JPH05164519A - Measuring instrument for three-dimensional shape of structure surrounding railroad track - Google Patents

Measuring instrument for three-dimensional shape of structure surrounding railroad track

Info

Publication number
JPH05164519A
JPH05164519A JP33210191A JP33210191A JPH05164519A JP H05164519 A JPH05164519 A JP H05164519A JP 33210191 A JP33210191 A JP 33210191A JP 33210191 A JP33210191 A JP 33210191A JP H05164519 A JPH05164519 A JP H05164519A
Authority
JP
Japan
Prior art keywords
light
tunnel
image
dimensional coordinates
cutting line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33210191A
Other languages
Japanese (ja)
Other versions
JP2883236B2 (en
Inventor
Shigeyasu Hara
茂保 原
Akio Iwake
昭夫 井分
Yoshiro Nishimoto
善郎 西元
Yuichiro Goto
有一郎 後藤
Akashi Yamaguchi
証 山口
Yasuharu Jin
康晴 神
Yozo Fukumoto
陽三 福本
Hiroyuki Naito
▲廣▼幸 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Central Japan Railway Co
Original Assignee
Kobe Steel Ltd
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Central Japan Railway Co filed Critical Kobe Steel Ltd
Priority to JP33210191A priority Critical patent/JP2883236B2/en
Publication of JPH05164519A publication Critical patent/JPH05164519A/en
Application granted granted Critical
Publication of JP2883236B2 publication Critical patent/JP2883236B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To obtain a measuring instrument for a three-dimensional shape which enables short-time and precise measurement of the three-dimensional shape of a structure surrounding a railroad track, such as a tunnel, on the side along the track. CONSTITUTION:An image processing device 5 determines the three-dimensional coordinates of a light-section line on the wall surface of a tunnel T, using as a reference point a TV camera 3 for a structure which is disposed on a moving truck 1 made to run on rails RR and RL and picks up an image of the light-section line on the wall surface of the tunnel T, and also it determines the three-dimensional coordinates of a light-section line showing specified parts of the rails RR and RL, using as a reference point a TV camera 4 for the rails which is disposed on the moving truck 1 and picks up an image of the light-section line on the rails RR and RL. Based on these three-dimensional coordinates and the coordinates showing the positional relationship of the two TV cameras 3 and 4, a computer 6 determines the three- dimensional coordinates of the light-section line on the wall surface of the tunnel T, using as a reference point the middle point between tracks in accordance with the running of the moving truck 1. According to this constitution, a measuring error due to shaking of the moving truck 1 can be made very small.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、鉄道におけるトンネ
ル、橋梁などの線路周辺構造物の軌道に沿う側の三次元
形状の計測を短時間で且つ精度良く行えるようにした、
線路周辺構造物の三次元形状計測装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has made it possible to measure the three-dimensional shape of a railway peripheral structure such as a tunnel or bridge in a railway along a track in a short time and with high accuracy.
The present invention relates to a three-dimensional shape measuring device for a line peripheral structure.

【0002】[0002]

【従来の技術】鉄道における保守点検作業のひとつとし
て、トンネル、橋梁などの線路周辺構造物の経年変化を
調べてそのメンテナンス時期を正確に把握するため、ま
た、線路周辺構造物についての建築限界に対する検査を
行うために、これらの線路周辺構造物の軌道に沿う側の
三次元形状を計測することが行われている。
2. Description of the Related Art As one of the maintenance and inspection works in railways, in order to accurately grasp the maintenance time by examining the secular change of railway track peripheral structures such as tunnels and bridges, and to meet the building limit of the railway track peripheral structures. In order to carry out the inspection, the three-dimensional shape of these track peripheral structures along the track is measured.

【0003】例えばトンネル壁面の形状計測もそのひと
つであって、この場合に一般に用いられる装置の一例と
しては、従来、特開昭61−275616号公報に示されている
ようなものがある。図8はこの従来技術に係るトンネル
断面測定装置の概念図、図9はその測定機本体の外観斜
視図である。
For example, the measurement of the shape of the tunnel wall surface is one of them, and an example of an apparatus generally used in this case is that disclosed in Japanese Patent Laid-Open No. 61-275616. FIG. 8 is a conceptual diagram of a tunnel cross-section measuring device according to this conventional technique, and FIG. 9 is an external perspective view of the measuring machine body.

【0004】図8に示すように、このトンネル断面測定
装置は、被測定トンネル101 の壁面に測距光線aをスポ
ット状に投射する光源手段102 と、その反射光を収束す
るように光源手段102 から所定距離D1隔てて配置した受
光レンズ103 と、この受光レンズ103 で収束される反射
光を受光するように、受光レンズ103 から所定距離D2
てて配置した位置検出用光電変換手段104 を備えてい
る。さらに、光源手段102 、受光レンズ103 および光電
変換手段104 を、距離D1の方向と平行な軸線を中心とし
て一体に回動させる回動手段105 を設けるとともに、こ
の回動手段105 による測距光線aの投射角を検出する角
度検出手段106 を設け、距離D1及びD2と、光電変換手段
104 および角度検出手段106 のそれぞれの出力とに基づ
いて被測定トンネルの断面を演算手段107により演算す
る構成となっている。
As shown in FIG. 8, this tunnel cross-section measuring apparatus has a light source means 102 for projecting a distance measuring light beam a on the wall surface of a tunnel 101 to be measured and a light source means 102 for converging the reflected light. A light receiving lens 103 arranged at a predetermined distance D 1 from the light receiving lens 103, and a position detecting photoelectric conversion means 104 arranged at a predetermined distance D 2 from the light receiving lens 103 so as to receive reflected light converged by the light receiving lens 103. I have it. Further, a rotating means 105 for integrally rotating the light source means 102, the light receiving lens 103 and the photoelectric conversion means 104 about an axis parallel to the direction of the distance D 1 is provided, and the distance measuring light beam by the rotating means 105 is provided. The angle detection means 106 for detecting the projection angle of a is provided, and the distances D 1 and D 2 and the photoelectric conversion means are provided.
The calculation means 107 calculates the cross section of the tunnel to be measured based on the respective outputs of 104 and the angle detection means 106.

【0005】このように構成されるトンネル断面測定装
置では、受光レンズ103 により光電変換手段104 上に収
束される被測定トンネル101 の壁面でのスポット光の位
置は、トンネル壁面と回動手段105 における回転中心軸
線bとの距離Lに応じて変化する。光電変換手段104 上
におけるスポット光の受光位置の基準位置からの距離を
xとすると、距離Lは、L=(1/x)・D1・D2により
与えられる。そこで、角度検出手段106 から得られる測
距光線aの投射角に応じて光電変換手段104 からの位置
情報に基づいて距離Lを演算手段107 により求めること
によって、被測定トンネル101 の断面を計測するように
している。
In the tunnel cross-section measuring apparatus constructed as above, the position of the spot light on the wall surface of the tunnel to be measured 101 converged on the photoelectric conversion means 104 by the light receiving lens 103 is determined by the tunnel wall surface and the rotating means 105. It changes according to the distance L from the rotation center axis line b. When the distance from the reference position of the light receiving position of the spot light on the photoelectric conversion means 104 is x, the distance L is given by L = (1 / x) · D 1 · D 2 . Therefore, the cross section of the tunnel to be measured 101 is measured by calculating the distance L by the calculating means 107 based on the position information from the photoelectric converting means 104 according to the projection angle of the distance measuring light beam a obtained from the angle detecting means 106. I am trying.

【0006】より具体的には、上記トンネル断面測定装
置の測定機本体は、図9に示すように、三脚201 に設け
られた回転制御ユニット202 を備えており、この回転制
御ユニット202 によって基線ロッド203 がその基線(軸
線)を中心として回転され、その回転角度が回転制御ユ
ニット202 内の傾斜計により検出されるようになってい
る。基線ロッド203 には、これと一体に回転するよう
に、光源および投光レンズを備えた光源ユニット204 が
設けられるとともに、この光源ユニット204 の両側にそ
れぞれ所定距離を隔てて受光レンズおよび光電変換素子
を備えたセンサユニット205a,205bが設けられている。
More specifically, as shown in FIG. 9, the main body of the measuring device of the tunnel cross-section measuring device is provided with a rotation control unit 202 provided on a tripod 201. 203 is rotated about its base line (axis), and its rotation angle is detected by an inclinometer in the rotation control unit 202. The base rod 203 is provided with a light source unit 204 including a light source and a light projecting lens so as to rotate integrally therewith, and a light receiving lens and a photoelectric conversion element are provided on both sides of the light source unit 204 with a predetermined distance therebetween. The sensor units 205a and 205b provided with are provided.

【0007】これにより、所要位置に測定機本体を位置
決めし、基線ロッド203 をその基線を中心に回転制御ユ
ニット202 により回転させながら、光源ユニット204 か
らトンネルの壁面にスポット光を投射し、その反射光を
センサユニット205a,205bで受光して、各回転角度にお
ける基線ロッド203 の基線からトンネル壁面までの距離
Lを測ってトンネル内の所要位置におけるその断面形状
を計測するようにしている。
With this, the main body of the measuring machine is positioned at a required position, and while the base rod 203 is rotated by the rotation control unit 202 about the base line, the light source unit 204 projects the spot light on the wall surface of the tunnel and reflects it. Light is received by the sensor units 205a and 205b, the distance L from the base line of the base rod 203 to the tunnel wall surface at each rotation angle is measured, and the cross-sectional shape at a required position in the tunnel is measured.

【0008】一方、本出願人は、先に、鉄道におけるト
ンネル、橋梁などの線路周辺構造物の軌道に沿う側の三
次元形状を計測するようにした線路周辺構造物の形状計
測装置を提案している(特願平3 −60716 号)。図10
は、この従来技術に係る線路周辺構造物の形状計測装置
の全体構成を示す図、図11は図10に示す形状計測装置の
概略を示す斜視図である。
On the other hand, the present applicant has previously proposed a shape measuring device for a track peripheral structure which measures the three-dimensional shape of the track peripheral structure such as a tunnel or bridge in a railway along the track. (Japanese Patent Application No. 3-60716). Figure 10
FIG. 11 is a diagram showing an overall configuration of a shape measuring apparatus for a line peripheral structure according to this conventional technique, and FIG. 11 is a perspective view showing an outline of the shape measuring apparatus shown in FIG.

【0009】この従来技術に係る線路周辺構造物の形状
計測装置は、図10及び図11に示すように、レール(軌
道)RR,RL上を走行する移動台車51と、この移動台車51
上に配設され、軌道RR,RLに略直交する面内、つまり移
動台車51の走行方向に略直交する面内に放射状に広がる
平板状光(面状スリット光)S′を投射する光源装置52
と、移動台車51上に光源装置52より台車進行方向側(図
に白抜き矢印で示す)へ所定距離Aを隔てて配設され、
光源装置52からの平板状光S′によってトンネルTの壁
面上に生じる光切断線Cを撮像する撮像装置としてのテ
レビカメラ53とを備えている。テレビカメラ53は、フィ
ールド蓄積型のCCDテレビカメラが用いられており、
平板状光S′に対しその光軸CPが角度θをなして交差す
るように配設されている。
As shown in FIG. 10 and FIG. 11, the shape measuring apparatus for a track peripheral structure according to this prior art has a moving carriage 51 that travels on rails (tracks) RR and RL, and this moving carriage 51.
A light source device which is disposed above and projects flat plate-like light (planar slit light) S'radially spread in a plane substantially orthogonal to the tracks RR and RL, that is, in a plane substantially orthogonal to the traveling direction of the moving carriage 51. 52
And is arranged on the moving carriage 51 at a predetermined distance A from the light source device 52 toward the carriage traveling direction side (shown by an outline arrow in the figure).
It is provided with a television camera 53 as an image pickup device for picking up an image of the light cutting line C generated on the wall surface of the tunnel T by the flat light S ′ from the light source device 52. As the TV camera 53, a field storage type CCD TV camera is used,
The optical axis CP of the flat light S'is arranged so as to intersect at an angle θ.

【0010】さらに、テレビカメラ53によって得られた
光切断画像上での光切断線Cの二次元座標を求めるため
の画像処理手段としての画像処理装置54と、この画像処
理装置54にて得られた光切断画像上での光切断線Cの二
次元座標に基づいて、構造物直交座標系O−XYZにお
けるトンネルT壁面上での光切断線Cの三次元座標を算
出し、トンネルT壁面の三次元形状を求めるための計算
手段としての計算機(コンピュータ)55とを備えてい
る。構造物直交座標系O−XYZは、レールRR,RLの所
定位置におけるレールRR,RLの中心を原点Oとし、レー
ルRR,RLの延びる方向(移動台車51の走行方向)をX軸
として設定されており、Y軸はトンネルTの幅方向、Z
軸はトンネルTの高さ方向を示している。
Further, an image processing device 54 as an image processing means for obtaining the two-dimensional coordinates of the light cutting line C on the light cutting image obtained by the television camera 53, and the image processing device 54. Based on the two-dimensional coordinates of the light cutting line C on the light cutting image, the three-dimensional coordinates of the light cutting line C on the tunnel T wall surface in the structure orthogonal coordinate system O-XYZ are calculated, and the three-dimensional coordinates of the tunnel T wall surface are calculated. A computer (computer) 55 as a calculation means for obtaining a three-dimensional shape is provided. The structure orthogonal coordinate system O-XYZ is set with the center of the rails RR, RL at predetermined positions of the rails RR, RL as the origin O, and the direction in which the rails RR, RL extend (traveling direction of the moving carriage 51) as the X axis. And the Y-axis is the width direction of the tunnel T, Z
The axis indicates the height direction of the tunnel T.

【0011】上記の画像処理装置54は、テレビカメラ53
から1フィールド毎(1/60秒)に出力される映像信号に
関してその輝度レベルが変化する位置を各水平走査線上
で検出することにより、光切断画像上でのCk(u,
v),k=1 〜Nで表される光切断線Cの座標を求める
ようにしたものである(図6参照)。なお、kは水平走
査線の番号を示す。
The image processing device 54 is a television camera 53.
By detecting the position on the horizontal scanning line at which the brightness level changes with respect to the video signal output for each field (1/60 second) from C k (u,
v), k = 1 to N, and the coordinates of the light section line C are obtained (see FIG. 6). Note that k represents the number of horizontal scanning lines.

【0012】以下、上記構成になる線路周辺構造物の形
状計測装置の動作を説明する。光源装置52によって放射
状に広がる平板状光S′がトンネルT壁面へ向けて投射
されると、トンネルTの壁面にその周方向に沿う光切断
線Cが生成される。この光切断線Cがテレビカメラ53に
より移動台車51の走行にともなって1/60秒毎に順次撮像
される。
The operation of the shape measuring apparatus for a line peripheral structure having the above structure will be described below. When the light source device 52 projects the radially extending flat plate light S ′ toward the wall surface of the tunnel T, a light cutting line C along the circumferential direction is generated on the wall surface of the tunnel T. The optical cutting line C is sequentially captured by the television camera 53 every 1/60 seconds as the moving carriage 51 travels.

【0013】テレビカメラ53からの映像信号は、1フィ
ールド毎(1/60秒)に画像処理装置54に与えられる。こ
れを受けて画像処理装置54は、光切断画像上での光切断
線Cの座標Ck (u,v),k=1 〜Nをビデオレート
(1/60秒)にて求め、得られたその1フィールド毎の光
切断線座標Ck (u,v),k=1 〜Nをブランキング
時間(約 1.2msec)の期間に計算機55に与える。
The video signal from the television camera 53 is given to the image processing device 54 for each field (1/60 seconds). In response to this, the image processing device 54 obtains the coordinates C k (u, v), k = 1 to N of the light cutting line C on the light cutting image at the video rate (1/60 seconds) and obtains them. Further, the light cutting line coordinates C k (u, v), k = 1 to N for each one field are given to the computer 55 during the blanking time (about 1.2 msec).

【0014】計算機55は、上記の光切断画像上での光切
断線Cの座標Ck (u,v),k=1 〜Nから、構造物
直交座標系O−XYZにおけるトンネルTの壁面上での
光切断線Cの座標を以下に示す式(1)及び(2)によ
り算出し、トンネルTの1断面iに対応する光切断線C
の三次元座標Pi (Xi ,Yi ,Zi )を求める。
From the coordinates C k (u, v), k = 1 to N of the light section line C on the above-mentioned light section image, the computer 55 determines the wall surface of the tunnel T in the structure orthogonal coordinate system O-XYZ. The coordinates of the light sectioning line C at the line are calculated by the following equations (1) and (2), and the light sectioning line C corresponding to one section i of the tunnel T is calculated.
The three-dimensional coordinates P i (X i , Y i , Z i ) of the

【0015】[0015]

【数1】 [Equation 1]

【0016】ここで、mはテレビカメラ53の撮像倍率、
fはテレビカメラ53のレンズ系の焦点距離、θは平板状
光S′の面とテレビカメラ53の光軸CPとのなす角度、h
は平板状光S′の面と上記光軸CPとの交点QのレールR
R,RL面からの高さである。なお、X軸座標値は図示し
ない位置検出器により与えられるようになっている。
Here, m is the image pickup magnification of the television camera 53,
f is the focal length of the lens system of the TV camera 53, θ is the angle between the plane of the flat light S ′ and the optical axis CP of the TV camera 53, h
Is the rail R at the intersection Q between the plane of the flat light S'and the optical axis CP.
It is the height from the R and RL planes. The X-axis coordinate value is provided by a position detector (not shown).

【0017】このようにして、移動台車51を走行させな
がら光切断線Cを連続的に順次撮像し、トンネルTの1
断面形状に対応する光切断線Cの三次元座標Pi を計算
機55により1/60秒毎に順次求めてレールRR,RLに沿って
積み重ねることにより、構造物直交座標系O−XYZに
おけるトンネルT壁面の三次元座標Pi (Xi ,Yi
i ),i=1 〜nを求め、トンネルT壁面の三次元形
状を計測するようにしている。
In this way, while the moving carriage 51 is traveling, the optical cutting lines C are continuously and sequentially imaged, and the tunnel T
The three-dimensional coordinates P i of the light-section line C corresponding to the cross-sectional shape are sequentially obtained by the computer 55 every 1/60 seconds and are stacked along the rails RR and RL, so that the tunnel T in the structure orthogonal coordinate system O-XYZ is obtained. Three-dimensional coordinates P i (X i , Y i ,
Z i ), i = 1 to n is obtained, and the three-dimensional shape of the wall surface of the tunnel T is measured.

【0018】[0018]

【発明が解決しようとする課題】上述した従来技術のう
ち、前者のトンネル断面測定装置では、トンネルの壁面
に測距光線をスポット状に投射し、回動手段によって測
距光線の投射角度を変えながら所要位置におけるトンネ
ルの断面形状を測定するというフライイング・スポット
法を用いた構成であるから、長距離にわたるトンネル壁
面の三次元形状計測を行う場合、「軌道に沿って少し移
動しては静止して計測」ということを繰り返すことにな
って、計測に時間がかかるという問題点がある。
Among the above-mentioned prior arts, in the former tunnel cross-section measuring apparatus, the distance measuring light beam is projected on the wall surface of the tunnel in a spot shape, and the projection angle of the distance measuring light beam is changed by the rotating means. However, because the configuration uses the flying spot method of measuring the cross-sectional shape of the tunnel at the required position, when measuring the three-dimensional shape of the tunnel wall surface over a long distance, “If you move a little along the track, it will be stationary. Therefore, there is a problem in that the measurement takes time.

【0019】一方、後者の線路周辺構造物の形状計測装
置では、軌道に沿うトンネル壁面などの三次元形状計測
を短時間で行うことができる。しかしながら、この形状
計測装置では、移動台車に配設された撮像装置で得られ
た光切断画像上での光切断線の座標を画像処理手段によ
って求め、画像処理手段で得られた上記光切断線の座標
に基づいて、予め設定された直交座標系におけるトンネ
ル壁面上での光切断線の座標を算出するように構成した
ものであるから、走行している移動台車が動揺する場
合、設定された直交座標系に対して撮像装置などが位置
ずれすることにより、三次元形状の計測結果に誤差が生
じるという問題点がある。
On the other hand, the latter shape measuring apparatus for a peripheral structure of a line can measure a three-dimensional shape of a tunnel wall surface along a track in a short time. However, in this shape measuring device, the coordinates of the light cutting line on the light cutting image obtained by the image pickup device arranged on the moving carriage are obtained by the image processing means, and the light cutting line obtained by the image processing means is obtained. Since it is configured to calculate the coordinates of the light cutting line on the tunnel wall surface in the preset orthogonal coordinate system based on the coordinates of, the setting is made when the moving carriage is moving. There is a problem that an error occurs in the measurement result of the three-dimensional shape due to the displacement of the imaging device or the like with respect to the orthogonal coordinate system.

【0020】この発明は、上記問題点を解消するために
なされたものであって、鉄道におけるトンネル、橋梁な
どの線路周辺構造物の軌道に沿う側の三次元形状の計測
を短時間で且つ精度良く行えるようにした、線路周辺構
造物の三次元形状計測装置の提供を目的とする。
The present invention has been made in order to solve the above-mentioned problems, and is capable of measuring the three-dimensional shape of a railway peripheral structure such as a tunnel or a bridge in a railway along a track in a short time and with high accuracy. It is an object of the present invention to provide a three-dimensional shape measuring device for a structure around a track, which is well performed.

【0021】[0021]

【課題を解決するための手段】上記の目的を達成するた
めに、この発明による線路周辺構造物の三次元形状計測
装置は、a:軌道上を走行する移動台車と、b:前記移
動台車に配設され、移動台車走行方向に略直交する面内
に放射状に広がる平板状光を投射する光源装置と、c:
前記移動台車に前記光源装置より所定距離隔てて配設さ
れ、前記光源装置からの平板状光によって線路周辺構造
物上に生じる光切断線を前記移動台車の走行にともなっ
て順次撮像する第1の撮像装置と、d:前記移動台車に
前記光源装置より所定距離隔てて配設され、前記光源装
置からの平板状光によって軌道上に生じる光切断線を前
記移動台車の走行にともなって順次撮像する第2の撮像
装置と、e:前記第1の撮像装置によって得られる光切
断画像毎にその画像上での線路周辺構造物を示す光切断
線の二次元座標を求めるとともに、前記第2の撮像装置
によって得られた光切断画像毎にその画像上での軌道の
特定部位を示す光切断線の二次元座標を求める画像処理
手段と、f:前記画像処理手段によって得られる光切断
画像上での線路周辺構造物を示す光切断線の二次元座標
に基づいて、前記第1の撮像装置を基準点として線路周
辺構造物上の光切断線の三次元座標を求めるとともに、
前記画像処理手段によって得られた光切断画像上での軌
道の特定部位を示す光切断線の二次元座標に基づいて、
前記第2の撮像装置を基準点として軌道の特定部位を示
す光切断線の三次元座標を求め、これらの三次元座標,
及び前記第1の撮像装置と前記第2の撮像装置との位置
関係を示す座標とに基づいて、前記移動台車の走行に応
じて軌道間の中点を基準点として線路周辺構造物上の光
切断線の三次元座標を求める計算手段と、を備えたこと
を特徴とする。
In order to achieve the above object, a three-dimensional shape measuring apparatus for a track peripheral structure according to the present invention comprises: a: a moving carriage that travels on a track; and b: a moving carriage. A light source device that is disposed and projects a flat plate-like light that radially spreads in a plane that is substantially orthogonal to the traveling direction of the moving carriage;
A first light-emitting device is disposed on the movable carriage at a predetermined distance from the light source device, and sequentially captures light cutting lines generated on the line peripheral structure by the plate-shaped light from the light source device as the movable carriage travels. Image pickup device, d: Light-displacement lines, which are arranged on the movable carriage at a predetermined distance from the light source device and are generated on the track by the flat light from the light source device, are sequentially imaged as the movable carriage travels. A second image pickup device, e: for each light cut image obtained by the first image pickup device, two-dimensional coordinates of a light cut line indicating a line peripheral structure on the image are obtained, and the second image pickup is performed. Image processing means for obtaining, for each light-section image obtained by the device, the two-dimensional coordinates of the light-section line indicating a specific portion of the trajectory on the image; and f: on the light-section image obtained by the image processing means. Track circumference Based on the two-dimensional coordinates of the light section lines showing the structure portions to determine three-dimensional coordinates of the line peripheral structure on the optical cutting line as a reference point the first imaging device,
Based on the two-dimensional coordinates of the light cutting line showing a specific portion of the trajectory on the light cutting image obtained by the image processing means,
Using the second image pickup device as a reference point, the three-dimensional coordinates of the light cutting line indicating the specific portion of the trajectory are obtained, and these three-dimensional coordinates are calculated.
And the light on the track peripheral structure with the midpoint between the tracks as a reference point according to the traveling of the moving carriage based on the coordinates indicating the positional relationship between the first imaging device and the second imaging device. And a calculating means for obtaining the three-dimensional coordinates of the cutting line.

【0022】[0022]

【作用】この発明による線路周辺構造物の三次元形状計
測装置においては、画像処理手段により、軌道(レー
ル)上を走行させる移動台車に配設され例えばトンネル
壁面上の光切断線を撮像する第1の撮像装置を基準点と
して、トンネル壁面上の光切断線の三次元座標を求める
とともに、移動台車に配設され軌道上の光切断線を撮像
する第2の撮像装置を基準点として、軌道の特定部位を
示す光切断線の三次元座標を求める。
In the three-dimensional shape measuring apparatus for a line peripheral structure according to the present invention, the image processing means is arranged on a moving carriage that travels on a track (rail) to image, for example, an optical cutting line on a tunnel wall surface. Using the first imaging device as a reference point, the three-dimensional coordinates of the light cutting line on the tunnel wall surface are obtained, and the second imaging device for picking up the light cutting line on the track provided on the moving carriage is used as a reference point for the track. The three-dimensional coordinates of the light cutting line indicating the specific part of the

【0023】そして、計算手段により、これらの三次元
座標と、第1の撮像装置と第2の撮像装置との予め設定
された位置関係を示す座標とに基づいて、移動台車の走
行に応じて軌道間の中点を基準点としてトンネル壁面上
の光切断線の三次元座標を求めるようにしているので、
走行中の移動台車が動揺しても移動台車の動揺による計
測誤差を極めて小さくすることができ、軌道に沿うトン
ネル壁面の三次元形状を短時間で且つ精度良く計測する
ことができる。なお、軌道間の中点(軌間の中点)は、
鉄道保守における建築限界の測定を行う際の原点となる
ものである。
Then, according to the traveling of the moving carriage, the calculation means calculates the three-dimensional coordinates and the coordinates indicating the preset positional relationship between the first image pickup device and the second image pickup device. Since the midpoint between the trajectories is used as a reference point to determine the three-dimensional coordinates of the light cutting line on the tunnel wall surface,
Even if the moving carriage moves while running, the measurement error due to the shaking of the moving carriage can be made extremely small, and the three-dimensional shape of the tunnel wall surface along the track can be accurately measured in a short time. In addition, the midpoint between the tracks (the midpoint between the tracks) is
It is the starting point when measuring the building limit in railway maintenance.

【0024】[0024]

【実施例】以下、この発明による線路周辺構造物の三次
元形状計測装置をトンネル壁面の三次元形状計測に適用
した実施例について説明する。図1はこの発明の一実施
例による線路周辺構造物の三次元形状計測装置の全体構
成を示す図、図2は図1に示す三次元形状計測装置の概
略を示す斜視図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the three-dimensional shape measuring device for a line peripheral structure according to the present invention is applied to the three-dimensional shape measurement of a tunnel wall surface will be described below. 1 is a diagram showing an overall configuration of a three-dimensional shape measuring apparatus for a line peripheral structure according to an embodiment of the present invention, and FIG. 2 is a perspective view showing an outline of the three-dimensional shape measuring apparatus shown in FIG.

【0025】図1および図2において、1はレール(軌
道)RR,RL上を走行する移動台車であり、この実施例で
は、移動台車1は牽引車(図示省略)によって図に白抜
き矢印で示す方向に牽引されるようになっている。移動
台車1には、図に示すように、レールRR,RLに略直交す
る面内、つまり移動台車1の走行方向に略直交する面内
にトンネルTの壁面及びレールRR,RLへ向けて放射状に
広がる平板状光Sを投射する光源装置2が配設されてい
る。また、移動台車1には、光源装置2からの平板状光
SによってトンネルTの壁面上に生じる光切断線を撮像
する第1の撮像装置としての構造物用テレビカメラ3
と、移動台車1の動揺による計測誤差をなくす目的で、
光源装置2からの平板状光SによってレールRR,RL上に
生じる光切断線を撮像する第2の撮像装置としてのレー
ル用テレビカメラ4とが配設されている。
In FIGS. 1 and 2, reference numeral 1 denotes a moving carriage that travels on rails (tracks) RR and RL. In this embodiment, the moving carriage 1 is a towing vehicle (not shown) and is indicated by a white arrow in the figure. It is designed to be pulled in the direction shown. As shown in the figure, the movable carriage 1 has a radial shape toward the wall surface of the tunnel T and the rails RR and RL in a plane substantially perpendicular to the rails RR and RL, that is, in a plane substantially perpendicular to the traveling direction of the movable carriage 1. The light source device 2 that projects the flat plate-shaped light S that spreads over is disposed. In addition, on the movable carriage 1, a structure television camera 3 as a first image pickup device for picking up an image of a light cutting line generated on the wall surface of the tunnel T by the flat light S from the light source device 2.
And, in order to eliminate the measurement error due to the shaking of the mobile trolley 1,
A rail television camera 4 as a second image pickup device for picking up an image of a light cutting line generated on the rails RR and RL by the flat light S from the light source device 2 is provided.

【0026】上記構造物用テレビカメラ3は、トンネル
T壁面上に生じた光切断線に関する光切断線画像(図6
参照)が1フィールド毎(1/60秒)に得られるフィール
ド蓄積型のCCDテレビカメラであって、平板状光Sの
面にその光軸CP1 が角度θ1 をなして交差するように光
源装置2より台車進行方向側へ一定距離隔てた位置に固
定されている。また、上記レール用テレビカメラ4は、
レールRR,RL上に生じた光切断線に関する光切断線画像
(図7参照)が1フィールド毎(1/60秒)に得られるフ
ィールド蓄積型のCCDテレビカメラであって、平板状
光Sの面にその光軸CP2 が角度θ2 をなして交差するよ
うに光源装置2より台車進行方向側へ一定距離隔てた位
置に固定されている。これらのテレビカメラ3,4は同
期制御されるようになっている。
The above structure television camera 3 has an image of a light section line on the wall surface of the tunnel T (FIG. 6).
Is a field accumulation type CCD TV camera obtained every 1 field (1/60 seconds), and the light source is such that its optical axis CP 1 intersects the plane of the flat light S at an angle θ 1. It is fixed at a position separated from the device 2 by a certain distance in the traveling direction of the carriage. Also, the rail TV camera 4 is
This is a field-storage CCD television camera that obtains a light-section line image (see FIG. 7) about the light-section line generated on the rails RR and RL for each field (1/60 seconds). The light source device 2 is fixed at a position separated by a certain distance in the traveling direction of the carriage so that its optical axis CP 2 intersects the surface at an angle θ 2 . These television cameras 3 and 4 are controlled to be synchronized.

【0027】さらに、移動台車1には、画像処理手段と
しての画像処理装置5と、計算手段としての計算機(コ
ンピュータ)6とが載置されている。計算機6はグラフ
ィックディスプレイを備えている。
Further, an image processing device 5 as an image processing means and a computer (computer) 6 as a calculation means are mounted on the movable carriage 1. The computer 6 has a graphic display.

【0028】ここで、直交座標系について説明しておく
と、構造物直交座標系O−XYZは、レールRR,RLの所
定位置におけるレールRR,RL間の中心を原点Oとし、レ
ールRR,RLの延びる方向(移動台車1の走行方向)をX
軸として設定されており、X軸に直交するそのY軸はト
ンネルTの幅方向を示し、X軸に直交するそのZ軸はト
ンネルTの高さ方向を示している(図2参照)。また、
構造物用テレビカメラ3の撮像レンズの主点を原点O1i
とする構造物用カメラ直交座標系O1i−XYZと、レー
ル用テレビカメラ4の撮像レンズの主点を原点O2iとす
るレール用カメラ直交座標系O2i−XYZとは、その各
軸が構造物直交座標系O−XYZのそれと平行になるよ
うに設定されている(図3参照)。なお、サフィックス
i(i=1〜n)は、移動台車1の走行にともなって平
板状光Sの投射により順次形成されるトンネル断面の番
号を表すものであり、上記座標系O1i−XYZ,O2i
XYZは、トンネル断面iにおいて設定される座標系を
意味している。
Here, the orthogonal coordinate system will be explained. In the structure orthogonal coordinate system O-XYZ, the center between the rails RR and RL at a predetermined position of the rails RR and RL is the origin O, and the rails RR and RL. X in the direction in which the
The Y axis, which is set as an axis and is orthogonal to the X axis, indicates the width direction of the tunnel T, and the Z axis, which is orthogonal to the X axis, indicates the height direction of the tunnel T (see FIG. 2). Also,
The main point of the imaging lens of the structure TV camera 3 is the origin O 1i
Each of the axes of the structure camera orthogonal coordinate system O 1i -XYZ and the rail camera orthogonal coordinate system O 2i -XYZ whose origin is O 2i is the principal point of the imaging lens of the television camera 4 for rails. It is set to be parallel to that of the object orthogonal coordinate system O-XYZ (see FIG. 3). The suffix i (i = 1 to n) represents the number of tunnel cross-sections sequentially formed by the projection of the plate-shaped light S as the moving carriage 1 travels, and the coordinate system O 1i -XYZ, O 2i
XYZ means a coordinate system set in the tunnel section i.

【0029】画像処理装置5は、後述するように、構造
物用テレビカメラ3によって得られる光切断画像毎にそ
の画像上でのトンネルT壁面を示す光切断線の二次元座
標を求めるとともに、レール用テレビカメラ4によって
得られる光切断画像毎にその画像上での各レールRR,RL
の上面内側の縁部(かど部)を示す光切断線の二次元座
標を求めるためのものである。
As will be described later, the image processing device 5 obtains the two-dimensional coordinates of the light cutting line indicating the wall surface of the tunnel T on each image for each light cutting image obtained by the structure television camera 3, and also the rail. Rails RR and RL on each light-cut image obtained by the TV camera 4 for use in the image
This is for obtaining the two-dimensional coordinates of the light cutting line indicating the edge (corner) inside the upper surface of the.

【0030】また、計算機6は、後述するように、画像
処理装置5で得た光切断画像上でのトンネルT壁面を示
す光切断線の二次元座標に基づいて、構造物用テレビカ
メラ3を原点O1iとする構造物用カメラ直交座標系O1i
−XYZにおけるトンネルT壁面上の光切断線の三次元
座標を求めるとともに、画像処理装置5で得た光切断画
像上での各レールRR,RLの上面内側の縁部を示す光切断
線の二次元座標に基づいて、レール用テレビカメラ4を
原点O2iとするレール用カメラ直交座標系O2i−XYZ
における各レールRR,RLの上面内側の縁部を示す光切断
線の三次元座標を求め、これらの三次元座標と、構造物
用テレビカメラ3とレール用テレビカメラ4との位置関
係を示す座標とに基づいて、構造物直交座標系O−XY
Zにおいて、移動台車1の走行に応じてレールRR,RL間
の中点Oi を基準点としてトンネルT壁面上の光切断線
の三次元座標を算出するためのものである。
Further, as will be described later, the computer 6 controls the structure television camera 3 based on the two-dimensional coordinates of the light cutting line indicating the wall surface of the tunnel T on the light cutting image obtained by the image processing device 5. structures camera Cartesian coordinate system O 1i to the origin O 1i
The three-dimensional coordinates of the light cutting line on the wall surface of the tunnel T in XYZ are obtained, and two of the light cutting lines indicating the inner edge of the upper surface of each rail RR, RL on the light cutting image obtained by the image processing device 5 are obtained. Based on the dimensional coordinates, the rail camera orthogonal coordinate system O 2i -XYZ with the rail TV camera 4 as the origin O 2i.
The three-dimensional coordinates of the light cutting line indicating the inner edge of the upper surface of each rail RR, RL in are obtained, and the coordinates indicating the three-dimensional coordinates and the positional relationship between the structure TV camera 3 and the rail TV camera 4 are obtained. Based on and, the structure orthogonal coordinate system O-XY
In Z, the three-dimensional coordinates of the light cutting line on the wall surface of the tunnel T are calculated with the midpoint O i between the rails RR and RL as a reference point according to the traveling of the mobile vehicle 1.

【0031】図5は図1に示す三次元形状計測装置の光
源装置の構成説明図である。なお、この光源装置2は、
特願平3 −269707号に示したものである。
FIG. 5 is an explanatory view of the configuration of the light source device of the three-dimensional shape measuring apparatus shown in FIG. The light source device 2 is
This is shown in Japanese Patent Application No. 3-269707.

【0032】図5において、21はその軸心線方向がレー
ルRR,RLの延びる方向になるように配される円筒形のケ
ーシングであり、ケーシング21には、その先端側の一部
に全周にわたって光の通過を許すガラスなどからなる所
定幅の光通過用窓部21aが設けられている。このケーシ
ング21内には、図に示すように、その後部から光通過用
窓部21a側へ向かって順に、高出力型半導体レーザ22、
コリメートレンズ23、集光レンズ系24と円形アパチャー
25及び円錐状反射鏡26とが図示しない取り付け手段によ
り同軸状に配設されている。
In FIG. 5, reference numeral 21 denotes a cylindrical casing arranged so that its axial center direction is the direction in which the rails RR, RL extend. A light passing window portion 21a made of glass or the like having a predetermined width is provided to allow light to pass therethrough. In the casing 21, as shown in the figure, a high-power semiconductor laser 22 and a high-power semiconductor laser 22 are arranged in this order from the rear portion thereof toward the light passage window portion 21a.
Collimating lens 23, condenser lens system 24 and circular aperture
The conical reflecting mirror 25 and the conical reflecting mirror 26 are coaxially arranged by a mounting means (not shown).

【0033】上記高出力型半導体レーザ22は、図に示す
ように、出射光軸がケーシング21の軸心線方向である
X′軸方向,レーザビーム出射面から見てpn接合面と
平行な方向がY′軸方向,レーザビーム出射面から見て
pn接合面と垂直な方向がZ′軸方向となるように配設
されている。なお、X′軸方向がレールRR,RLの延びる
方向、Y′軸方向がトンネルTの幅方向、Z′軸方向が
トンネルTの高さ方向に対応する。
As shown in the figure, the high-power semiconductor laser 22 has an emission optical axis in the X'axis direction, which is the axial direction of the casing 21, and in a direction parallel to the pn junction surface as seen from the laser beam emission surface. Are arranged in the Y'-axis direction, and the direction perpendicular to the pn junction surface when viewed from the laser beam emitting surface is the Z'-axis direction. The X'axis direction corresponds to the extending direction of the rails RR, RL, the Y'axis direction corresponds to the width direction of the tunnel T, and the Z'axis direction corresponds to the height direction of the tunnel T.

【0034】また、上記集光レンズ系24は、図に示すよ
うに、Z′軸方向においてレンズ作用を持つ姿勢で配設
された第1円筒面凹レンズ27a及び第2円筒面凸レンズ
27bと、Y′軸方向においてレンズ作用を持つ姿勢で上
記第2円筒面凸レンズ27bよりも前方である光通過用窓
部21a側に配設された第3円筒面凸レンズ28とにより構
成されている。
Further, as shown in the figure, the condenser lens system 24 includes a first cylindrical concave lens 27a and a second cylindrical convex lens 27a arranged in a posture having a lens action in the Z'-axis direction.
27b, and a third cylindrical convex lens 28 disposed on the light passage window 21a side in front of the second cylindrical convex lens 27b in a posture having a lens action in the Y'axis direction. ..

【0035】このように構成される光源装置2では、光
源として高出力型半導体レーザ22を用い、Z′X′面内
においては、高出力型半導体レーザ22からのレーザビー
ムをコリメートレンズ23で平行光とした後、第1円筒面
凹レンズ27a及び第2円筒面凸レンズ27bにより、その
ビームの厚みを拡大しこの厚みが拡大されたレーザビー
ムを収束性を与えて円錐状反射鏡26へ導くようにしてい
る。一方、Y′X′面内においては、コリメートレンズ
23を通過した発散性を有するレーザビームを第3円筒面
凸レンズ28により収束性を与えて円錐状反射鏡26へ導く
ようにしている。なお、円形アパチャー25は、集光レン
ズ系24を通過したレーザビームの断面形状を円形に整え
るためのものである。このようになされたレーザビーム
を円錐状反射鏡26により方向変換してトンネルT壁面及
びレールRR,RLへ向けて厚み数mm程度の放射状に広がる
平板状の光束Sとして投射するようにしている。
In the light source device 2 thus constructed, the high power semiconductor laser 22 is used as a light source, and the laser beam from the high power semiconductor laser 22 is collimated by the collimator lens 23 in the Z'X 'plane. After forming the light, the first cylindrical concave lens 27a and the second cylindrical convex lens 27b are used to expand the thickness of the beam, and the laser beam having the expanded thickness is converged and guided to the conical reflecting mirror 26. ing. On the other hand, in the Y'X 'plane, a collimating lens
The divergent laser beam that has passed through 23 is converged by the third cylindrical convex lens 28 and guided to the conical reflecting mirror 26. The circular aperture 25 is for adjusting the cross-sectional shape of the laser beam that has passed through the condenser lens system 24 into a circular shape. The laser beam thus formed is redirected by the conical reflecting mirror 26 and projected as a flat beam S having a radial thickness of about several mm toward the tunnel T wall surface and the rails RR and RL.

【0036】図6はトンネル壁面上に生じた光切断線に
関する構造物用テレビカメラによる光切断線画像の説明
図、図7はレール上に生じた光切断線に関するレール用
テレビカメラによる光切断線画像の説明図である。上記
の画像処理装置5では、構造物用テレビカメラ3から1
フィールド毎(1/60秒)に与えられる映像信号につい
て、各水平走査線上における輝度レベルが所定値以上に
変化する位置を検出することにより、光切断画像上での
トンネルT壁面を示す光切断線の二次元座標Ck (u,
v),k=1〜Nをビデオレート(1/60秒)にて求める
ようにしている。ここで、kは水平走査線の番号を表
す。
FIG. 6 is an explanatory view of an image of a light cutting line by a structure television camera regarding a light cutting line generated on a wall surface of a tunnel, and FIG. 7 is a light cutting line by a television camera for a rail related to a light cutting line generated on a rail. It is explanatory drawing of an image. In the above image processing device 5, the structure television cameras 3 to 1
For the video signal given to each field (1/60 second), the position where the brightness level on each horizontal scanning line changes to a predetermined value or more is detected, and the light cutting line showing the tunnel T wall surface on the light cutting image is detected. Two-dimensional coordinates C k (u,
v) and k = 1 to N are calculated at the video rate (1/60 seconds). Here, k represents the number of the horizontal scanning line.

【0037】また、画像処理装置5では、レール用テレ
ビカメラ4から1フィールド毎(1/60秒)に与えられる
映像信号について、各水平走査線上における輝度レベル
が所定値以上に変化する位置のパータンの特徴を抽出す
ることにより、右側レールRRの上面内側の縁部位置を示
す光切断線の二次元座標Ck=kR(u,v)と、左側レー
ルRLの上面内側の縁部位置を示す光切断線の二次元座標
k=kL(u,v)とをビデオレート(1/60秒)にて求め
るようにしている。ここで、kRは右側レールRRの上面
内側の縁部を示す光切断線位置に対応する水平走査線の
番号を表し、kLは左側レールRLの上面内側の縁部を示
す光切断線位置に対応する水平走査線の番号を表す。
Further, in the image processing apparatus 5, for the video signal provided from the rail television camera 4 for each field (1/60 seconds), the pattern at the position where the brightness level on each horizontal scanning line changes to a predetermined value or more. By extracting the characteristic of the right rail RR, the two-dimensional coordinates C k = kR (u, v) of the light cutting line indicating the edge position inside the upper surface of the right rail RR and the edge position inside the upper surface of the left rail RL are shown. The two-dimensional coordinates C k = kL (u, v) of the light section line are obtained at the video rate (1/60 seconds). Here, kR represents the number of the horizontal scanning line corresponding to the light cutting line position indicating the inner edge of the upper surface of the right rail RR, and kL corresponds to the light cutting line position indicating the inner edge of the upper surface of the left rail RL. The number of horizontal scanning lines to be displayed.

【0038】次に上記構成になるこの実施例における三
次元形状計測装置の全体的な動作について、図1〜図4
を参照しながら説明する。なお、図3は図1に示す三次
元形状計測装置による三次元形状計測方法を説明するた
めの図、図4は図3におけるレール間の中点を求める方
法を説明するための図である。
Next, the overall operation of the three-dimensional shape measuring apparatus of this embodiment having the above-mentioned configuration will be described with reference to FIGS.
Will be described with reference to. 3 is a diagram for explaining a three-dimensional shape measuring method by the three-dimensional shape measuring apparatus shown in FIG. 1, and FIG. 4 is a diagram for explaining a method for obtaining a midpoint between rails in FIG.

【0039】光源装置2によって移動台車1の走行方向
に略直交する面内に放射状に四方に広がる平板状光Sが
投射されると、構造物用テレビカメラ3によりトンネル
T壁面上に生じる光切断線が移動台車1の走行にともな
って撮像され、その映像信号が1フィールド毎(1/60
秒)に画像処理装置5に順次与えられる。また、レール
用テレビカメラ4によりレールRR,RL上に生じる光切断
線が移動台車1の走行ににともなって撮像され、その映
像信号が1フィールド毎(1/60秒)に画像処理装置5に
順次与えられる。
When the light source device 2 projects a flat plate-shaped light S that spreads radially in four directions in a plane substantially orthogonal to the traveling direction of the moving carriage 1, the structure TV camera 3 causes light cutting on the wall surface of the tunnel T. The line is imaged as the mobile trolley 1 travels, and the video signal is captured for each field (1/60
Second) to the image processing device 5 sequentially. Further, the rail TV camera 4 captures an image of an optical cutting line generated on the rails RR and RL as the moving carriage 1 travels, and the video signal is sent to the image processing device 5 for each field (1/60 seconds). Sequentially given.

【0040】ところで、この三次元形状計測装置は、上
記のようにトンネルT壁面上及びレールRR,RL上に生じ
る光切断線を順次撮像し、トンネルTの1断面i毎の上
記光切断線の位置座標に基づいて、レールRR,RLに沿う
トンネルT壁面の三次元形状を移動台車1を走行させな
がら計測するようにしたものである。したがって、理解
を容易にするため、トンネルTの1断面iにおける動作
について以下に説明する。
By the way, this three-dimensional shape measuring apparatus sequentially images the optical cutting lines generated on the wall surface of the tunnel T and the rails RR and RL as described above, and detects the optical cutting lines of each cross section i of the tunnel T. Based on the position coordinates, the three-dimensional shape of the wall surface of the tunnel T along the rails RR and RL is measured while the moving carriage 1 is running. Therefore, in order to facilitate understanding, the operation of the tunnel T in one cross section i will be described below.

【0041】すなわち、画像処理装置5では、トンネル
Tの1断面iにおける構造物用テレビカメラ3によって
得られる光切断画像上でのトンネルT壁面を示す光切断
線の二次元座標Ck (u,v),k=1〜Nを求める。
また、トンネルTの1断面iにおけるレール用テレビカ
メラ4によって得られる光切断画像上での右側レールRR
の上面内側の縁部位置を示す光切断線の二次元座標C
k=kR(u,v)と、左側レールRLの上面内側の縁部位置
を示す光切断線の二次元座標Ck=kL(u,v)とを求め
る。ビデオレート(1/60秒)にて得られたこれらの二次
元座標のデータを、ブランキング時間(約 1.2msec)の
期間に計算機6に与える。
That is, in the image processing apparatus 5, the two-dimensional coordinate C k (u, u of the light cutting line indicating the wall surface of the tunnel T on the light cutting image obtained by the structure television camera 3 in one section i of the tunnel T is shown. v), k = 1 to N is calculated.
In addition, the right rail RR on the light section image obtained by the rail TV camera 4 in one section i of the tunnel T
Two-dimensional coordinates C of the light cutting line indicating the edge position inside the upper surface of the
k = kR (u, v) and the two-dimensional coordinate C k = kL (u, v) of the light cutting line indicating the edge position inside the upper surface of the left rail RL are obtained . The data of these two-dimensional coordinates obtained at the video rate (1/60 seconds) are given to the computer 6 during the blanking time (about 1.2 msec).

【0042】上記のような二次元座標のデータが与えら
れると、計算機6は、次のフィールド時間(約16msec)
の間に、まず、画像処理装置5で得た光切断画像上での
トンネルT壁面を示す光切断線の二次元座標Ck (u,
v),k=1〜Nに基づいて、構造物用テレビカメラ3
を原点O1iとする構造物用カメラ直交座標系O1i−XY
ZにおけるトンネルT壁面上の光切断線の三次元座標P
i k (Xi k ,Yi k ,Zi k ),k=1 〜Nを、式
(3)〜式(5)により算出する。
When the above-mentioned two-dimensional coordinate data is given, the computer 6 determines the next field time (about 16 msec).
In the meantime, first, the two-dimensional coordinates C k (u, u of the light cutting line indicating the wall surface of the tunnel T on the light cutting image obtained by the image processing device 5 are shown.
v), k = 1 to N based on the structure television camera 3
Structures camera Cartesian coordinate system as the origin O 1i an O 1i -XY
Three-dimensional coordinate P of the light cutting line on the wall surface of the tunnel T in Z
i k (X i k , Y i k , Z i k ), k = 1 to N is calculated by Expressions (3) to (5).

【0043】[0043]

【数2】 [Equation 2]

【0044】但し、m1 は構造物用テレビカメラ3の撮
像倍率、f1 は構造物用テレビカメラ3の焦点距離、X
i は構造物直交座標系O−XYZの原点Oからのトン
ネル断面iのX軸座標値である。
However, m 1 is an image pickup magnification of the structure television camera 3, f 1 is a focal length of the structure television camera 3, and X is
D i is the X-axis coordinate value of the tunnel section i from the origin O of the structure orthogonal coordinate system O-XYZ.

【0045】そして、構造物用テレビカメラ3の原点O
1iを始点とし、上記の式(3)〜式(5)により算出さ
れた点Pi k (Xi k ,Yi k ,Zi k )を終点とする
ベクトルPi k measを求める。
The origin O of the structure television camera 3
A vector P i k meas having 1i as a starting point and a point P i k (X i k , Y i k , Z i k ) calculated by the above equations (3) to (5) as an end point is obtained.

【0046】また、画像処理装置5で得た光切断画像上
での右側レールRRの上面内側の縁部を示す光切断線の二
次元座標Ck=kR(u,v)に基づいて、レール用テレビ
カメラ4を原点O2iとするレール用カメラ直交座標系O
2i−XYZにおける右側レールRRの上面内側の縁部を示
す光切断線の三次元座標rRi(XRi,YRi,ZRi)を、
式(6)〜式(8)により算出する。
Further, based on the two-dimensional coordinates C k = kR (u, v) of the light cutting line indicating the inner edge of the upper surface of the right rail RR on the light cutting image obtained by the image processing device 5, Camera for rails Cartesian coordinate system O whose origin is O 2i
2i- XYZ, the three-dimensional coordinate r Ri (X Ri , Y Ri , Z Ri ) of the light cutting line showing the inner edge of the upper surface of the right rail RR is
It is calculated by the equations (6) to (8).

【0047】[0047]

【数3】 [Equation 3]

【0048】但し、m2 はレール用テレビカメラ4の撮
像倍率、f2 はレール用テレビカメラ4の焦点距離であ
る。
However, m 2 is the image pickup magnification of the rail TV camera 4, and f 2 is the focal length of the rail TV camera 4.

【0049】さらに、画像処理装置5で得た光切断画像
上での左側レールRLの上面内側の縁部を示す光切断線の
二次元座標Ck=kL(u,v)に基づいて、レール用テレ
ビカメラ4を原点O2iとするレール用カメラ直交座標系
2i−XYZにおける左側レールRLの上面内側の縁部を
示す光切断線の三次元座標rLi(XLi,YLi,ZLi
を、式(9)〜式(11)により算出する。
Further, based on the two-dimensional coordinates C k = kL (u, v) of the light cutting line indicating the inner edge of the upper surface of the left rail RL on the light cutting image obtained by the image processing device 5, Three-dimensional coordinate r Li (X Li , Y Li , Z Li of the light cutting line indicating the inner edge of the upper surface of the left rail RL in the rail camera orthogonal coordinate system O 2i -XYZ with the television camera 4 as the origin O 2i. )
Is calculated by the equations (9) to (11).

【0050】[0050]

【数4】 [Equation 4]

【0051】そして、レール用テレビカメラ4の原点O
2iを始点とし、上記の式(6)〜式(8)により算出さ
れた点rRi(XRi,YRi,ZRi)を終点とするベクトル
Riと、原点O2iを始点とし、上記の式(9)〜式(1
1)により算出された点rLi(XLi,YLi,ZLi)を終
点とするベクトルRLiとを求める。これらのベクトルR
Ri,RLiから、ROi=(RRi+RLi)/2の計算によ
り、原点O2iを始点とし、レールRR,RL間の中点Oi
終点とするベクトルROiを求めることができる。
The origin O of the rail TV camera 4
2iIs calculated by the above equations (6) to (8).
Point rRi(XRi, YRi, ZRi) Is the end vector
RRiAnd the origin O2iStarting from, the above equations (9) to (1
Point r calculated by 1)Li(XLi, YLi, ZLi) End
Vector R to be a pointLiAnd ask. These vectors R
Ri, RLiFrom ROi= (RRi+ RLi) / 2 calculation
Origin O2iStarting point is, midpoint O between rails RR and RLiTo
Vector R to be the end pointOiCan be asked.

【0052】一方、構造物用テレビカメラ3とレール用
テレビカメラ4とは剛体的に固定されており、その位置
関係は予め定められているので、レール用テレビカメラ
4の原点O2iを始点とし、構造物用テレビカメラ3の原
点O1iを終点とするベクトルKは一定である。したがっ
て、レールRR,RL間の中点Oi を始点とし、点P
i k (Xi k ,Yi k ,Zi k )を終点とするベクトル
i k trueは、Pi k true=Pi k meas+K−ROiによ
り与えられる。
On the other hand, since the structure TV camera 3 and the rail TV camera 4 are rigidly fixed and their positional relationship is predetermined, the origin O 2i of the rail TV camera 4 is used as the starting point. , The vector K having the origin O 1i of the structure television camera 3 as an end point is constant. Therefore, starting from the middle point O i between the rails RR and RL, the point P
A vector P i k true whose end point is i k (X i k , Y i k , Z i k ) is given by P i k true = P i k meas + K−R Oi .

【0053】これにより、レールRR,RL間の中点Oi
基準点としてトンネルT壁面上の光切断線の三次元座標
を求めることができるので、走行中の移動台車1がレー
ルRR,RL上で動揺しても、走行中の移動台車の動揺によ
る計測誤差を極めて小さくすることができる。したがっ
て、このようにして得られたトンネルTの1断面iにお
けるトンネルT壁面上の光切断線の三次元座標を移動台
車1を走行させながら順次求めて行くことにより、レー
ルRR,RLに沿うトンネルT壁面の三次元形状を短時間で
且つ精度良く計測することができる。
As a result, the three-dimensional coordinates of the light cutting line on the wall surface of the tunnel T can be obtained by using the midpoint O i between the rails RR and RL as a reference point. Even if the vehicle is shaken, the measurement error due to the shaking of the moving carriage during traveling can be made extremely small. Therefore, by sequentially obtaining the three-dimensional coordinates of the light cutting line on the wall surface of the tunnel T in the one cross section i of the tunnel T thus obtained while the traveling carriage 1 is running, the tunnel along the rails RR and RL is obtained. It is possible to accurately measure the three-dimensional shape of the T wall surface in a short time.

【0054】[0054]

【発明の効果】以上説明したように、この発明によるト
ンネルなどの線路周辺構造物の三次元形状計測装置は、
画像処理手段により、軌道(レール)上を走行させる移
動台車に配設され線路周辺構造物上(例えばトンネル壁
面上)の光切断線を撮像する第1の撮像装置を基準点と
して、線路周辺構造物上の光切断線の三次元座標を求め
るとともに、移動台車に配設され軌道上の光切断線を撮
像する第2の撮像装置を基準点として、軌道の特定部位
を示す光切断線の三次元座標を求める一方、計算手段に
より、これらの三次元座標と、第1の撮像装置と第2の
撮像装置との予め設定された位置関係を示す座標とに基
づいて、移動台車の走行に応じて軌道間の中点を基準点
として線路周辺構造物上の光切断線の三次元座標を求め
るように構成されている。したがって、軌道に沿う例え
ばトンネル壁面の三次元形状を計測する場合、この発明
による線路周辺構造物の三次元形状計測装置によると、
移動台車の走行に応じて軌道間の中点を基準点としてト
ンネル壁面上の光切断線の三次元座標を求めるようにし
たので、走行中の移動台車の動揺による計測誤差を極め
て小さくすることができ、軌道に沿うトンネル壁面の三
次元形状を短時間で且つ精度良く計測することができ
る。
As described above, the three-dimensional shape measuring apparatus for a line peripheral structure such as a tunnel according to the present invention is
Using the image processing means as a reference point, the first image pickup device that is arranged on a moving carriage that travels on a track (rail) and picks up an optical cutting line on a line peripheral structure (for example, on a tunnel wall surface) is used as a reference point. The three-dimensional coordinates of the light cutting line on the object are obtained, and the third line of the light cutting line indicating a specific portion of the track is set with the second image pickup device provided on the moving carriage for imaging the light cutting line on the track as a reference point. While the original coordinates are obtained, the calculation means determines, based on these three-dimensional coordinates and the coordinates indicating the preset positional relationship between the first image pickup device and the second image pickup device, whether or not the moving carriage is traveling. The three-dimensional coordinates of the light cutting line on the line peripheral structure are obtained by using the midpoint between the tracks as a reference point. Therefore, when measuring the three-dimensional shape of the tunnel wall surface along the track, for example, according to the three-dimensional shape measuring apparatus for a line peripheral structure according to the present invention,
Since the three-dimensional coordinates of the light cutting line on the tunnel wall surface are determined using the midpoint between the tracks as a reference point according to the traveling of the moving carriage, the measurement error due to the shaking of the moving carriage during travel can be made extremely small. Therefore, the three-dimensional shape of the tunnel wall surface along the track can be measured accurately in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例による線路周辺構造物の三
次元形状計測装置の全体構成を示す図である。
FIG. 1 is a diagram showing an overall configuration of a three-dimensional shape measuring apparatus for a line peripheral structure according to an embodiment of the present invention.

【図2】図1に示す三次元形状計測装置の概略を示す斜
視図である。
FIG. 2 is a perspective view showing an outline of the three-dimensional shape measuring apparatus shown in FIG.

【図3】図1に示す三次元形状計測装置による三次元形
状計測方法を説明するための図である。
FIG. 3 is a diagram for explaining a three-dimensional shape measuring method by the three-dimensional shape measuring apparatus shown in FIG.

【図4】図3におけるレール間の中点を求める方法を説
明するための図である。
FIG. 4 is a diagram for explaining a method for obtaining a midpoint between rails in FIG.

【図5】図1に示す三次元形状計測装置の光源装置の構
成説明図である。
5 is a configuration explanatory view of a light source device of the three-dimensional shape measuring apparatus shown in FIG.

【図6】トンネル壁面上に生じた光切断線に関する構造
物用テレビカメラによる光切断線画像の説明図である。
FIG. 6 is an explanatory diagram of an optical cutting line image by a structure television camera regarding the optical cutting line generated on the wall surface of the tunnel.

【図7】レール上に生じた光切断線に関するレール用テ
レビカメラによる光切断線画像の説明図である。
FIG. 7 is an explanatory diagram of an optical cutting line image by a rail television camera regarding the optical cutting line generated on the rail.

【図8】従来技術に係るトンネル断面測定装置の概念図
である。
FIG. 8 is a conceptual diagram of a tunnel cross-section measuring device according to a conventional technique.

【図9】図8に示すトンネル断面測定装置の測定機本体
の外観斜視図である。
9 is an external perspective view of a measuring machine body of the tunnel cross-section measuring apparatus shown in FIG.

【図10】従来技術に係る線路周辺構造物の形状計測装
置の全体構成を示す図である。
FIG. 10 is a diagram showing an overall configuration of a shape measuring apparatus for a peripheral structure of a line according to a conventional technique.

【図11】図10に示す形状計測装置の概略を示す斜視
図である。
11 is a perspective view showing an outline of the shape measuring apparatus shown in FIG.

【符号の説明】[Explanation of symbols]

1…移動台車 2…光源装置 3…構造物用テレビカメ
ラ 4…レール用テレビカメラ 5…画像処理装置 6
…計算機 21…ケーシング 21a…光通過用窓部 22…
高出力型半導体レーザ 23…コリメートレンズ24…集光
レンズ系 25…円形アパチャー 26…円錐状反射鏡27a
…第1円筒面凹レンズ 27b…第2円筒面凸レンズ 28
…第3円筒面凸レンズ RR,RL…レール T…トンネル
S…平板状光
DESCRIPTION OF SYMBOLS 1 ... Mobile trolley 2 ... Light source device 3 ... TV camera for structures 4 ... TV camera for rails 5 ... Image processing device 6
… Calculator 21… Casing 21a… Light-passing window 22…
High-power semiconductor laser 23 ... Collimating lens 24 ... Condensing lens system 25 ... Circular aperture 26 ... Conical reflecting mirror 27a
… First cylindrical concave lens 27b… Second cylindrical convex lens 28
… Third cylindrical convex lens RR, RL… Rail T… Tunnel S… Flat light

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西元 善郎 神戸市西区竹の台5−18−7 (72)発明者 後藤 有一郎 神戸市西区美賀多台1−4−1 (72)発明者 山口 証 神戸市西区美賀多台1−4−1 (72)発明者 神 康晴 神戸市西区糀台2−26−3−416 (72)発明者 福本 陽三 神戸市北区泉台2−7−2 (72)発明者 内藤 ▲廣▼幸 神戸市灘区高羽町2−4−20 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshiro Nishimoto 5-18-7 Takenodai, Nishi-ku, Kobe City (72) Inventor Yuichiro Goto 1-4-1 Migatadai, Nishi-ku, Kobe City (72) Inventor Yamaguchi Certificate Kobe 1-4-1 Migatadai, Nishi-ku, Yokohama (72) Inventor Yasuharu Kami 2-26-3-416 Kojidai, Nishi-ku, Kobe (72) Inventor Yozo Fukumoto 2-7-2 Izumidai, Kita-ku, Kobe (72) Inventor Naito ▲ Hiro ▼ Sai 2-4-20 Takaba-cho, Nada-ku, Kobe-shi

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 a:軌道上を走行する移動台車と、 b:前記移動台車に配設され、移動台車走行方向に略直
交する面内に放射状に広がる平板状光を投射する光源装
置と、 c:前記移動台車に前記光源装置より所定距離隔てて配
設され、前記光源装置からの平板状光によって線路周辺
構造物上に生じる光切断線を前記移動台車の走行にとも
なって順次撮像する第1の撮像装置と、 d:前記移動台車に前記光源装置より所定距離隔てて配
設され、前記光源装置からの平板状光によって軌道上に
生じる光切断線を前記移動台車の走行にともなって順次
撮像する第2の撮像装置と、 e:前記第1の撮像装置によって得られる光切断画像毎
にその画像上での線路周辺構造物を示す光切断線の二次
元座標を求めるとともに、前記第2の撮像装置によって
得られた光切断画像毎にその画像上での軌道の特定部位
を示す光切断線の二次元座標を求める画像処理手段と、 f:前記画像処理手段によって得られる光切断画像上で
の線路周辺構造物を示す光切断線の二次元座標に基づい
て、前記第1の撮像装置を基準点として線路周辺構造物
上の光切断線の三次元座標を求めるとともに、前記画像
処理手段によって得られた光切断画像上での軌道の特定
部位を示す光切断線の二次元座標に基づいて、前記第2
の撮像装置を基準点として軌道の特定部位を示す光切断
線の三次元座標を求め、これらの三次元座標,及び前記
第1の撮像装置と前記第2の撮像装置との位置関係を示
す座標とに基づいて、前記移動台車の走行に応じて軌道
間の中点を基準点として線路周辺構造物上の光切断線の
三次元座標を求める計算手段と、 を備えたことを特徴とする線路周辺構造物の三次元形状
計測装置。
1. a: a moving carriage that travels on a track; b: a light source device that is disposed on the moving carriage and projects flat light that spreads radially in a plane substantially orthogonal to the traveling direction of the moving carriage; c: A light-cutting line which is disposed on the movable carriage at a predetermined distance from the light source device and sequentially picks up a light cutting line generated on the line peripheral structure by the plate-shaped light from the light source device as the movable carriage travels. 1) the image pickup device, and d: a light cutting line which is disposed on the moving carriage at a predetermined distance from the light source device and which is generated on the track by the flat light from the light source device as the moving carriage travels. A second image pickup device for picking up an image, e: for each light cut image obtained by the first image pickup device, two-dimensional coordinates of a light cut line indicating a line peripheral structure on the image are obtained, and By the imaging device Image processing means for obtaining the two-dimensional coordinates of the light cutting line indicating a specific portion of the trajectory on each of the obtained light cutting images; and f: a line peripheral structure on the light cutting image obtained by the image processing means. Based on the two-dimensional coordinates of the light cutting line indicating the object, the three-dimensional coordinates of the light cutting line on the line peripheral structure are obtained with the first image pickup device as a reference point, and the light obtained by the image processing means is obtained. Based on the two-dimensional coordinates of the light cutting line indicating the specific portion of the trajectory on the cut image, the second
The three-dimensional coordinates of the light cutting line indicating the specific part of the trajectory are obtained by using the image pickup device as a reference point, and these three-dimensional coordinates and the coordinates indicating the positional relationship between the first image pickup device and the second image pickup device. And a calculation means for determining the three-dimensional coordinates of the light cutting line on the line peripheral structure based on the midpoint between the tracks according to the traveling of the moving carriage as a reference point. Three-dimensional shape measuring device for peripheral structures.
JP33210191A 1991-12-16 1991-12-16 Three-dimensional shape measurement device for structures around railway tracks Expired - Lifetime JP2883236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33210191A JP2883236B2 (en) 1991-12-16 1991-12-16 Three-dimensional shape measurement device for structures around railway tracks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33210191A JP2883236B2 (en) 1991-12-16 1991-12-16 Three-dimensional shape measurement device for structures around railway tracks

Publications (2)

Publication Number Publication Date
JPH05164519A true JPH05164519A (en) 1993-06-29
JP2883236B2 JP2883236B2 (en) 1999-04-19

Family

ID=18251163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33210191A Expired - Lifetime JP2883236B2 (en) 1991-12-16 1991-12-16 Three-dimensional shape measurement device for structures around railway tracks

Country Status (1)

Country Link
JP (1) JP2883236B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168617A (en) * 2000-12-01 2002-06-14 Shinei Denshi Keisokki Kk Device and system for measuring tubular object such as tunnel
JP2003004422A (en) * 2001-06-18 2003-01-08 Taisei Corp Tunnel-shape three-dimensional measurement apparatus and method
JP2007046952A (en) * 2005-08-08 2007-02-22 West Japan Railway Co Measuring ruler, measuring system, measuring method, method for measuring tunnel cross section, and method for measuring separation between platform and rail
JP2007285891A (en) * 2006-04-17 2007-11-01 Toru Yoshizawa Inside surface shape measuring method and measuring apparatus using the method
JP2010164334A (en) * 2009-01-13 2010-07-29 Ihi Corp Device and method for measuring inside shape
JP2011069747A (en) * 2009-09-26 2011-04-07 Sohatsu System Kenkyusho:Kk Tunnel data processing system and tunnel data processing method
JP2014095627A (en) * 2012-11-09 2014-05-22 West Nippon Expressway Engineering Shikoku Co Ltd Device for examining surface of road structure
JP2017133980A (en) * 2016-01-29 2017-08-03 東日本旅客鉄道株式会社 Three-dimensional shape measurement device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168617A (en) * 2000-12-01 2002-06-14 Shinei Denshi Keisokki Kk Device and system for measuring tubular object such as tunnel
JP2003004422A (en) * 2001-06-18 2003-01-08 Taisei Corp Tunnel-shape three-dimensional measurement apparatus and method
JP2007046952A (en) * 2005-08-08 2007-02-22 West Japan Railway Co Measuring ruler, measuring system, measuring method, method for measuring tunnel cross section, and method for measuring separation between platform and rail
JP2007285891A (en) * 2006-04-17 2007-11-01 Toru Yoshizawa Inside surface shape measuring method and measuring apparatus using the method
JP2010164334A (en) * 2009-01-13 2010-07-29 Ihi Corp Device and method for measuring inside shape
JP2011069747A (en) * 2009-09-26 2011-04-07 Sohatsu System Kenkyusho:Kk Tunnel data processing system and tunnel data processing method
JP2014095627A (en) * 2012-11-09 2014-05-22 West Nippon Expressway Engineering Shikoku Co Ltd Device for examining surface of road structure
JP2017133980A (en) * 2016-01-29 2017-08-03 東日本旅客鉄道株式会社 Three-dimensional shape measurement device

Also Published As

Publication number Publication date
JP2883236B2 (en) 1999-04-19

Similar Documents

Publication Publication Date Title
US6094269A (en) Apparatus and method for optically measuring an object surface contour
CN106338244B (en) measuring machine and method for acquiring small-scale 3D information
JPS60185108A (en) Method and device for measuring body in noncontacting manner
US4700045A (en) Seam tracking system with acousto-optical scanner
US6927864B2 (en) Method and system for determining dimensions of optically recognizable features
JP2883236B2 (en) Three-dimensional shape measurement device for structures around railway tracks
JP3065367B2 (en) Shape measurement device for structures around railway tracks
JP2017053793A (en) Measurement device, and manufacturing method of article
JPH06207812A (en) Measurement point indicator for three-dimensional measurement
US4973152A (en) Method and device for the noncontact optical measurement of paths, especially in the triangulation method
US20030142324A1 (en) Optoelectronic measuring method and distance measuring device for carrying out the method
JPH0618223A (en) Optical measuring method of remote object
JPH10185514A (en) Coil position detector
JP2625222B2 (en) Coil position detection device
JPH0560529A (en) Height measuring device
JPS5855804A (en) Body detecting device
JPH07324913A (en) Measuring method of dimension
JPH10185515A (en) Coil position detector
JPH09329417A (en) Light projector-receiver inter-calibration method for three-dimensional measurement
JPS6248163B2 (en)
JPH0334563B2 (en)
JPH07218227A (en) Method and apparatus for measuring sectional shape
JP3201297B2 (en) Coil position detection device
JPH10185519A (en) Coil locator
JP3414230B2 (en) Coil position detection device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080205

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090205

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100205

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100205

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110205

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120205

Year of fee payment: 13

EXPY Cancellation because of completion of term