温度及び抽出ピッチの制御を実施する。こ
のとき、各鋼片の温度の追跡と抽出するまでの温度上昇
の推定には、制御用計算機にて容易に実行可能な公知の
伝熱数式モfルが適用されている。ここで、温度制御上
の所定の条件として抽出時の鋼片温度が許容範囲内であ
ること、更に、均熱性を重視して細片内外温度差が一定
値以内であることを規制し、そhぞれ目標抽出温度条件
および目標鋼片内外温度差条件として制御用it算機内
に組み込まれている。
In these processes, the position and temperature of each billet in the heating furnace is tracked, the location and time in the furnace are predicted from the future rolling schedule, and the temperature rise until each billet is extracted from the furnace is estimated. Then, the furnace temperature and extraction pitch are controlled so that the estimated temperature rise satisfies predetermined conditions. At this time, a known heat transfer formula model that can be easily executed by a control computer is applied to track the temperature of each steel slab and estimate the temperature rise until extraction. Here, the predetermined conditions for temperature control are that the temperature of the steel strip at the time of extraction is within an allowable range, and that the difference in temperature between the inside and outside of the strip is within a certain value, with emphasis on heat uniformity. h are incorporated into the control IT computer as a target extraction temperature condition and a target steel billet internal and external temperature difference condition, respectively.

こうした条件は、鋼片の材質上の特性から設定されるこ
ともあるが、多くは長年の操業実績から経験的に決定さ
れたものであり、その実績の基本となるものは、加熱炉
抽出後の鋼片表面温度であった。
These conditions are sometimes set based on the material characteristics of the steel billet, but in most cases they are determined empirically based on many years of operational experience. The surface temperature of the steel billet was .

この鋼片表面温度は操炉者が可搬型の光高温月1を適用
したり、固定の放射温度計を適用して温度測定値を入手
し、操炉上の極めて重要な情報として利用していた。
The surface temperature of this steel piece can be determined by the reactor operator using a portable optical high temperature sensor 1 or a fixed radiation thermometer to obtain the temperature value, which is used as extremely important information for reactor operation. Ta.

この放射温度計による温度測定値は、前述した制御用計
算機に温度信号として入力されているが、温度制御上の
有効な情報とマて利用されることはなかった。これは、
放射温度計による温度測定値が熱放射エネルギー測定に
基づくものであり、鋼片表面放射率の条件変化、圧延条
件による測定位置変化からいわゆる真温ではないことに
よる。すなわち、制御用計算機では、前述した伝熱数式
モデルをオンラインで適用して、各鋼片内外面の真の温
度をめるものであり、外乱要素のため相対的温度値にす
ぎない放射温度信号を真の温度を計算した伝熱数式モデ
ル解と比較することができなかったのである。
Although the temperature value measured by this radiation thermometer is input as a temperature signal to the aforementioned control computer, it has not been used as effective information for temperature control. this is,
This is because the temperature value measured by a radiation thermometer is based on thermal radiation energy measurement, and is not the so-called true temperature due to changes in the emissivity of the surface of the steel piece and changes in the measurement position due to rolling conditions. In other words, the control computer applies the heat transfer formula model described above online to calculate the true temperature of the inner and outer surfaces of each steel slab, and the radiation temperature signal, which is only a relative temperature value due to disturbance elements, is It was not possible to compare the actual temperature with the heat transfer formula model solution that calculated the true temperature.

しかしながら、この放射温度信号は依然として重要な操
炉情報であり、各鋼片の表面温度として記@81上に温
度信号波形として記録され、或いは制御用H1算機にて
各鋼片の加熱実績として帳票に印字されることが多いの
が実情である。
However, this radiation temperature signal is still important furnace operation information, and is recorded as a temperature signal waveform on the record @81 as the surface temperature of each billet, or as the heating record of each billet in the control H1 calculator. The reality is that it is often printed on the form.

一方、制御用計算機による鋼片温度演算は、その演算負
荷上のffpt限から皿m8化が行なわitでおり、あ
る程度の厳密性は無視しているといえよう。更に、加熱
炉内の鋼片への伝熱爪を計算するときの熱旧算定数は一
般に実測した昇温曲線に基づいてオフラインにて各炉帯
毎に決定しておき、オンラインでの熱計算においては、
こオしを固定値として用いることが多い。しかしながら
、こうした熱割算定数は操炉状態によって変化するもの
であり、これをオンラインで修正することは不可能であ
るといってよい。その結果、伝熱数式モデルを基本とす
る温度制御はある誤差をもつ温度計算方式を適用してい
ることになり、その計算値に基づく温度制御もその誤差
を避けることができなかった。
On the other hand, the calculation of the temperature of the steel billet by the control computer is performed on a plate m8 due to the ffpt limit on the calculation load, and it can be said that a certain degree of strictness is ignored. Furthermore, when calculating the heat transfer claws to the steel slabs in the heating furnace, the thermal constant is generally determined offline for each furnace zone based on the actually measured temperature rise curve, and then the thermal calculation coefficients are determined offline for each furnace zone. In,
This value is often used as a fixed value. However, these heat division constants change depending on the furnace operating conditions, and it is impossible to modify them online. As a result, temperature control based on a heat transfer formula model applies a temperature calculation method with a certain error, and temperature control based on the calculated value cannot avoid this error.

〔発明の目的〕[Purpose of the invention]

本発明は、連続式加熱炉での温度制御の誤差を低減する
ことを目的とする。
An object of the present invention is to reduce errors in temperature control in a continuous heating furnace.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明においては、伝熱数式
モデルを基本とする温度制御と、たとえば放射温度計に
よる表面温度測定値とを有機的に組み合わせる。すなわ
ち、連続式加熱炉において装入から抽出までに鋼片を目
標温度まで加熱する温度制御において、抽出温度計算値
と抽出後の鋼片表面温度測定値に基づいて目標抽出温度
製修正する。
In order to achieve the above object, the present invention organically combines temperature control based on a heat transfer equation model and surface temperature measurements using, for example, a radiation thermometer. That is, in temperature control for heating a steel billet to a target temperature from charging to extraction in a continuous heating furnace, the target extraction temperature is corrected based on the calculated value of the extraction temperature and the measured value of the surface temperature of the steel billet after extraction.

ここで抽出後とは、m片が加熱炉から抽出された直後か
ら粗圧延機による圧延中の初期状態までである。
Here, "after extraction" refers to the period from immediately after the m piece is extracted from the heating furnace to the initial state during rolling by the rough rolling mill.

一般に、連続式加熱炉の温度制御においては、目標抽出
温度O3が前述したように経験的にまたは材質上の特性
から品種、サイズ毎に決められている。一方、こうした
目標抽出温度の決定の基本データとなった抽出後の鋼片
表面温度標準値0仁が与えられる。これに対して、伝熱
数式モデルによる抽出温度の計算値Osaが存在し、更
に抽出後の放射温度計等による鋼片表面温度測定値Oε
aが存在する。ここで通常放射温度計による鋼片表面温
度信号には、鋼片圧延方向の温度分布に基づく各鋼片内
の温度変動が存在するが、制御用計算機内部の信号処理
機能により各鋼片について1つの特性値(たとえば平均
値でもよい)を算出するものとする。
Generally, in temperature control of a continuous heating furnace, the target extraction temperature O3 is determined for each product type and size based on experience or material characteristics, as described above. On the other hand, the standard value of the surface temperature of the steel billet after extraction, 0, is given as the basic data for determining the target extraction temperature. On the other hand, there is a value Osa of the extraction temperature calculated by the heat transfer formula model, and a value Oε of the surface temperature of the steel piece measured by a radiation thermometer etc. after extraction.
a exists. Normally, the steel billet surface temperature signal from a radiation thermometer includes temperature fluctuations within each billet based on the temperature distribution in the rolling direction of the billet, but the control computer's internal signal processing function It is assumed that two characteristic values (for example, an average value may be used) are calculated.

理想的な状態で1よ、抽出温度計算値Osaが目標抽出
温度O8に対しである許容値ΔO8の範囲内にあるとき
鋼片表面温度測定値O5aが鋼片内外温度差i(Q値0
仁に対しである許容値Δ05の範囲内に存在するが、目
標抽出温度O8の決定が不合理であったり、前述したよ
うな熱計算定数の大きな変化が生じると、抽出温度計算
値Osaを目標抽出温度Osに対して一致させようとす
る制御は誤った操業をもたらす。このとき鋼片表面温度
測定値0 (= aの鋼片表面温度標準値θεに対する
収束性を観察しておけば、伝熱数式モデルによる温度制
御の発散の可能性を避けることができる。
In an ideal state, when the calculated extraction temperature value Osa is within a certain tolerance value ΔO8 with respect to the target extraction temperature O8, the measured value O5a of the surface temperature of the steel billet is equal to the temperature difference i (Q value 0).
However, if the determination of the target extraction temperature O8 is unreasonable or a large change in the heat calculation constant as mentioned above occurs, the calculated extraction temperature Osa may be within the range of the allowable value Δ05. Controls that try to match the extraction temperature Os lead to incorrect operation. At this time, if the convergence of the measured value of the steel billet surface temperature 0 (=a) with respect to the standard value θε of the steel billet surface temperature is observed, the possibility of divergence in temperature control using the heat transfer formula model can be avoided.

また場合によっては、鋼片内外温度差Δtsiを伝熱数
式モデルによってdI算し、これがill容値Δts以
内であることを規制して、鋼片の均熱性を重視する温度
制御方式もあるが、この場合は粗圧延機出口の放射温度
泪による綱片表面温度測定値θRaを追加して目標抽出
温度制御方式と同様にして抽出後から粗圧延機出口まで
の温度低下測定値0sa−θFtaのその温度低下標準
値ΔGap。
In some cases, there is also a temperature control method that emphasizes the thermal uniformity of the steel billet by calculating dI of the temperature difference Δtsi between the inside and outside of the steel billet using a heat transfer formula model, and regulating that this value is within the ill capacity value Δts. In this case, add the measured value θRa of the surface temperature of the strip due to the radiation temperature drop at the exit of the rough rolling mill, and use the same method as the target extraction temperature control method to obtain the measured temperature drop 0sa-θFta from the time of extraction to the exit of the rough rolling mill. Temperature drop standard value ΔGap.

に対する収束性を113′1察して伝熱数式モデルによ
る温度制御の発散の可能性を避けろことができる。
It is possible to avoid the possibility of divergence in temperature control by the heat transfer formula model by observing the convergence of the equation.

以下本発明を図面を参照して詳細に説明する。The present invention will be described in detail below with reference to the drawings.

まず、制御用側算機は第1図の加熱炉1から抽出される
鋼片2の抽出温度HI算値Osaを伝熱数式モデルによ
って31nしている。ここで、抽出温度d1算値Dsa
が現状の炉内温度Tと抽出直前の泪片計算値へ−艮を用
いて次式の関数によって与えられるのは周知の通りであ
る。
First, the control calculator calculates the extraction temperature HI value Osa of the steel slab 2 extracted from the heating furnace 1 shown in FIG. 1 by 31n using a heat transfer equation model. Here, the extraction temperature d1 calculated value Dsa
It is well known that T is given by the following function using the current furnace temperature T and the calculated value of the radish pieces immediately before extraction.

Qu=4.88φcg((T+273/100)’ (
(ls、−+11−1−273/100)’)鋼片を5
分割したときの上面温度O5は。
Qu=4.88φcg((T+273/100)' (
(ls, -+11-1-273/100)') 5 pieces of steel
The top surface temperature O5 when divided is.

+2λo’Δ t/ρ(Δx)2 〔φg−1−ト(八
X/λ)Qll−φr、−tlここで。
+2λo'Δt/ρ(Δx)2 [φg−1−t(8X/λ)Qll−φr,−tl where.

Qu:炉内放射による鋼片上面への伝熱爪φcg:放射
効率を表わすパラメータ(総括熱吸収係数) H’a : 0仏に対応する含熱量。α=s、s−1φ
α:Oα4に対応する変換温度。α”S、5−1λ0:
鋼片の熱伝導室 ρ:鋼片の比重量 ΔX:鋼片の厚み Δt:制御川計用f、ti1のaIIn期。
Qu: Heat transfer claw to the upper surface of the steel piece due to radiation inside the furnace φcg: Parameter expressing radiation efficiency (overall heat absorption coefficient) H'a: Heat content corresponding to 0 degrees. α=s, s-1φ
α: Conversion temperature corresponding to Oα4. α”S, 5-1λ0:
Heat conduction chamber ρ of steel billet: Specific weight ΔX of steel billet: Thickness Δt of steel billet: f, aIIn period of ti1 for control river meter.

したがって抽出直前鋼片温度0s−Inとは、時間Δt
だけ前の鋼片」二面温度となる。
Therefore, the steel billet temperature 0s-In just before extraction means the time Δt
The temperature of the two sides of the steel piece will be the same as before.

また、下面温度Osa並びに内面温度Osa[! ” 
’2+3+4]は次式で与えられる。
In addition, the bottom surface temperature Osa and the inside surface temperature Osa [! ”
'2+3+4] is given by the following formula.

11s=Hs−1 ト2λ0・Δ*/p・cΔX)2〔φg−1−φg−1
)ただし、抽出直前には炉内放射による鋼片上面への伝
熱はないものとした。
11s=Hs-1 2λ0・Δ*/p・cΔX)2[φg-1-φg-1
) However, it was assumed that there was no heat transfer to the top surface of the steel slab due to radiation in the furnace immediately before extraction.

Li)(t) )1s= I(s −1 +λ。・Δt/ρ・(Δx)” CJs”l’+ Js
”12φ’R’−s )ただし、i =2,3,4゜ ここで、 CJノ(ゼン トIα:01に対応する含熱量 φ宥;1品に刻応する変換温度 a=s+s 1 、i =2〜5 このとき、抽出温度計算値Osとしてm片温度平均値を
めるには、次式を用いるとよい6−3(i〕 0sa=、Σθ5815 t+l なお、剛片内外温度差Δtsaをめるには次式をいると
よい。
Li)(t))1s=I(s-1+λ.・Δt/ρ・(Δx)”CJs”l’+Js
"12φ'R'-s) However, i = 2, 3, 4 degrees, where, = 2 ~ 5 At this time, to calculate the m piece temperature average value as the extracted temperature calculation value Os, it is recommended to use the following formula 6-3 (i) 0sa =, Σθ5815 t + l In addition, the temperature difference Δtsa between the inside and outside of the rigid piece is To calculate the value, use the following formula.

Δts11=θ5a−Osa さて1本加熱炉は、制御用計′r1.機6の温度制御下
に置かAしているので、抽出温度計λγ値Or、:Iは
、(1標抽出温度O8に収束しようとしている。一方、
この鋼片は抽出後の粗圧延機3の間l;設置された放射
温度計4によってm片表面温度が測定される。
Δts11=θ5a−Osa Now, for a single heating furnace, the control meter 'r1. Since it is placed under the temperature control of the machine 6, the extraction thermometer λγ value Or,:I is about to converge to the (1 standard extraction temperature O8.) On the other hand,
The surface temperature of this steel piece is measured by a radiation thermometer 4 installed between the rough rolling mill 3 after extraction.

鋼片表面温度は圧延方向に温度分布が存在するので、第
2図に示すような温度郁号波形が1))ら肛るが、制御
用計算機の信号処理機能により、たとえば平均値のよう
な1つの1.1′性値を算出し、こ、IL存在[rI片
表面温度測定値Q (aとする。このill!l定値0
1dについては、従来からの操炉作業槽!(Qから鋼]
“1表面温度標準値OEが与えられる。
Since the steel billet surface temperature has a temperature distribution in the rolling direction, a temperature waveform as shown in Fig. 2 is produced from 1)), but the signal processing function of the control computer allows for example One 1.1' characteristic value is calculated, and this ill!l constant value is 0.
Regarding 1d, it is a conventional furnace operation tank! (Steel from Q)
“1 A standard surface temperature value OE is given.

1−1漂抽出温度Osに列して許容値ΔOsを、鋼ノ1
表面温度O1に対して、7′1容値Δ06を定めておく
1-1 The permissible value ΔOs is set in line with the bleaching temperature Os.
A 7'1 volume value Δ06 is determined for the surface temperature O1.

a) 1(Js C15al≦ΔOs およびl Oa
−〇cal≦八〇L:へ のどさ抽出温度計算値Osa
および鋼片表面温度測定値+1 、:aとも、それぞれ
目標抽出温度OSおよび飛ハ表面温度標僧値0.によく
収束しているので、温度制御は安定しており、I(標抽
出温度修正の必要はない。
a) 1(Js C15al≦ΔOs and l Oa
-〇cal≦80L: To Nodosa extraction temperature calculation value Osa
and the measured value of the steel billet surface temperature +1, :a, the target extraction temperature OS and the target surface temperature value 0. Since it converges well with I, the temperature control is stable and there is no need to correct the extraction temperature.

1)) l Os −0str l >ΔO8および1
0ε−OI:Ql≦Δθ口 のとき 鋼片表面温度測定値OG aはその標準値Ocに列して
許容値範囲内にあるので、実際の温度制御は安定してい
るのにもかかわらず、制御用計算機では、抽出温度計り
、値Osaが目漂抽出!fi1度9′1容範囲、すなわ
ちUs−八〇sへ・0!5+八〇sを外Jしているので
、制御状態が不良であると判定してしまう。
1)) l Os −0str l >ΔO8 and 1
0ε-OI: When Ql≦Δθ, the measured value of the surface temperature of the steel piece OGa is within the allowable value range in line with its standard value Oc, so even though the actual temperature control is stable, The control computer measures the extraction temperature and extracts the value Osa! Since it is outside the fi1 degree 9'1 range, that is, Us-80s and 0!5+80s, it is determined that the control condition is poor.

こうした制御動作の発IX々を防1にするために次のよ
うに目標抽出温度を修正する。
In order to prevent these control operations from occurring, the target extraction temperature is modified as follows.

0s=Osa+k lΔOs if Us −Osa>
 00s=Osa−に2ΔOs j、f t)s−Os
ra<0ただし、0くに1≦1.0<k2≦1なる修正
ゲイン。
0s=Osa+k lΔOs if Us −Osa>
00s=Osa−2ΔOs j, f t)s−Os
ra<0 However, the correction gain is 0, 1≦1.0<k2≦1.

c) IOs (lsal≦ΔO8および10E ac
al>Δθ。 のとき 温度制御条件は収束しているが、鋼片表面温度のall
l定結果は標準から外れている。しかし、放射温度t1
の測定条件変化が原因とt)考えられるので、湿度制御
動作の安定性を重視し、て1−1漂抽出M度の修正は実
施しない。
c) IOs (lsal≦ΔO8 and 10E ac
al>Δθ. The temperature control conditions have converged when
The fixed results are out of the norm. However, the radiant temperature t1
Since it is thought that the cause is a change in the measurement conditions of t), we place emphasis on the stability of the humidity control operation and do not perform the 1-1 correction of the degree of stray extraction M.

d) IOs−0sal>ΔO5および10a (lc
al>ΔOo のとき 鋼片抽出温度の修正は実施しない。ただし、温度制御動
作の収束性の判断に利用することができる。
d) IOs-0sal>ΔO5 and 10a (lc
When al>ΔOo, the billet extraction temperature is not corrected. However, it can be used to determine the convergence of temperature control operations.

■ 08−(JSa>八〇sおよび F)c Oaa>Δor= のとき 1つ前の鋼片に対する伝熱数式モデルによる抽出温度を
Osa、SrM片表面温度測定値をOr、aとして、 O8−0sa<Δ【ノSilおよび Oa Oc a 
<Δ’ 1448であAしば収束の過渡状態にあるとい
えるが、必要に応して収束性を向上させるためにたとえ
ば炉内温度を」−げるかまたは抽出ピッチを下げるとい
った温度制御側にフィートバッグをかける。
■ 08-(JSa>80s and F)c When Oaa>Δor= , the extraction temperature for the previous steel piece according to the heat transfer formula model is Osa, the measured SrM piece surface temperature is Or, a, O8- 0sa<Δ[ノSil and Oa Oc a
<Δ' 1448, it can be said that A is in a transient state of convergence, but if necessary, in order to improve the convergence, temperature control side such as increasing the temperature inside the furnace or lowering the extraction pitch can be applied. Put a foot bag on it.

+L)l 0s−Osa〉八O5および13E (Ig
al≦−Δ05のとき 目標抽出温度と鋼片表面温度標準値の設定に矛盾があり
、たとえば 0s−Osa> 0s−Osaおよびθa−Oeh<O
r= Oeaのように2つの判定結果が反対方向に発散
しようとし、ている場合には、温度制御動作を停止する
+L)l 0s-Osa〉8O5 and 13E (Ig
When al≦−Δ05, there is a contradiction between the target extraction temperature and the standard value of the steel billet surface temperature, for example, 0s−Osa>0s−Osa and θa−Oeh<O
If the two determination results are about to diverge in opposite directions, such as r=Oea, the temperature control operation is stopped.

これらの場合以外でも、同様にして温度制御動作の収束
性を11!察することができる。
Even in cases other than these, the convergence of the temperature control operation can be increased to 11! can be understood.

以上では、目標抽出温度に着眼した温度制御方式につい
て述べてきたが、[目標鋼片内外温度差に碧眼した温度
制御方式についても鋼片内外温度差計算値Δtsaとそ
の許容値Δ1sの大小に苅して抽出後から粗性延出1」
までの温度低下測定値0εa −ORaとその温度低下
標7(Q値Δ(TIERの大小を目標抽出温度制御方式
と同様な論理判断に適用し、目標鋼片内外温度差の修正
を実施したり、温度制御動作の強化を促進したり停止を
がけたりする。
In the above, we have described the temperature control method that focuses on the target extraction temperature, but we have also described the temperature control method that focuses on the target temperature difference between the inside and outside of the steel billet. After extraction, roughness is extended 1.
The measured temperature drop value 0εa -ORa and its temperature drop mark 7 (Q value Δ , promote or stop temperature control operations.

ここで粗圧延機出口表面温度81す定値oRaは第1図
において粗圧延機3の後方に設置された放射温度fit
 5によって測定する。
Here, the rough rolling mill outlet surface temperature 81 (oRa) is the radiant temperature fit installed at the rear of the rough rolling mill 3 in FIG.
Measured by 5.

更に、目標抽出温度と目標鋼片内外温度差を組み合せた
温度制御方式においても、本手法はおのおの独立に適用
することができる。
Furthermore, this method can also be applied independently to a temperature control method that combines the target extraction temperature and the target temperature difference between the inside and outside of the steel billet.

〔実施例〕〔Example〕

本発明を実施した例を以下に述べる。 An example of implementing the present invention will be described below.

炉形式二上下3 ’!iF式ブツシャ−炉加熱能カニ公
称1201’/I+ 鋼片寸法:106°x12m(約1000Kg)100
O+Jへ温度: 1.000〜1250℃内外温度差2
0〜50℃ 抽出直後鋼片表面温度:950〜1150℃粗圧延機出
ロ鋼ノ1表面温度=800〜1ioo℃銅種: 0.0
8%Cキルド鋼、0.8%C共析鋼、1%Cr−Mo鋼
、I%Crt[。
Furnace type 2 top and bottom 3'! iF type butcher furnace heating capacity 1201'/I+ Slab size: 106° x 12m (approximately 1000Kg) 100
Temperature to O+J: 1.000-1250℃ Temperature difference between inside and outside 2
0~50℃ Steel billet surface temperature immediately after extraction: 950~1150℃ Rough rolling mill exit steel No. 1 surface temperature = 800~1ioo℃ Copper type: 0.0
8%C killed steel, 0.8%C eutectoid steel, 1%Cr-Mo steel, I%Crt[.

ステンレス鋼 本発明を上記加熱炉に適用したところ、事前の実測デー
タ解析が不十分であった1%Cr−Mo鋼についても銅
片表面温度標準値0口=1000℃に対して当初l」標
抽出温度0s=11.50℃としていたが、鋼片表面温
度測定値f7I:a=090〜1120℃にて抽出温度
(ls=1120〜1140℃が得られたので、目標抽
出温度O8は1125°Cに修正され、過剰過熱を防止
することがでできた。そして加熱実績として各温度をオ
ペレーションガイドにより常時表示出力していたので、
長い経験を持つ各操炉者にも本制御方式は容易に受け入
れられた。
Stainless Steel When the present invention was applied to the above-mentioned heating furnace, even for 1% Cr-Mo steel for which prior analysis of actual measurement data was insufficient, the copper piece surface temperature was initially 1' The extraction temperature was set to 0s = 11.50°C, but since the extraction temperature (ls = 1120 to 1140°C) was obtained at the steel piece surface temperature measurement value f7I:a = 090 to 1120°C, the target extraction temperature O8 was 1125° It was corrected to C and was able to prevent excessive overheating.And since each temperature was constantly displayed and output as a heating result by the operation guide,
This control method was easily accepted by reactor operators with long experience.

〔発明の効果〕〔Effect of the invention〕

以」二説明したように、本発明によると従来の伝熱数式
モデルによる温度制御の発散の可能性を避けることがで
きるようになっただけでなく、将来抽出後の鋼片表面温
度標準値が変更になったときの目標抽出温度変更が容易
になり、更に新鋼種の温度制御の鋼片表面温度標準値の
設定と目標抽出温度の決定が容易し;なったので、温度
制御プロパー化が迅速になった。
As explained below, according to the present invention, not only can the possibility of divergence in temperature control using the conventional heat transfer formula model be avoided, but also the standard value of the steel billet surface temperature after extraction can be reduced in the future. It is now easy to change the target extraction temperature when changes occur, and it is also easier to set the standard value of billet surface temperature for temperature control of new steel types and determine the target extraction temperature. Became.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施する装置構成の概要を示す斜視図
、第2図は鋼片表面の温度を計測した放射温度n1の測
定出力信号を示すグ゛ラフであり、縦軸は出力信号レベ
ルを横軸は時間を示す。 1:加熱炉 2:抽出された削片 3:粗圧延機群 4:放射温度it (抽出後測温用)
5:放射温度W+(m圧延機量に1での測温用)6:制
御用計算機
FIG. 1 is a perspective view showing an outline of the configuration of an apparatus for carrying out the present invention, and FIG. 2 is a graph showing a measurement output signal of the radiation temperature n1 obtained by measuring the temperature on the surface of a steel piece, and the vertical axis is the output signal. The horizontal axis represents the level and the time. 1: Heating furnace 2: Extracted particles 3: Rough rolling mill group 4: Radiation temperature it (for temperature measurement after extraction)
5: Radiation temperature W+ (for temperature measurement at 1 for m rolling mill quantity) 6: Control computer

Claims (1)

【特許請求の範囲】 (1)連続式加熱炉にて装入から抽出までに鋼片を目標
抽出温度まで加熱する温度制御方法において;抽出温度
引算値と抽出後の鋼片表面温度測定値に基づいて目標抽
出温度を修正することを特徴とする。連続式加熱炉の温
度制御方法。 (2)抽出温度計算値が伝熱数式モデルを適用してめた
鋼片平均温度である、前記特許請求の範囲第(1)項記
載の、連続式加熱炉の温度制御方法、(3)抽出温度計
算値が伝熱数式モデルを適用してめた鋼片内外温度差で
ある。前記特許請求の範囲第(1)項記載の、連続式加
熱炉の温度制御方法。 (4)抽出温度81算値が伝熱数式モデルを適用してめ
た鋼片平均温度及び鋼片内外温度差である、前記特許請
求の範囲第(1)項記載の連続式加熱炉の温度制御方法
。 (5)抽出後の鋼片表面温度測定値が抽出直後の鋼片表
面温度である、前記特許請求の範囲第(1)項。 第(2)項、第(3)項又は第(4)項記載の、連続式
加熱炉の温度制御方法。 (6)抽出後の鋼片表面温度4111定値が抽出直後及
び粗圧延機出口の鋼片表面温度である前記特許請求の範
囲第(1)項、第(2)項、第(3)項又は第(4)項
記載の連続式加熱加熱炉の温度制御方法。
[Claims] (1) In a temperature control method for heating a steel billet to a target extraction temperature from charging to extraction in a continuous heating furnace; the extraction temperature subtraction value and the measured value of the steel billet surface temperature after extraction. It is characterized by correcting the target extraction temperature based on. Temperature control method for continuous heating furnace. (2) A temperature control method for a continuous heating furnace according to claim (1), wherein the extracted temperature calculation value is an average temperature of a steel slab determined by applying a heat transfer mathematical model; (3) The extracted temperature calculation value is the temperature difference between the inside and outside of the steel piece, which was obtained by applying the heat transfer formula model. A method for controlling the temperature of a continuous heating furnace according to claim (1). (4) The temperature of the continuous heating furnace according to claim (1), wherein the extraction temperature 81 calculated value is the average temperature of the steel slab and the temperature difference between the inside and outside of the steel slab determined by applying a heat transfer formula model. Control method. (5) Claim (1) above, wherein the measured value of the steel billet surface temperature after extraction is the steel billet surface temperature immediately after extraction. The temperature control method for a continuous heating furnace as described in item (2), item (3), or item (4). (6) The steel billet surface temperature after extraction 4111 constant value is the steel billet surface temperature immediately after extraction and at the exit of the rough rolling mill, or The temperature control method for a continuous heating furnace according to item (4).
JP22124683A 1983-11-24 1983-11-24 Method for controlling temperature of continuous heating furnace Pending JPS60114520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22124683A JPS60114520A (en) 1983-11-24 1983-11-24 Method for controlling temperature of continuous heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22124683A JPS60114520A (en) 1983-11-24 1983-11-24 Method for controlling temperature of continuous heating furnace

Publications (1)

Publication Number Publication Date
JPS60114520A true JPS60114520A (en) 1985-06-21

Family

ID=16763754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22124683A Pending JPS60114520A (en) 1983-11-24 1983-11-24 Method for controlling temperature of continuous heating furnace

Country Status (1)

Country Link
JP (1) JPS60114520A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543949A (en) * 1991-08-13 1993-02-23 Nkk Corp Method for operating heat treatment of steel plate
CN100363514C (en) * 2002-09-19 2008-01-23 鞍钢股份有限公司 Small cross steel tapping control method for continous steel billet neating furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543949A (en) * 1991-08-13 1993-02-23 Nkk Corp Method for operating heat treatment of steel plate
CN100363514C (en) * 2002-09-19 2008-01-23 鞍钢股份有限公司 Small cross steel tapping control method for continous steel billet neating furnace

Similar Documents

Publication Publication Date Title
JPS6111289B2 (en)
CN105018718B (en) Heating furnace process furnace temperature control method based on thermal load distribution
KR102032039B1 (en) Temperature calculation method, temperature calculation device, heating control method, and heating control device
JP3231601B2 (en) Electric furnace temperature control method and apparatus
CN102277468A (en) Real-time forecasting method of LF refining furnace molten steel temperature
JPS60114520A (en) Method for controlling temperature of continuous heating furnace
JPH10277620A (en) Method for controlling temperature in continuous hot rolling of steel tube
RU2751857C1 (en) Method for heating steel sheet during continuous annealing and installation of continuous annealing
JPH0663039B2 (en) Temperature control device for heating furnace
JP3799656B2 (en) Combustion control method for continuous heating furnace
JPS6411691B2 (en)
JPH0332605B2 (en)
JPS63307223A (en) Method for changing speed in sheet temperature control in continuous annealing furnace
JP3796808B2 (en) Combustion control method and apparatus for continuous heating furnace
Lukin et al. Engineering procedure for calculating furnace heating and thermostatic control conditions of a hot-charged slab
JP3982042B2 (en) Combustion control method for continuous heating furnace
JPH05255762A (en) Method for controlling furnace temperature of continuous heating furnace
JPH06306453A (en) Method for eliminating skid mark in continuous heating furnace
JPS5818401B2 (en) Continuous heating furnace control method
JP3646622B2 (en) Sheet width control method
JPH09209044A (en) Operation of continuous type steel cast slab heating furnace
JPS5941489B2 (en) How to set the furnace temperature correction amount for a multi-zone continuous heating furnace
JPS609087B2 (en) Heating control method for continuous heating furnace
JPH0759722B2 (en) Induction heating control method during subsequent induction heating of a slab previously gas-heated
JPH0360887B2 (en)