JPS60111165A - Flow velocity measuring device - Google Patents

Flow velocity measuring device

Info

Publication number
JPS60111165A
JPS60111165A JP21928183A JP21928183A JPS60111165A JP S60111165 A JPS60111165 A JP S60111165A JP 21928183 A JP21928183 A JP 21928183A JP 21928183 A JP21928183 A JP 21928183A JP S60111165 A JPS60111165 A JP S60111165A
Authority
JP
Japan
Prior art keywords
light
fluid
pair
flow velocity
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21928183A
Other languages
Japanese (ja)
Inventor
Hajime Yuasa
肇 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP21928183A priority Critical patent/JPS60111165A/en
Publication of JPS60111165A publication Critical patent/JPS60111165A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/18Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken to traverse a fixed distance
    • G01P5/20Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken to traverse a fixed distance using particles entrained by a fluid stream

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

PURPOSE:To measure exactly a velocity of flow by means of non-contact measurement, by irradiating laser light to a fluid, and measuring the velocity of flow basing on photodetecting of scattered light. CONSTITUTION:By using a laser projector 3 controlled by a laser source 1 and a scanning turning device 4, measured surfaces 6, 7 are scanned by a pair of optical beams parallel to each other along a flow direction of a fluid 5. Subsequently, scattered light in case when a fine particle contained in the fluid 5 passes through the surfaces 6, 7 is photodetected and stored by a photodetector 11 of a photoelectric converting means provided with a CCD, processed by a computer 21, and a velocity of flow of the fluid 5 is measured. According to this constitution, non-contact measurement is execued and the velocity of flow is measured exactly.

Description

【発明の詳細な説明】 技術分野] 本発明は、走行体や構築物等に対する流体の流分布を計
測する流速計測装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a flow velocity measuring device that measures the flow distribution of a fluid with respect to a traveling object, a structure, or the like.

前景技術] 一般に、船舶や自動車等の走行体の走行に伴つ主しる流
体の後流流速分布、或いは橋や建物等膓築物によって生
じる流体の後流流速分布を計する場合、従来は1つの流
速計を必要な計測面にトラバースして流速分布を得てい
た。しかじから、このような計測方法は、計測時間がか
が上、測定時点にずれを生じることから計測面内全ての
計測点において同時点の流速分布を得るとは極めて困難
であった。
[Foreground technology] In general, when measuring the wake flow velocity distribution of the main fluid accompanying the running of a moving object such as a ship or automobile, or the wake flow velocity distribution of a fluid generated by a built structure such as a bridge or building, conventional methods One current meter was traversed over the required measurement plane to obtain the flow velocity distribution. However, with such a measurement method, the measurement time is long and the measurement time points deviate, so it is extremely difficult to obtain the flow velocity distribution at the same time point at all measurement points within the measurement plane.

そこで、この点を解決する方法として、必要な側面内に
多数の流速計を配置し、これらの流速計によって後流流
速分布を同時に得る方法か知られている。しかしながら
、この方法では、多数の流速計が必要であるばかりでな
く、各流速計の感度をそれぞれに調整する等、膨大な手
間と時間がかかるという問題がある。特に、この方法で
は、流速計自身が流体の流れを乱す場合が多い。
Therefore, as a method to solve this problem, a method is known in which a large number of current meters are arranged within the required side surface and the wake flow velocity distribution is obtained simultaneously by these current meters. However, this method not only requires a large number of current meters, but also requires a great deal of effort and time, such as adjusting the sensitivity of each current meter individually. In particular, in this method, the current meter itself often disturbs the fluid flow.

[発明の目的] ここにおいて、本発明の目的は、必要な計測面内の流速
分布を短時間に、かつ正確に計測する流速計測装置を提
供することにある。
[Object of the Invention] Here, an object of the present invention is to provide a flow velocity measuring device that can accurately measure a required flow velocity distribution within a measurement plane in a short time.

[発明の構成コ そのため、本発明では、流体の流れ方向に沿って互いに
平行な一対の光ビーノ・を、流体の流れ方向に対して直
角方向へ走査させる光走査手段と、この光走査手段によ
って一対の光ビームが、走査された際、流体中に含まれ
る微粒子が一対の光ビームを通過したときに発する散乱
光を受光し、それを電気信号として検出する光電変換手
段と、この光電変換手段によって微粒子が一対の光ビー
ム間を通過したときに検出される散乱光の時間間隔およ
び一対の光ビーム間の距離から光ビームの走査範囲内の
各点における流速を演算する演算処理手段とを備える構
成により、上記目的を達成しようとするものである。
[Structure of the Invention] Therefore, the present invention includes an optical scanning means for scanning a pair of optical beams parallel to each other along the fluid flow direction in a direction perpendicular to the fluid flow direction; A photoelectric conversion means for receiving scattered light emitted when fine particles contained in a fluid pass through the pair of light beams when the pair of light beams are scanned, and detecting the scattered light as an electrical signal; and calculation processing means for calculating the flow velocity at each point within the scanning range of the light beam from the time interval of scattered light detected when a particle passes between the pair of light beams and the distance between the pair of light beams. The configuration aims to achieve the above objective.

[実施例] 第1図は本流速計測装置の原理を示している。[Example] Figure 1 shows the principle of this current velocity measuring device.

同図において、レーザ光源lから出射されたレーザ光は
、光ファイバ2を介してレーザ投光器3へ伝送される。
In the figure, laser light emitted from a laser light source 1 is transmitted to a laser projector 3 via an optical fiber 2.

レーザ投光器3は、光走査手段としての回動装置4に支
持され、前記レーザ光源1からのレーザ光を流体5の流
れ方向に沿って互いに平行な一対の光ビームとして流体
5へ連続的または断続的に照射させる。前記回動装置4
は、前記レーザ投光器3からの一対の光ビームが流体5
の流れ方向に対して直角方向へ走査されるように、レー
ザ投光器3を流体5の流れ方向と平行な軸を中心として
回動させるようになっている。
The laser projector 3 is supported by a rotating device 4 as a light scanning means, and transmits the laser light from the laser light source 1 to the fluid 5 continuously or intermittently as a pair of parallel light beams along the flow direction of the fluid 5. irradiate the target. The rotation device 4
In this case, a pair of light beams from the laser projector 3 are directed to the fluid 5.
The laser projector 3 is rotated about an axis parallel to the flow direction of the fluid 5 so as to be scanned in a direction perpendicular to the flow direction of the fluid 5.

一方、レーザ投光器3からの一対の光ビームが走査され
る計測面6,7に対して流体5の後流側には、流体5中
に含まれる塵等の微粒子が一対の光ビームを通過したと
きに発する散乱光を受光し、それを電気信号として検出
する光電変換手段としての受像器11が配置されている
。受像器11は、前記計測面6,7内において、微粒子
が発する散乱光を集光レンズ12によって集光した後、
受光板13で検知する。受光板13は、高密度集積され
た多数の電荷結合朱子C(Dによって構成されている。
On the other hand, on the downstream side of the fluid 5 with respect to the measurement surfaces 6 and 7 scanned by the pair of light beams from the laser projector 3, fine particles such as dust contained in the fluid 5 pass through the pair of light beams. An image receptor 11 is disposed as a photoelectric conversion means that receives scattered light emitted from time to time and detects it as an electrical signal. The image receptor 11 collects the scattered light emitted by the particles within the measurement surfaces 6 and 7 using the condenser lens 12, and then
It is detected by the light receiving plate 13. The light-receiving plate 13 is composed of a large number of charge-coupled satin Cs (D) integrated at high density.

各電荷結合素子CCOは、前記計測面6,7を格子状に
分割した各計測部位にそれぞれ対応して配置され、その
対応する計測部位からの散乱光を受光し、その受光信号
を演算処理手段としてのコンピュータ21へ与える。
Each charge-coupled device CCO is disposed corresponding to each measurement site obtained by dividing the measurement surfaces 6 and 7 into a grid pattern, receives scattered light from the corresponding measurement site, and processes the received light signal with arithmetic processing means. to the computer 21 as a.

コンピュータ21は、前記受光板13を構成する各電荷
結合素子CCDからの受光信号を一定時間毎に取込み、
内部メモリ22へ順次格納するとともに、内部メモリ2
2に格納された同一の電荷結合素子CG[からの受光信
号の時間間隔を算出し、この時間間隔と予めキーボード
23から入力された光ビーム間の距離とによって計測面
6,7内の各計測部位における流速を夫々算出し、それ
らをCRT 24へ図示化、例えば各計測部位の座標に
対して流速を棒グラフ状に表示させる。
The computer 21 takes in the light reception signals from each charge coupled device CCD constituting the light reception plate 13 at regular intervals,
While sequentially storing data in the internal memory 22, the internal memory 2
The time interval between the light reception signals from the same charge-coupled device CG[ stored in 2 is calculated, and each measurement within the measurement surfaces 6 and 7 is calculated based on this time interval and the distance between the light beams inputted in advance from the keyboard 23. The flow velocity at each location is calculated and illustrated on the CRT 24, for example, the flow velocity is displayed in the form of a bar graph with respect to the coordinates of each measurement location.

いま、レーザ投光器3からの一対の光ビームが計測面6
,7のある任意の走査位置にある状態において、流体5
中に含まれる微粒子が例えば距離ΔLはなれた一対の光
ビーム間を速度Vで通過すると、その微粒子はΔT−Δ
L / vの時間差をもって散乱光を発する。すると、
両数乱光は時間差ΔTをもって同一の電荷結合素子CC
Dで検知された後、コンピュータ21の内部メモリ22
内の時間別の記憶エリア内にその電荷結合素子CODか
らの受光信号として記憶される。
Now, a pair of light beams from the laser projector 3 are directed toward the measurement surface 6.
, 7, the fluid 5
For example, when a fine particle contained therein passes between a pair of light beams separated by a distance ΔL at a speed V, the fine particle passes at a speed of ΔT−Δ
Scattered light is emitted with a time difference of L/v. Then,
Both scattered lights are connected to the same charge-coupled device CC with a time difference ΔT.
After being detected by D, the internal memory 22 of the computer 21
The received light signal from the charge-coupled device COD is stored in a time-specific storage area.

従って、回動装置4によりレーザ投光器3を回動させ、
そのレーザ投光器3からの一対の光ビームを計測面6,
7に沿って走査していくと、コンピュータ21の内部メ
モリ22内には、一定時間毎に計測面6,7からの散乱
光を受光した電荷結合素子C[lDからの信号が順次記
憶される。
Therefore, the laser projector 3 is rotated by the rotation device 4,
A pair of light beams from the laser projector 3 are transmitted to the measurement surface 6,
7, the internal memory 22 of the computer 21 sequentially stores signals from the charge-coupled device C[lD that receives the scattered light from the measurement surfaces 6 and 7 at regular intervals. .

そこで、内部メモリ22内に記憶されたデータから、同
一の電荷結合素子CfDからの信号を読取リ、その両信
号の時間差ΔTを算出した後、その時間差ΔTと予めキ
ーボード23から入力された一対の光ビーム間の距離Δ
Lとから計測面6.7の各計測部位における流速VをV
=ΔL/ΔTに従って算出し、この各計測部位における
流速を図示化して表示する。
Therefore, the signal from the same charge-coupled device CfD is read from the data stored in the internal memory 22, and the time difference ΔT between the two signals is calculated. Distance Δ between light beams
From L, the flow velocity V at each measurement site on the measurement surface 6.7 is expressed as V
=ΔL/ΔT, and the flow velocity at each measurement site is graphically displayed.

従って、本実施例によれば、流体5の流れ方向に沿って
互いに平行な一対の光ビームを流体5の流れ方向に対し
て直角方向へ走査させ、この走査によって流体5中に含
まれる微粒子が一対の光ビームを通過したときに発する
散乱光を受像器11で受光し、この受像器11によって
微粒子が一対のビーム間を通過したときに検出される散
乱光の時間間隔ΔTおよび一対の光ビームの距離ΔLと
から計測面6.7の各計測部位における流速をコンピュ
ータ21で演算し、それらをモニター画面状に表示する
ようにしたので、計測面6.7内における流速分布を短
時間に計測することができる。
Therefore, according to this embodiment, a pair of parallel light beams are scanned along the flow direction of the fluid 5 in a direction perpendicular to the flow direction of the fluid 5, and by this scanning, fine particles contained in the fluid 5 are removed. Scattered light emitted when passing through a pair of light beams is received by an image receiver 11, and the time interval ΔT of the scattered light detected by this image receiver 11 when a particle passes between the pair of light beams and the pair of light beams The computer 21 calculates the flow velocity at each measurement site on the measurement surface 6.7 from the distance ΔL and displays them on a monitor screen, so the flow velocity distribution within the measurement surface 6.7 can be measured in a short time. can do.

特に、本実施例では、流体5に対してレーザ光を照射し
、その散乱光を受光して計測するようにしたので、つま
り流体5に対して無接触で計測するようにしたので、従
来のよう−に流速計自身が流れを乱す恐れがなく、より
正確な流速データを得ることができる。
In particular, in this embodiment, the fluid 5 is irradiated with a laser beam and the scattered light is received for measurement, that is, the measurement is performed without contacting the fluid 5, which is different from the conventional method. In this way, there is no risk that the current meter itself will disturb the flow, and more accurate flow speed data can be obtained.

このような利点を有することから、本実施例の計測装置
は、船舶や自動車等の走行に伴う流体の後流流速分布、
或いは橋や建物等の構築物によって生じる流体の後流流
速分布を計測する場合に適する。例えば、船舶の後流流
速分布を計測する場合には、第2図に示す如く、船体3
1の船尾32に前記回動装置4を介してレーザ投光器3
を設置し、そのレーザ投光器3からの一対のレーザ光が
走査される計測面6,7よりも後流側に前記受像器11
を支持アーム33を介して支持すれば、船体31のプロ
ペラ34の後流流速分布を正確にかつ短時間に計測する
ことができる。この場合、受像器11は、第2図中破線
で示す如く、船体31の内部に船尾32方向へ向けて設
置してもよい。
Because it has such advantages, the measuring device of this embodiment can measure the wake flow velocity distribution of fluid accompanying the running of ships, automobiles, etc.
Alternatively, it is suitable for measuring the downstream flow velocity distribution of fluid generated by structures such as bridges and buildings. For example, when measuring the wake velocity distribution of a ship, as shown in Figure 2,
A laser projector 3 is attached to the stern 32 of the ship via the rotation device 4.
The image receptor 11 is installed on the downstream side of the measurement surfaces 6 and 7 scanned by the pair of laser beams from the laser projector 3.
If it is supported via the support arm 33, the wake velocity distribution of the propeller 34 of the hull 31 can be measured accurately and in a short time. In this case, the image receptor 11 may be installed inside the hull 31 toward the stern 32, as shown by the broken line in FIG.

なお、上記実施例では一つのレーザ光源1によって一対
の光ビームを流体5へ照射させるようにしたが、レーザ
光源lはそれぞれ別個に設けてモヨイ。また、光走査手
段としては、レーザ光源 11からのレーザ光を例えば
反射鏡の回転によって流体5へ走査させるようにしても
よい。
In the above embodiment, a pair of light beams are irradiated onto the fluid 5 by one laser light source 1, but the laser light sources 1 are provided separately. Further, as the optical scanning means, a laser beam from the laser light source 11 may be scanned onto the fluid 5 by, for example, rotating a reflecting mirror.

また、計測面6,7における散乱光を受光し、それを電
気信号に変換する手段としては、上記実施例で述べた受
像器11に限られるものではなく、要するに計測面6.
7の各計測部位からの散乱光を各計測部位に対応した位
置の信号として検出できるのもであれば、いずれの形式
であってもよい。
Further, the means for receiving the scattered light on the measurement surfaces 6 and 7 and converting it into an electrical signal is not limited to the image receiver 11 described in the above embodiment, but in short, the means for receiving the scattered light on the measurement surfaces 6 and 7 and converting it into an electrical signal is not limited to the image receiver 11 described in the above embodiment.
Any format may be used as long as it can detect the scattered light from each of the measurement sites 7 as a signal at a position corresponding to each measurement site.

更に、光ビームの走査を計測部6,7に対して数回行い
、それによって得られた各計測部位における流速データ
群を統計処理すれば、より正確な流速分布をめることが
できる。
Furthermore, a more accurate flow velocity distribution can be obtained by scanning the measurement units 6 and 7 with the light beam several times and statistically processing the flow velocity data group obtained at each measurement site.

[発明の効果コ 以上の通り、本発明によれば、所定範囲内の流速分布を
正確に、かつ短時間に計測できる流速計11装置を提供
することかできる。
[Effects of the Invention] As described above, according to the present invention, it is possible to provide a current meter 11 device that can accurately measure the flow velocity distribution within a predetermined range in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の流速計測装置の計測原理を説月するた
めの図、第2図はその計測装置を船舶に装置した場合の
斜視図である。 喀・・・走行走査手段としての回動装置、5・・・流体
、11・・・光電変換手段としての受像器、CCD・・
・電荷6合素子、21・・・演算処理手段としてのコン
ピュータ。 代理人 弁理士 木下実三 (ほか1名)第1図 第2図
FIG. 1 is a diagram for explaining the measurement principle of the current velocity measuring device of the present invention, and FIG. 2 is a perspective view of the measuring device installed on a ship. 5... Rotating device as traveling scanning means, 5... Fluid, 11... Image receptor as photoelectric conversion means, CCD...
- Charge 6 combining element, 21... Computer as arithmetic processing means. Agent: Patent attorney Minoru Kinoshita (and 1 other person) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)流体の流れ方向に沿って互いに平行な一対 3の
光ビームを、流体の流れ方向に対して直角方向 [へ走
査させる光走査手段と、 この光走査手段によって一対の光ビームが走査 速され
た際、流体中に含まれる微粒子が一対の光ビ [−ムを
通過したときに発する蔽乱光を受光し、それを電気信号
として検出する光電変換手段と、 てこの光電変換手段
によって微粒子が一対のヒー のム間を通過したときに
検出される散乱光の時間間 開隔および一対の光ビーム
間の距離から光ビームの 内走査範囲内の各点における
流速を演算する演算外 な理手段と る を備えたことを特徴とする流速計測装置。 の(2、特
許請求の範囲第1項において、前記光ビ こ−ムを、レ
ーザビームとしたことを特徴とする流速計測装置。 計 3)特許請求の範囲第1項または第2項におい、前記光
電変換手段を、電荷結合素子を高密度蹟した受像器によ
り構成したことを特徴とする直計測装置。
(1) A light scanning means for scanning a pair of light beams parallel to each other along the fluid flow direction in a direction perpendicular to the fluid flow direction, and a scanning speed of the pair of light beams by the light scanning means. When the particles contained in the fluid pass through a pair of light beams, a photoelectric conversion means that receives the scattered light emitted and detects it as an electric signal, and a lever photoelectric conversion means converts the particles. The flow velocity at each point within the scanning range of the light beam is calculated from the time interval of the scattered light detected when the light beam passes between a pair of beams and the distance between the pair of light beams. A flow velocity measuring device characterized by comprising: a means for measuring flow velocity; (2) A flow velocity measuring device according to claim 1, characterized in that the light beam is a laser beam. Total 3) In claim 1 or 2, A direct measurement device characterized in that the photoelectric conversion means is constituted by an image receptor in which charge-coupled devices are arranged at a high density.
JP21928183A 1983-11-21 1983-11-21 Flow velocity measuring device Pending JPS60111165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21928183A JPS60111165A (en) 1983-11-21 1983-11-21 Flow velocity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21928183A JPS60111165A (en) 1983-11-21 1983-11-21 Flow velocity measuring device

Publications (1)

Publication Number Publication Date
JPS60111165A true JPS60111165A (en) 1985-06-17

Family

ID=16733052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21928183A Pending JPS60111165A (en) 1983-11-21 1983-11-21 Flow velocity measuring device

Country Status (1)

Country Link
JP (1) JPS60111165A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2689247A1 (en) * 1992-03-24 1993-10-01 Electricite De France Method and device for optical measurement of the dimensions of an object or of the speed of an object or of a fluid moving in a field.
JP2007225493A (en) * 2006-02-24 2007-09-06 National Maritime Research Institute Log speed measuring device for ship
CN106771348A (en) * 2016-12-13 2017-05-31 哈尔滨工业大学深圳研究生院 A kind of fluid velocity measurement apparatus and method based on optical mouse sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2689247A1 (en) * 1992-03-24 1993-10-01 Electricite De France Method and device for optical measurement of the dimensions of an object or of the speed of an object or of a fluid moving in a field.
JP2007225493A (en) * 2006-02-24 2007-09-06 National Maritime Research Institute Log speed measuring device for ship
JP4677637B2 (en) * 2006-02-24 2011-04-27 独立行政法人海上技術安全研究所 Marine water speed measurement device
CN106771348A (en) * 2016-12-13 2017-05-31 哈尔滨工业大学深圳研究生院 A kind of fluid velocity measurement apparatus and method based on optical mouse sensor

Similar Documents

Publication Publication Date Title
US5790243A (en) Highway profile measuring system
US4180322A (en) Interior measurement of enclosed spaces
CA1059752A (en) Gauging surfaces by remotely tracking multiple images
JPH1114357A (en) Automatic tracking device of surveying equipment
GB1417881A (en) Pick-up head for an optical correlation velocity meter
JPS60111165A (en) Flow velocity measuring device
JPH06300624A (en) Optical scanner
JPH10105868A (en) Vehicle measuring device/method
US3632215A (en) Apparatus for determining the position coordinates of a point relative to a reference point
JPH05164519A (en) Measuring instrument for three-dimensional shape of structure surrounding railroad track
JP2002039715A (en) Transmission line measuring method using laser light and transmission line measuring apparatus
JP3011836B2 (en) Particle measurement device
US5090801A (en) Laser velocimeter for near-surface measurements
RU2803398C1 (en) Laser scanning system to determine the parameters of the vehicle in the traffic stream
JPH04295707A (en) Shape measuring apparatus for structure around railroad
JPS6280507A (en) Measuring method for cracking on road surface
JP3874047B2 (en) Laser diffraction / scattering particle size distribution analyzer
JPS6082804A (en) Shape detecting method of running belt shaped body
JPH02143139A (en) Measuring method for particle size of particulate by interference pattern
JPH0285704A (en) Gap measuring instrument
JPH10185515A (en) Coil position detector
RU2122956C1 (en) Method of and device for checking wheel tread surface on moving rail vehicle
JPH06109435A (en) Surface displacement meter
JPS5826325Y2 (en) position detection device
JPS5829458B2 (en) Hiyoumen Kensa Sochi