JPS60112225A - Method for forming metallic film on fluorescent screen - Google Patents

Method for forming metallic film on fluorescent screen

Info

Publication number
JPS60112225A
JPS60112225A JP22111583A JP22111583A JPS60112225A JP S60112225 A JPS60112225 A JP S60112225A JP 22111583 A JP22111583 A JP 22111583A JP 22111583 A JP22111583 A JP 22111583A JP S60112225 A JPS60112225 A JP S60112225A
Authority
JP
Japan
Prior art keywords
vapor coating
aluminum
vacuum
fluorescent screen
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22111583A
Other languages
Japanese (ja)
Inventor
Kotoji Fujiwara
藤原 琴二
Seihachiro Hayashi
林 清八郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22111583A priority Critical patent/JPS60112225A/en
Publication of JPS60112225A publication Critical patent/JPS60112225A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/28Luminescent screens with protective, conductive or reflective layers

Landscapes

  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

PURPOSE:To make up a high quality vapor coating film with high reflectivity by forming an vapor coating film on a fluorescent screen at a low vacuum by rotating a vapor coating source at the time other than doing necessary vacuum vapor coating. CONSTITUTION:At the time when a glass face plate 1 is conveyed into an aluminum vapor coating chamber 6b, a heating surface 7a of a resistance heat element 7 is turned toward the direction not facing to the fluorescent screen of the plat 1. Therefore, even if the remaining aluminum molten liquid is vaporized it does not vaporized toward the fluorescent screen. When the vacuum of the vapor coating chamber 6b becomes high and approaches to a vaporization starting value a high level voltage is applied to the resistance heat element 7 and its heating surface 7A is turned to the condition to face the fluorescent screen and vapor coating is carried out under a high vacuum for a predetermined hours. When the vapor coating is completed the voltage applied to the heat element 7A is lowered, the supply of an aluminum wire is stopped, and the heat element 7A is rotated to return to the original condition. By these operations a high quality vapor coating film with high reflectivity is formed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は蒸着による螢光面の金属膜形成方法において
、特にメタルバック構造とするカラー受像管の螢光面上
(・こ光反射性金属薄膜を真空蒸着により形成する方法
に関するものである。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a method for forming a metal film on a fluorescent surface by vapor deposition, and particularly relates to a method for forming a metal film on a fluorescent surface of a color picture tube having a metal back structure. The present invention relates to a method for forming a film by vacuum evaporation.

〔従来技術〕[Prior art]

通常のカラー受像管の螢光面は、受像管の管体の一部を
構成するガラスフェースプレート(バネ)v)の内面に
被着した螢光体膜上に、この螢光体膜から発した光を有
効にカラー受像管前方へ取り出すための光反射性金属薄
膜全形成することによ、!2実現されるのが一般的であ
シ、これはメタルバック構造と称されるものである。
The phosphor surface of a normal color picture tube is formed on a phosphor film attached to the inner surface of a glass face plate (spring) that forms part of the tube body of the picture tube. By fully forming a light-reflective metal thin film to effectively extract the light to the front of the color picture tube! 2 is commonly realized, and this is called a metal back structure.

このメタルバック蛍光面は、カラー受像管の輝度を増加
させるとともに、イオン焼けの現象を防止するという利
点を有していて、その製危工程を第1図を参照しながら
説明する。
This metal back phosphor screen has the advantage of increasing the brightness of the color picture tube and preventing the phenomenon of ion burnout, and its manufacturing process will be explained with reference to FIG.

第1図はカラー受像管の螢光面部の製造工程を説明する
ための断面図である。第1図において、(υはガラスフ
ェースプレート、(2〕はとのプv−ト(1)の内面に
被着された螢光体膜、(3)はこの螢光体膜(2)の表
面全平滑Vこするための有機物質を主成分とするフィル
ム用ラッカー材料により形成された中間膜、(4)はア
ルミニウム薄膜である。螢光体膜(2)はプレート(υ
の内面に一様の厚さに塗布され、これを乾燥させること
によ多形成される。また、アルミニウム薄膜(,4)は
、中間膜(3)上にアルシミニラム金真空中で蒸着させ
て形成されるものでhD、しかる後にベーキング処理に
より中間膜(3)は除去される。
FIG. 1 is a sectional view for explaining the manufacturing process of a fluorescent surface portion of a color picture tube. In Figure 1, (υ is a glass face plate, (2) is a phosphor film attached to the inner surface of the dot plate (1), and (3) is a phosphor film of this phosphor film (2). The interlayer film (4) formed of a film lacquer material mainly composed of an organic material for smooth V rubbing is an aluminum thin film.The phosphor film (2) is a plate (υ
It is applied to the inner surface of the body to a uniform thickness and is dried to form a multilayered coating. Further, the aluminum thin film (, 4) is formed on the intermediate film (3) by depositing aluminum in vacuum, and then the intermediate film (3) is removed by baking.

第2図は従来の蒸着装置の一例を示す。この図に示すよ
うに、従来、アルミニウム薄膜を蒸着によ多形成するに
は、中間膜(3)を形成したガラスフェースグv−)(
1)を、真空外囲器(6)内の所定の位置に支持した状
態で配置する。真空外囲器(61には、タングステン線
の3本または4本撚り線によυ)<スケット状とした1
個または複数個の蒸発源(5)が設けられ、10 ’ 
Torrの真空状態に保たれる。
FIG. 2 shows an example of a conventional vapor deposition apparatus. As shown in this figure, conventionally, in order to form a thin aluminum film by vapor deposition, a glass face group (v-)(
1) is placed in a supported state at a predetermined position within the vacuum envelope (6). Vacuum envelope (61 is made of 3 or 4 stranded tungsten wires)
one or more evaporation sources (5) are provided, 10'
A vacuum of Torr is maintained.

このようにして、中間膜(3)上にアルミニウムを蒸着
させる方法が用いられているが、蒸発源(5)としてタ
ングステン線からなるコイルを用いているので、寿命が
短いという欠点があった。
In this way, a method of vapor depositing aluminum on the intermediate film (3) has been used, but since a coil made of tungsten wire is used as the evaporation source (5), there is a drawback that the service life is short.

この欠点を除去するために、タングステン線コイルにか
えて、抵抗加熱体を使用する方法が提案され、すでに天
川に供されている。抵抗加熱体としては、屋化硼素を主
成分とするものが一般に用いられている。この種の抵抗
加熱体の一例は、第3図に斜視図として示される。この
図に示すように、直方体状の抵抗加熱体(7)の上面に
は、凹部(7a)が形成されていて、いわゆるポート状
の構造となっている。なお、前記凹部(7a)を設けず
、単なる平面としたものもある。この屋化硼素を主成分
とするボート状抵抗加熱体蒸発源(以下、「窒化硼素加
熱体」と杯する。)を使用した場合の蒸着膜製作方法を
第4図を参照して説明する。
In order to eliminate this drawback, a method of using a resistance heating element instead of a tungsten wire coil has been proposed, and has already been used in Tenkawa. As the resistance heating element, one whose main component is boron oxide is generally used. An example of this type of resistance heater is shown in perspective view in FIG. As shown in this figure, a recess (7a) is formed on the upper surface of the rectangular parallelepiped-shaped resistance heating element (7), forming a so-called port-like structure. In addition, there is also one that does not have the recessed portion (7a) and is simply a flat surface. A method for producing a deposited film using a boat-shaped resistance heating evaporation source (hereinafter referred to as a "boron nitride heating element") containing boron nitride as a main component will be described with reference to FIG.

第4図は窒化硼素加熱体を用いた蒸着装置の一例を概略
的に示す構成図である。第4図において、前述した各図
に示す部分に相当の部分は同様の参照符号を付し、その
説明は省略する。ここに示す蒸着装置は、入口室(6a
)、アルミニウム蒸着室(1)および出口室(6(ニ)
を備える県空外囲器を含む。
FIG. 4 is a block diagram schematically showing an example of a vapor deposition apparatus using a boron nitride heating element. In FIG. 4, parts corresponding to those shown in each of the figures described above are given the same reference numerals, and their explanations will be omitted. The vapor deposition apparatus shown here has an entrance chamber (6a
), aluminum deposition chamber (1) and outlet chamber (6 (d)
Including the prefectural air envelope with.

蒸着室(6b)には、アルミニシム線自動挿入器(8)
が設ケラれ、それによってアルミニウム線(9)が供給
される。また、入口室(6a)と出口室(6C)には、
外部雰囲気との間を仕切るための仕切弁(IQ 、 Q
lが設けられ、アルミニウム蒸着室(6b)と入口室(
6a)および出口室(6C)との間を仕切るために仕切
弁Oυ。
In the vapor deposition chamber (6b), an aluminum shim wire automatic inserter (8) is installed.
is provided, thereby supplying the aluminum wire (9). In addition, in the entrance chamber (6a) and the exit chamber (6C),
Gate valves (IQ, Q
l is provided, and an aluminum deposition chamber (6b) and an inlet chamber (6b) are provided.
6a) and the outlet chamber (6C), a gate valve Oυ.

Ql)が設けられる。Ql) is provided.

上述のような構成において、中間膜(3)を形成したガ
ラスフェースプレート(11を真空外囲器の入口室(6
ε、)に搬入し、図示しない真空ボーンプなどの排気機
器により、真壁外囲器入口室(6a、)訃よび出口室(
60) k 0.05〜0.01 Torrの真壁に、
アルミニウム蒸着室(6b)k 1〜2 x 10−’
 Torr <D真空にそれぞれ保持する。つき゛に、
仕切弁0υのみを開いて、ガラスフェースプレート(υ
?アルミニウム蒸着室(61))の所定の位I−に搬送
し、仕切弁αυを閉じる。
In the above configuration, the glass face plate (11) on which the intermediate film (3) is formed is connected to the inlet chamber (6) of the vacuum envelope.
ε,), and the Makabe envelope entrance chamber (6a,) and outlet chamber (6a,
60) Makabe of k 0.05-0.01 Torr,
Aluminum deposition chamber (6b) k 1-2 x 10-'
Torr<D vacuum is maintained respectively. Suddenly,
Open only the gate valve 0υ and remove the glass face plate (υ
? The aluminum evaporation chamber (61) is transported to a predetermined position I-, and the gate valve αυ is closed.

つきに、入口室(6a)全大気圧にし、仕切弁Qりを開
いて、中間膜(3)′(!l−形成した別の、すなわち
つぎに蒸着処理されるべきガラスフェースデV−ト(υ
を搬入し、再び入口型(6a)と出口室(6C)は0.
05〜Q、Q l ’rorrの真を度に、アルミニウ
ム蒸着室(6b)は1〜2 X 10 ’rorrの真
空度に保持される。
At the same time, the inlet chamber (6a) is brought to full atmospheric pressure, the gate valve Q is opened, and another layer of the interlayer film (3)' (!l-formed, that is, the glass face plate V- to be vapor-deposited next) is opened. (υ
is carried in, and the inlet mold (6a) and outlet chamber (6C) are set to 0.
The aluminum deposition chamber (6b) is maintained at a vacuum degree of 1 to 2 x 10'rorr at each time of 05 to Q, Q l'rorr.

窒化硼素加熱体(7)はアルミニウム蒸着室(6b)円
の底部の所定の位置に設置されていて、仁れは通電によ
シ約1350〜150FCに加熱されるものである。こ
の窒化硼素加熱体(7)の四部(蒸着物質載置部)(7
a)に、蒸着物質であるアルミニウム線(9)を自動挿
入器(8)によシ挿入し、アルミニウム線(9)を加熱
体(7)の発熱による温度上昇によシ蒸発させ、これは
上方に飛散する。この蒸発によシ、中間膜(3J上にア
ルミニウム薄膜(4)が形成されることになる。
A boron nitride heating element (7) is installed at a predetermined position at the bottom of the circle of the aluminum deposition chamber (6b), and the groove is heated to about 1350 to 150 FC by energization. Four parts (evaporation material placement part) (7) of this boron nitride heating body (7)
In a), the aluminum wire (9), which is the vapor deposition material, is inserted into the automatic inserter (8), and the aluminum wire (9) is evaporated by the temperature rise caused by the heat generated by the heating element (7). Scatter upward. As a result of this evaporation, an aluminum thin film (4) is formed on the intermediate film (3J).

蒸着が完了すると、仕切弁aυ、L11)を開き、アル
ミニウム蒸着室(60)のガラヌフエーヌプV−ト(1
)は出口室(6C)へ、入口室(6a)に待機している
ガラ77エーヌプレート(υはアルミニウムffi着室
(6b)に搬送する。また、入口室(6a)および出口
箋(6c)全大気圧とし、出口室(6C)のガラスフェ
ースプレート(υは真空外囲器外に搬出し、蒸着工程全
完了する。同時に、入口室(6a)には、別のガラスフ
ェースデV’−トtelが搬入され、上述したような工
程が繰り返される。
When the vapor deposition is completed, the gate valve aυ, L11) is opened, and the aluminum vapor deposition chamber (60) is opened.
) is transported to the exit room (6C), and the gala 77 Aisne plate (υ is transported to the aluminum ffi arrival room (6b)) waiting in the entrance room (6a). Also, the entrance room (6a) and exit note (6c) The glass face plate (υ) in the outlet chamber (6C) is brought out of the vacuum envelope to complete the vapor deposition process.At the same time, another glass face plate (υ) is placed in the inlet chamber (6a). A second tel is brought in and the process as described above is repeated.

以上のような工程において、蒸着室(6b)の真空度は
常に0.05 Torr以上に保たれているので、蒸着
の完了したガラスフェースプレート(υの搬送または未
蒸着のガラスフェースプレート(υの搬入時でも、特に
加熱体(7)の温度を室温近くまで下げる必要がなく、
むしろ昇温時間を短縮するために、非蒸着時にも”成力
を供給して一定温度に保つのが好ましい。したがって、
実際的に窒化硼素加熱体(7)は常時100 o−c 
i+1後の温度に加熱されていて、蒸着する時に約13
50〜1500’Cに昇温する方法をと−っている。
In the above process, the degree of vacuum in the evaporation chamber (6b) is always maintained at 0.05 Torr or higher, so the glass face plate (υ) that has been evaporated is transported or the glass face plate that has not yet been evaporated (υ) is transported. There is no need to lower the temperature of the heating element (7) to near room temperature even during delivery.
Rather, in order to shorten the temperature rise time, it is preferable to supply a "forming force" to maintain a constant temperature even during non-evaporation. Therefore,
In practice, the boron nitride heating element (7) is always heated at 100 o-c.
It is heated to a temperature after i+1, and at the time of vapor deposition it is about 13
A method of raising the temperature to 50-1500'C is used.

一方、この刀口熱捧(7)の凹部(7a、)へのアルミ
ニウム線(9λの供給は、昇温と同時に自動挿入器(8
)から繰り出しを開始し、螢光面として必要なアルミニ
ウム蒸着量に達すると窒化硼素加熱体(7)の温度は約
1000°Cまで急激に低くされるが、この間にもアル
ミニウム線(9)はアルミニウム線自動挿入器(8)に
よシ屋化硼素加熱体(7)の加熱温度降下中においてア
ルミニウム線(9)−は溶融しなくなる直前まで挿入さ
れた後、一旦わずかに引きもどされる。これは再度蒸着
時にアルミニウム線(9)が窒化硼素加熱体(7)によ
って容易に溶融されるよう加熱体四部(7υ)にアルミ
ニウム溶融液を残存させておくためである。
On the other hand, the aluminum wire (9λ) is supplied to the recess (7a,) of the sword mouth heat sink (7) at the same time as the temperature is raised.
), and when the amount of aluminum deposited necessary for the fluorescent surface is reached, the temperature of the boron nitride heating element (7) is rapidly lowered to approximately 1000°C, but during this time, the aluminum wire (9) is The aluminum wire (9) is inserted into the automatic wire inserter (8) while the heating temperature of the boron oxide heating element (7) is decreasing until just before it stops melting, and then it is once pulled back slightly. This is to allow the aluminum melt to remain in the four parts (7υ) of the heating body so that the aluminum wire (9) can be easily melted by the boron nitride heating body (7) during vapor deposition again.

しかしながら、このように抵抗加熱体(7)の温度を蒸
着時と非蒸着時の高低二準位にて行うとき、蒸着時論熱
温度から非蒸着時加熱温皮に降下する過程で電化硼素加
熱体凹部(7a)に残存するアルミニウム溶融液が蒸発
する。また、非蒸着時から蒸着時までの再加熱時間短縮
のため非蒸着時の加熱温度を1000〜1150°Cに
すると、非蒸着時に少しずつではあるがアルミニウム溶
融液が蒸発する。後者の場合、非蒸着時から蒸着時、即
ち蒸着を開始するまでの真空度の充分でない時に蒸着が
なされると、蒸着膜は褐色に着色してしまい光反射膜と
して好ましくない症状會ひき越し−Cいた。
However, when the temperature of the resistance heating element (7) is set at two levels, high and low during vapor deposition and during non-evaporation, the electrified boron heating occurs in the process of decreasing from the theoretical thermal temperature during vapor deposition to the heated thermal temperature during non-evaporation. The aluminum melt remaining in the body recess (7a) evaporates. Further, if the heating temperature during non-evaporation is set to 1000 to 1150°C in order to shorten the reheating time from the non-evaporation period to the time of evaporation, the aluminum melt evaporates little by little during the non-evaporation period. In the latter case, if the vacuum is not sufficient between the time of non-deposition and the time of deposition, that is, the degree of vacuum is not sufficient before starting the deposition, the deposited film will be colored brown, which is an undesirable symptom for a light-reflecting film. There was C.

さらにガラスフェースプレート搬送の間に蒸着室(60
)の天井広範囲に膜質のよくない蒸着膜を形成すること
にな夛装置のメンテナンスにおいても好ましくなかった
。したがって従来の方法では、膜質および装置のメンテ
ナンスなどに欠点を有していた。
In addition, a deposition chamber (60
), which resulted in the formation of a vapor-deposited film of poor quality over a wide area of the ceiling, which was also undesirable in terms of maintenance of the equipment. Therefore, conventional methods have drawbacks in film quality, equipment maintenance, and the like.

〔発明の概要〕[Summary of the invention]

この発明は上記の欠点に鑑みてなされたもので、抵抗加
熱体を蒸発源として用いた場合に、螢光面の光出力を増
大させるために反射率のよい高品質の蒸着膜を形成する
とともに、低準位加熱による不必要な蒸着物質の飛散を
最少限に抑制し、装置のメンテナンス、すなわち、真空
度の維持、内部保守などが容易になされる螢光面の金属
膜形成方法を提供することを目的とする。
This invention was made in view of the above-mentioned drawbacks, and it is possible to form a high-quality vapor deposited film with good reflectivity in order to increase the light output of a fluorescent surface when a resistance heating element is used as an evaporation source. To provide a method for forming a metal film on a fluorescent surface, which minimizes the scattering of unnecessary vapor deposited substances due to low-level heating, and facilitates maintenance of the apparatus, that is, maintenance of the degree of vacuum, internal maintenance, etc. The purpose is to

上述の如きIIIJ題は、本来蒸着を必要としない時間
帯、条件においても抵抗加熱体の加熱の効率化を目的と
して常時いくらか低温ではあるものの加熱を行うために
生じる二次的問題ではある、そしてこれを更に克服する
方法が種々考えられるわけである。最も一般的なものと
してシャッターを用いることが考えられるが、発明者等
の実施結果によれば駆動による分離で生じる過熱あるい
は被着物質の落下、形状の制約等種々問題のあるもので
あった。゛ 発明者等は検討、実験を続けた結果、抵抗加熱体を必要
蒸着時以外は回転させ、蒸着室の限られた一部に向けて
おく方法に想到し、きわめて有効であることを確めこの
発明を完成させるに至った。
The above-mentioned problem IIIJ is a secondary problem that arises because heating is always performed, albeit at a somewhat low temperature, for the purpose of increasing the efficiency of heating the resistance heating element, even at times and under conditions that do not originally require vapor deposition. Various methods can be considered to further overcome this problem. The most common method would be to use a shutter, but according to the results of the inventors' implementation, there were various problems such as overheating caused by separation due to driving, falling of adhered substances, and restrictions on shape. As a result of continued studies and experiments, the inventors came up with a method in which the resistance heating element is rotated except during necessary deposition, and is directed toward a limited part of the deposition chamber, and has confirmed that it is extremely effective. This invention was completed.

〔発明の次施例〕[Next example of the invention]

以下、この発明の実施例全図面にしたがって説明する。 Embodiments of the present invention will be described below with reference to all the drawings.

第5図はこの発明の実施に必要な装置の一例を概略的に
示す正面図、羊6図は同平面図であり、これらの図にお
いて、窯化硼素を主成分とする抵抗加熱体(7)の上面
、つまシ加熱面(7A)には従来と同様に凹部(7a)
が形成され、ボート状の構造になっている。そして、そ
の両端は支持電極@、@に支持され、支持電極口、@に
導線(転)、u3を電気的に接続している。
Fig. 5 is a front view schematically showing an example of the apparatus necessary for carrying out the present invention, and Fig. 6 is a plan view of the same. ), there is a concave part (7a) on the top surface of the tab heating surface (7A) as before.
is formed and has a boat-like structure. Both ends thereof are supported by support electrodes @, and a conductive wire (transfer), u3, is electrically connected to the support electrode port and @.

上記抵抗加熱体(7)と支持電極u2.@は支持部材0
4、(14によって真空外囲器(6)のアルミニウム蒸
着室(6b)内に回転自在に支持され、歯車列αef介
して駆動モータ(IQに連結されている。
The resistance heating element (7) and the support electrode u2. @ is support member 0
4, (14) is rotatably supported within the aluminum deposition chamber (6b) of the vacuum envelope (6), and connected to a drive motor (IQ) via a gear train αef.

一方、抵抗加熱体(7)の側方にシールドUηを着脱自
在に取付け7こシールド支持板(ト)を配置している。
On the other hand, a shield Uη is detachably attached to the side of the resistance heating element (7), and a shield support plate (7) is arranged.

(2)は駆動部のカバーをボす。(2) Remove the cover of the drive unit.

光反射性金属、つまシこの実施例に用いるアルミニウム
4換(4)の真空蒸着は、従来と同じ手順によってなさ
れるが、蒸着処理されるべきガラスフェースプレート(
υがアルミニウム蒸着室(6b)に搬入された時点にお
いては、蒸着室(6b)の真空度が低く、抵抗加熱体(
7)の温度は約1ooo′c前後である。このように真
空度が充分でないのにもかかわらず、蒸発源(5)であ
る抵抗加熱体(7)の加熱面(7A)がガラス7エース
プレート(υの螢光面に指向していると、加熱面(7A
)の凹部(7a)内に残存しているアルミニウム済融液
が中間膜(3)の内面に蒸着されて上述のような好まし
くない蒸着膜が形成される。
The vacuum deposition of the light-reflecting metal, aluminum 4, used in this example is done by the same conventional procedure, except that the glass face plate to be deposited (
At the time when υ is carried into the aluminum deposition chamber (6b), the degree of vacuum in the deposition chamber (6b) is low, and the resistance heating element (
The temperature of 7) is around 1 ooo'c. Even though the degree of vacuum is not sufficient, the heating surface (7A) of the resistance heating element (7), which is the evaporation source (5), is oriented toward the fluorescent surface of the glass 7 ace plate (υ). , heating surface (7A
) The aluminum melt remaining in the recess (7a) is deposited on the inner surface of the intermediate film (3), forming an undesirable deposited film as described above.

したがって、上記ガラスフェースプレ ト(υがアルミ
ニウム蒸着室(6b)に搬入された時点では、抵抗加熱
体(7)が駆動モータul)によって回動され、第5図
の仮想線(A)で示す状態、すなわち−抵抗加熱体(7
)の加熱lII](7A)がシールドaη方向に向き、
ガラスフェースプレート(υの螢光面、つまシ螢光体膜
(2)、中間膜+31と対向しない方向に指向されてい
る。そのため、凹部(7a)内に残存しているアルミニ
ウム溶融液が蒸発してもシールドu7)に蒸着し、上記
螢光面には蒸着しない。
Therefore, when the glass face plate (υ) is transported into the aluminum deposition chamber (6b), the resistance heating element (7) is rotated by the drive motor ul, and the heating element is rotated as shown by the imaginary line (A) in FIG. state, i.e. - resistance heating element (7
) heating lII] (7A) is directed toward the shield aη direction,
It is oriented in a direction that does not face the glass face plate (the fluorescent surface of υ, the laminate phosphor film (2), and the intermediate film +31. Therefore, the aluminum melt remaining in the recess (7a) is evaporated. Even if it is, it will be deposited on the shield u7) and will not be deposited on the fluorescent surface.

アルミニウム蒸着室(60)の真壁度が上シ、蒸発開始
値に近づくと、抵抗加熱体(7)に導線口、04を介し
て高準位の電圧を印加して昇温させる。つづいて、駆動
モータ叫を作動して抵抗加熱体(7)を第5図の実線で
示す状態、つまり抵抗加熱体(7)の加熱面(7A)が
螢光面に対向する状態に指向させて保持する。ついで、
アルミニウム線(9)の供給が開始されるとともに、高
真空下において所定時間適正に蒸着される。
When the wall thickness of the aluminum evaporation chamber (60) approaches the evaporation start value, a high level voltage is applied to the resistance heating element (7) through the conductive wire port 04 to raise the temperature. Next, the drive motor is activated to direct the resistance heating element (7) to the state shown by the solid line in FIG. 5, that is, the heating surface (7A) of the resistance heating element (7) faces the fluorescent surface. and hold it. Then,
Supply of the aluminum wire (9) is started, and the aluminum wire (9) is appropriately deposited for a predetermined period of time under high vacuum.

蒸着完了時には、まず抵抗加熱体(7)に印加される電
圧を低準位の電圧に下げ、アルミニウム線(9)の供給
を中止する。そして駆動モータμQを作動させて抵抗加
熱体(7)をふたたび第5図の仮想線(A)の状態に回
動させる。その後、アルミニウム蒸着室(6b)の真空
度を落し処理ずみのガラスフェースプレート(υを出口
室(6C)へ移動させ、つぎに処理されるガラスフェー
スプレート+1) カフ /レミニウム蒸着室(6b)
に搬入ぢれる。以後は上記同様の作動が反復される。
When the vapor deposition is completed, first, the voltage applied to the resistance heating element (7) is lowered to a low level voltage, and the supply of the aluminum wire (9) is stopped. Then, the drive motor μQ is operated to rotate the resistance heating element (7) again to the state shown by the imaginary line (A) in FIG. After that, the degree of vacuum in the aluminum vapor deposition chamber (6b) is lowered, and the processed glass face plate (υ is moved to the exit chamber (6C), and the glass face plate +1 to be processed next).
It will be transported to. Thereafter, the same operations as described above are repeated.

実施例によれば、この発明の目的とする低真空時におけ
る蒸着を充分に回避でき、したがって反射率のよいアル
ミニウムの蒸着膜を形成することができた。また、抵抗
加熱体(7)の傾き(80°〜110°)による溶融ア
ルミニウムの落下もなくm熱の効率も従来と同等に保て
ることができた。さらに、各装置は水冷される本体と確
94 (/L−接触固定することができるため特に問題
となるところがなかった。
According to the examples, it was possible to sufficiently avoid vapor deposition in a low vacuum, which is the object of the present invention, and thus it was possible to form an aluminum vapor deposited film with good reflectivity. Moreover, there was no fall of molten aluminum due to the inclination (80° to 110°) of the resistance heating element (7), and the heat efficiency could be maintained at the same level as before. Furthermore, each device could be fixed in close contact with the water-cooled main body, so there were no particular problems.

さらにもう一つの利点は不要蒸着を一つの方向にまとめ
る事ができるようになった結果、メンテナンスの1力化
が達成できた。
Another advantage is that unnecessary evaporation can now be concentrated in one direction, making maintenance less of a burden.

なお、上記実施例では、アルミニウムの蒸着について説
明したが、この発明の方法は抵抗加熱体を蒸発源とする
その他の蒸Wにもj、6用可能で必る。
Although the above embodiments have been described with respect to vapor deposition of aluminum, the method of the present invention can also be applied to other types of vapor W using a resistance heating element as an evaporation source.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明によれば、必要蒸着時以外
は蒸着源を回転させ、低真空時(でおける蒸着膜を螢光
面上に形成させないようにしているから、反射率のよい
、したがって螢光面輝度のよい閤品質の蒸着膜をもった
蛍光面金得ることができるとともに、蒸着装置のメンテ
ナンスを省力できる効果がある。
As explained above, according to the present invention, the evaporation source is rotated except during necessary evaporation, and the evaporation film at low vacuum (at low vacuum) is prevented from being formed on the fluorescent surface. It is possible to obtain a phosphor screen having a high-quality vapor deposited film with good phosphor brightness, and it is also effective in saving labor on maintenance of vapor deposition equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はカラー受像管の螢光面部の製造工程を説明する
だめの断面図、第2図は従来の蒸着装置の一例を示し、
蒸発源にタングステンコイルを用いた場合の概略的構成
図、第3図は窒化硼素を主成分とするポート状抵抗加熱
体の斜視図、第4図は蒸発源に電化硼素を主成分とする
ポート状抵抗加熱体を用いた蒸着装置の一例を概略的に
示す構成図、第5図はこの発明の笑弛に必要な装置の一
例を概略的に示す正面図、第6図は同平面図である。 +1)・・・ガラス7エースプレート、(2)・・・螢
光体膜、(3)・・・中間膜、(4)・・・アルミニウ
ム薄膜、(5)・・・蒸発源、(6b)・・・蒸着室、
(7戸・・抵抗加熱体、(7A)・・・加熱面。 なお、図中同一符号は同一もしくは相当部分を示す。 第1図 第2図 第3v!J 第5図 第6図
FIG. 1 is a cross-sectional view illustrating the manufacturing process of the fluorescent surface part of a color picture tube, and FIG. 2 shows an example of a conventional vapor deposition apparatus.
A schematic configuration diagram when a tungsten coil is used as an evaporation source. Figure 3 is a perspective view of a port-shaped resistance heating element whose main component is boron nitride. Figure 4 is a diagram showing a port whose main component is electrified boron as an evaporation source. FIG. 5 is a front view schematically showing an example of the device necessary for the deposition of the present invention, and FIG. 6 is a plan view of the same. be. +1)...Glass 7 ace plate, (2)...phosphor film, (3)...intermediate film, (4)...aluminum thin film, (5)...evaporation source, (6b )...deposition chamber,
(7 units...Resistance heating element, (7A)...Heating surface. In addition, the same reference numerals in the figures indicate the same or corresponding parts. Fig. 1 Fig. 2 Fig. 3v!J Fig. 5 Fig. 6

Claims (1)

【特許請求の範囲】[Claims] (1)板状の抵抗加熱体を蒸発源とする蒸着室に間欠搬
入される受像管の螢光面りに、光反射性金属薄膜を真空
蒸着して形成する螢光面の金属膜形成方法において、上
記光反射性金属が上記受像管の螢光面に適圧蒸着可能時
にのみ、上記蒸発源の光反射性金属を溶融プールする加
熱面を上記受像管の螢光面に対向させ、上記適正蒸着可
能時以外は、上記加熱面が受像管の螢光面と対向しない
方向に蒸発源を指向させることを特徴とする螢光面の金
属膜形成方法。
(1) A method for forming a metal film on a fluorescent surface by vacuum-depositing a light-reflective metal thin film on the fluorescent surface of a picture tube that is intermittently transported into a deposition chamber using a plate-shaped resistance heating element as an evaporation source. The heating surface for melting and pooling the light-reflecting metal of the evaporation source faces the fluorescent surface of the picture tube only when the light-reflecting metal can be vapor-deposited at an appropriate pressure on the fluorescent surface of the picture tube; A method for forming a metal film on a fluorescent surface, characterized in that the evaporation source is directed in a direction in which the heated surface does not face the fluorescent surface of the picture tube, except when proper vapor deposition is possible.
JP22111583A 1983-11-22 1983-11-22 Method for forming metallic film on fluorescent screen Pending JPS60112225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22111583A JPS60112225A (en) 1983-11-22 1983-11-22 Method for forming metallic film on fluorescent screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22111583A JPS60112225A (en) 1983-11-22 1983-11-22 Method for forming metallic film on fluorescent screen

Publications (1)

Publication Number Publication Date
JPS60112225A true JPS60112225A (en) 1985-06-18

Family

ID=16761712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22111583A Pending JPS60112225A (en) 1983-11-22 1983-11-22 Method for forming metallic film on fluorescent screen

Country Status (1)

Country Link
JP (1) JPS60112225A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6315542U (en) * 1986-07-17 1988-02-01

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6315542U (en) * 1986-07-17 1988-02-01

Similar Documents

Publication Publication Date Title
JP2003060215A (en) Manufacturing apparatus of photovoltaic device
CA2066573A1 (en) Deposition heaters
JPS60112225A (en) Method for forming metallic film on fluorescent screen
WO2009008673A2 (en) Substrate heating apparatus
JP3426660B2 (en) In-line type sputtering equipment
JP3094546B2 (en) Method for manufacturing a diffuse reflection plate for a liquid crystal display, and method for manufacturing a liquid crystal display
JPS60119054A (en) Method of forming metallic film of fluorescent screen
JPS6141094B2 (en)
JP4316265B2 (en) Manufacturing method of liquid crystal display panel
JPS63151926A (en) Production of horizontal orientation film for liquid crystal cell
JPS6139699B2 (en)
JPH1046331A (en) Sputter film deposition method and its device
JPS6175514A (en) Treater
JPS6139701B2 (en)
JP2002368070A (en) Method of forming film
JPS5881970A (en) Sputtering apparatus
JPH0241165Y2 (en)
JPS6260221A (en) Infrared ray heater
JPH0817070B2 (en) Method for forming blackened aluminum thin film of color picture tube
JPH0525633A (en) Formation of thin aluminum film and boat for resistance heating
JPS63192860A (en) Boat for vacuum deposition
JPH0666276B2 (en) Mask for thin film production
JPH03207861A (en) Heater
JPH0360114A (en) Molecular beam epitaxy device
JP2875561B2 (en) Substrate for tungsten thin film electrode