JPS60111474A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60111474A
JPS60111474A JP21996483A JP21996483A JPS60111474A JP S60111474 A JPS60111474 A JP S60111474A JP 21996483 A JP21996483 A JP 21996483A JP 21996483 A JP21996483 A JP 21996483A JP S60111474 A JPS60111474 A JP S60111474A
Authority
JP
Japan
Prior art keywords
gate
silicon nitride
silicon oxide
oxide film
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21996483A
Other languages
Japanese (ja)
Inventor
Kazutaka Kamitake
一孝 上武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP21996483A priority Critical patent/JPS60111474A/en
Publication of JPS60111474A publication Critical patent/JPS60111474A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To form an inverted trapezoid gate shape (the reduction of gate resistance) and shorten space between a gate and a source (the reduction of source resistance) by forming a window for the gate to an silicon oxide film and an silicon nitride film in a region as a gate electrode through a carbon tetrafluoride group reactive ion etching method. CONSTITUTION:An silicon oxide film 3 and an silicon nitride film 4 are deposited on a semi-insulating GaAs semiconductor substrate 1 with an N type active layer 2 in succession. When a resist mask 5 is formed and the insulating films 3, 4 are dry-etched through a RIE method in which hydrogen is added to carbon tetrafluoride, the silicon nitride film layer 4 is side-etched more than the silicon oxide film layer 3. When the resist 5 is removed, a gate metallic film 6 is shaped while using a resist 5' as a mask and the silicon nitride film 4 and the silicon oxide film layer 3 are processed through the RIE method by employing hydrocarbon trifluoride, the silicon oxide film 3 is etched at a rate faster than the silicon nitride film 4. An ohmic metal 7 is formed.

Description

【発明の詳細な説明】 本発明は半導体装置、特に■−■族化合物半導体を用い
るショットキーゲート電界効果トランジスタの製造方法
に関するものである。本発明はゲート電極加工の際に半
導体基板表面に損傷を与えることなく、シかもゲート抵
抗を小さくかつソース及びドレインtjfI!、を自己
整合法によ多形成する際にゲート電極とソース及びドレ
イン電極とのショート発生を極力低減してソース及びド
レイン電極間隔を狭く出来る高性能半導体装置の製造方
法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, particularly a Schottky gate field effect transistor using a ■-■ group compound semiconductor. The present invention can reduce gate resistance and reduce source and drain tjfI! without damaging the semiconductor substrate surface during gate electrode processing. , by a self-alignment method, the occurrence of short-circuits between the gate electrode and the source and drain electrodes can be reduced as much as possible, and the distance between the source and drain electrodes can be narrowed.

以下に本発明を実施例を基に説明する。The present invention will be explained below based on examples.

第1図〜第7図に本発明にかかる素子製造工程の概要図
を示す。先づ、第1図に示す様に、所定領域にN型能動
層2をもつ半絶縁性G a A s半導体基板1上に化
学蒸着法等によるシリコン酸化膜3およびプラズマ化学
蒸着法によるシリコン窒化膜4の順に堆積する。
FIGS. 1 to 7 show schematic diagrams of the device manufacturing process according to the present invention. First, as shown in FIG. 1, a silicon oxide film 3 by chemical vapor deposition or the like and a silicon nitride film by plasma chemical vapor deposition are deposited on a semi-insulating GaAs semiconductor substrate 1 having an N-type active layer 2 in a predetermined region. Film 4 is deposited in this order.

次に第2図に示す様に、ゲート電極となる領域を光学露
光法又は旬子ビーム露光法等によシ下地絶縁膜3,4加
工用のレジストマスク5を形成する。続いて四弗化炭素
に5%〜20%水素添加のりアクティブイオンエツチン
グ法によりP縁膜3゜4をドライエツチングして基板1
の表面を露出させる。かかるドライエツチングではシリ
コン酸化膜3よりシリコン窒化膜4のエツチング速度の
方が30チ〜50%(ドライエツチング条件によりさら
に選択比が大きく出来る)速いため、第2図に示す様に
シリコン窒化膜層4のサイドエツチングの方がシリコン
酸化膜層3より進むことになる。
Next, as shown in FIG. 2, a resist mask 5 for processing the base insulating films 3 and 4 is formed on the region that will become the gate electrode by optical exposure, photobeam exposure, or the like. Next, the P film 3.4 was dry-etched using carbon tetrafluoride with 5% to 20% hydrogen added and an active ion etching method to form the substrate 1.
expose the surface of In such dry etching, the etching rate of the silicon nitride film 4 is 30 to 50% faster than the silicon oxide film 3 (the selection ratio can be further increased depending on the dry etching conditions), so as shown in FIG. The side etching of No. 4 is more advanced than the silicon oxide film layer 3.

次いでレジスト5を除去した後、ドライエツチング時に
形成されたフレオン系重合物の除去及びドライエツチン
グ時の損傷部を除去する為に70〜100℃塩酸処理後
水素中200〜400℃30分程度の熱処理を施す。然
る後、第3図に示すように、ゲート金属膜6、例えばタ
ンタルシリサイド/窒化チタン/金を各々3000A、
500A、2000〜5000X程度被着1−1再度ゲ
ート電極力n工を行なう為のレジスト5′ の−形成を
行なう。続いて、ゲート金属6のうぢ窒化チタン/金の
層はArイオンビームを用いる所論イオンミリング法に
より、レジスト5′ をマスクとして加工し、タンタル
シリサイド層はフレオン系ガスによるリアクティブイオ
ンエツチングによシ加工して第4図に示す構造とする。
Next, after removing the resist 5, in order to remove the Freon polymer formed during dry etching and the damaged parts during dry etching, hydrochloric acid treatment at 70 to 100°C was followed by heat treatment at 200 to 400°C in hydrogen for about 30 minutes. administer. Thereafter, as shown in FIG.
500A, about 2000 to 5000X deposition 1-1 A resist 5' is formed again for gate electrode processing. Next, the titanium nitride/gold layer of the gate metal 6 is processed by ion milling using an Ar ion beam, using the resist 5' as a mask, and the tantalum silicide layer is processed by reactive ion etching using Freon gas. It is processed to have the structure shown in FIG.

次いで、上述7レオン系ガスのうち、妃2図に示したゲ
ート開窓には四弗化炭素を用いたが、今度は三弗化炭化
水素を用いてタンタルシリサイド層のドライエツチング
と連続してシリコン窒化膜4及びシリコン酸化展層3を
リアクティブイオンエツチングによりカロエすると四弗
化炭素系の場合と異ibシリコン酸化膜の方がシリコン
窒化膜より50〜200チ 速くエツチングされる為に
第5図に示す様な構造となる。この際後続工程としてオ
ーミックメタルを被着して良好なコンタクト抵抗層を実
現する為に70℃〜100℃塩酸処理を行なって半導体
基板表面清浄化する。
Next, among the above-mentioned 7-Leon gases, carbon tetrafluoride was used for the gate opening shown in Figure 2, but this time, hydrocarbon trifluoride was used to dry-etch the tantalum silicide layer. When silicon nitride film 4 and silicon oxide spread layer 3 are etched by reactive ion etching, it is different from carbon tetrafluoride based silicon oxide film because it is etched 50 to 200 times faster than silicon nitride film. The structure will be as shown in the figure. At this time, in order to deposit an ohmic metal and realize a good contact resistance layer as a subsequent step, hydrochloric acid treatment is performed at 70 DEG C. to 100 DEG C. to clean the surface of the semiconductor substrate.

然る後に、オーミック金属7としてA u Ge/Nt
を垂直方向よシ所望厚さに蒸着しく第6図)、通常行な
われているす7トオ7法によシダートメタル6上及び不
WIJI域上のオーミックメタル7を除去してから、4
00〜450℃の水素雰囲気中で数分程度熱処理して、
オーミックコンタクトを形成する。その徒、通常のソー
ス及びドレイン常、椋形成方法によシソース及びドレイ
ンにTi Pt A−u等の重積8を該オーミックメタ
ルよυ内側に通常光学露光法等によ多形成して第7図を
得る。
After that, A u Ge/Nt as ohmic metal 7
(Fig. 6), remove the ohmic metal 7 on the cedar metal 6 and the non-WIJI area by the commonly used 2-to-7 method, and then 4
Heat-treated for several minutes in a hydrogen atmosphere at 00 to 450°C,
Forms ohmic contact. Therefore, a layer 8 of Ti, Pt, Au, etc. is formed on the inside of the ohmic metal by a conventional optical exposure method, etc. on the source and drain using a conventional method for forming the source and drain. Get the picture.

また本発明は上述実施例;に限歎されるだけでなく、例
えば館2図の工程のかわ夛に第8図にボす様に、絶縁p
3,4をドライエッチング後半導体基板1を水酸化ナト
リウムと過酸化水紫混合液素等によシ所謂リセス構造へ
の適用も可能であシ、この場合、第9図に示すショット
キーゲート電界効果トランジスタを得る。このように、
本発明を適用すれば耐圧向上はおろかソース及びドレイ
ン側の抵抗を小さく、シかも逆台形ゲート形状が形−へ
 − 成できること(ゲート抵抗の低減)及びゲートソース間
隔が自己整合法によシ厳しいリソグラフィー技術を駆使
するとと彦しに極めて短縮して形成できるのでソース抵
抗を低減させ高性能素子を実現できる。
Furthermore, the present invention is not limited to the above-mentioned embodiments; for example, as shown in FIG. 8 in addition to the process shown in FIG.
After dry etching 3 and 4, the semiconductor substrate 1 can be applied to a so-called recessed structure by using a liquid mixture of sodium hydroxide and violet peroxide, etc. In this case, the Schottky gate electric field shown in FIG. Obtain the effect transistor. in this way,
By applying the present invention, not only can the withstand voltage be improved, but also the resistance on the source and drain sides can be reduced, an inverted trapezoidal gate shape can be formed (reduction in gate resistance), and the gate-source spacing can be reduced by the self-alignment method. By making full use of lithography technology, it is possible to form an extremely short structure in a short time, thereby reducing the source resistance and realizing a high-performance device.

また、本発明によれば、第5図及び第6図に示す様に自
己整合法によるオーミック金属蒸着時及び熱処理時に多
少ゲートメタル6側ヘオーミツク金属7が近づいてもゲ
ートメタル側面にシリコン窒化膜及びシリコン酸化膜が
付着している為ショートが起と夛難い長所がある。
According to the present invention, as shown in FIGS. 5 and 6, even when the ohmic metal 7 approaches the gate metal 6 side during ohmic metal evaporation and heat treatment using the self-alignment method, the silicon nitride film and Since a silicon oxide film is attached, it has the advantage that short circuits are unlikely to occur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第7図は本発明の一実施例をその製造工程順に
示した断面図である。第8図および第9図は本発明の他
の実施例の製造工程を示した断面図である。 1・・・・・・半絶縁性G a A s基板、2・・・
・・・N型能動層、3・・・・・・シリコン酸化膜、4
・・・・・・シリコン窒化膜、5.5′・・・・・・フ
ォトレジスト、6・・・・・・ゲート金属、6− 7・・・・・・オーミック金属、8・・・・・・電極金
属。 −7− 四 区 因 −,,N ℃ 減 K 鍼 口 口 函 寸 め 史 篤 鍼 減
FIGS. 1 to 7 are cross-sectional views showing an embodiment of the present invention in the order of manufacturing steps. FIGS. 8 and 9 are cross-sectional views showing the manufacturing process of another embodiment of the present invention. 1...Semi-insulating GaAs substrate, 2...
...N-type active layer, 3...Silicon oxide film, 4
...Silicon nitride film, 5.5'...Photoresist, 6...Gate metal, 6- 7...Ohmic metal, 8... ...electrode metal. -7- 4 wards -,, N ℃ decrease K acupuncture opening mouth box size Fumiatsu acupuncture decrease

Claims (1)

【特許請求の範囲】[Claims] 半導体基板表面にシリコン酸化膜とシリコン窒化膜を形
成し、ゲート電極となる領域の前記シリコン酸化膜と前
記シリコン窒化膜とを四弗化炭素系のりアクティブイオ
ンエツチングによシトライエツチングしてゲート用開窓
を形成し、次いで、ゲートメタルをレジストマスクを利
用したエツチング法によ多核ゲート用開窓寸法よシ広く
前記ゲート用開窓内および前記シリコン窒化股上に形成
し、しかる後前記シリコン酸化膜と前記シリコン窒化膜
とを三弗化炭素系のりアクティブイオンエツチングによ
り除去し、然る後に前記半導体基板表面の清浄化を前記
レジストマスクを付けたまま行々ってから、オーミック
メタルを蒸着し、前記レジストを利用して前記オーミッ
クメタルをセルファラインリフトオフ法によシ所定部除
去し、もってソース及びドレイン電極を形成することを
特徴とする半導体装置の製造方法。
A silicon oxide film and a silicon nitride film are formed on the surface of a semiconductor substrate, and the silicon oxide film and silicon nitride film in a region that will become a gate electrode are etched by active ion etching using a carbon tetrafluoride adhesive to form a gate. A fenestration is formed, and then a gate metal is formed within the gate fenestration and on the silicon nitride ridge to a width larger than the fenestration size for a multi-nucleated gate by an etching method using a resist mask, and then the silicon oxide film is and the silicon nitride film are removed by active ion etching using a carbon trifluoride based adhesive, and after that, the surface of the semiconductor substrate is cleaned with the resist mask attached, and then an ohmic metal is deposited, A method of manufacturing a semiconductor device, characterized in that a predetermined portion of the ohmic metal is removed by a self-line lift-off method using the resist, thereby forming source and drain electrodes.
JP21996483A 1983-11-22 1983-11-22 Manufacture of semiconductor device Pending JPS60111474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21996483A JPS60111474A (en) 1983-11-22 1983-11-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21996483A JPS60111474A (en) 1983-11-22 1983-11-22 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60111474A true JPS60111474A (en) 1985-06-17

Family

ID=16743790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21996483A Pending JPS60111474A (en) 1983-11-22 1983-11-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60111474A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284523A (en) * 1987-05-15 1988-11-21 Matsushita Electric Ind Co Ltd Production of thin film transistor array
JPH01170051A (en) * 1987-12-25 1989-07-05 Fujitsu Ltd Semiconductor element
JPH0689907A (en) * 1991-05-28 1994-03-29 Hughes Aircraft Co Method for formation of t-shaped gate structure on microelectronic-device substrate
US5423945A (en) * 1992-09-08 1995-06-13 Applied Materials, Inc. Selectivity for etching an oxide over a nitride
US6730586B2 (en) 2001-03-30 2004-05-04 Fujitsu Quantum Devices Limited Semiconductor device having an overhanging structure and method for fabricating the same
JP2013219301A (en) * 2012-04-12 2013-10-24 Nippon Telegr & Teleph Corp <Ntt> Electrode formation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284523A (en) * 1987-05-15 1988-11-21 Matsushita Electric Ind Co Ltd Production of thin film transistor array
JPH01170051A (en) * 1987-12-25 1989-07-05 Fujitsu Ltd Semiconductor element
JPH0689907A (en) * 1991-05-28 1994-03-29 Hughes Aircraft Co Method for formation of t-shaped gate structure on microelectronic-device substrate
US5423945A (en) * 1992-09-08 1995-06-13 Applied Materials, Inc. Selectivity for etching an oxide over a nitride
US6730586B2 (en) 2001-03-30 2004-05-04 Fujitsu Quantum Devices Limited Semiconductor device having an overhanging structure and method for fabricating the same
JP2013219301A (en) * 2012-04-12 2013-10-24 Nippon Telegr & Teleph Corp <Ntt> Electrode formation method

Similar Documents

Publication Publication Date Title
JPH07335674A (en) Iii-v family semiconductor gate structure and its preparation
US8609474B2 (en) Method of manufacturing semiconductor device
JPH0787195B2 (en) Method of manufacturing Schottky gate field effect transistor
JPS60111474A (en) Manufacture of semiconductor device
JPS6378535A (en) Manufacture of semiconductor device
JP3621752B2 (en) Method for manufacturing III-V semiconductor gate structure
JPS6351550B2 (en)
JP3344051B2 (en) Method for manufacturing thin film transistor
KR100265849B1 (en) A method for fabricating MOSFET
JP2658884B2 (en) Method for manufacturing semiconductor device
JPS60244075A (en) Manufacture of e/d structure integrated circuit
JP2699950B2 (en) Method for manufacturing compound semiconductor device
JP3162181B2 (en) Semiconductor manufacturing method
JPH0213929B2 (en)
JPS5833714B2 (en) Method for manufacturing gallium arsenide Schottky barrier gate field effect transistor
JPS6340323A (en) Formation of fine pattern
JP3153560B2 (en) Method for manufacturing semiconductor device
JPS6037173A (en) Manufacture of field effect transistor
JP3042004B2 (en) Method for manufacturing semiconductor device
JPH0777240B2 (en) Method for manufacturing semiconductor device
JPH01268069A (en) Manufacture of semiconductor device
JPH03276732A (en) Electrode-structure forming method and semiconductor device using this method
JPH063814B2 (en) Method for manufacturing semiconductor device
JPS6279677A (en) Manufacture of semiconductor device
JPH0574817A (en) Manufacture of semiconductor device