JP2007285891A - Inside surface shape measuring method and measuring apparatus using the method - Google Patents

Inside surface shape measuring method and measuring apparatus using the method Download PDF

Info

Publication number
JP2007285891A
JP2007285891A JP2006113713A JP2006113713A JP2007285891A JP 2007285891 A JP2007285891 A JP 2007285891A JP 2006113713 A JP2006113713 A JP 2006113713A JP 2006113713 A JP2006113713 A JP 2006113713A JP 2007285891 A JP2007285891 A JP 2007285891A
Authority
JP
Japan
Prior art keywords
light
shape
measured
measuring
trace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006113713A
Other languages
Japanese (ja)
Inventor
Toru Yoshizawa
徹 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006113713A priority Critical patent/JP2007285891A/en
Publication of JP2007285891A publication Critical patent/JP2007285891A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring the interior surface shape of an object in a noncontact manner of utilizing optical means, and to provide a measuring apparatus that uses the method. <P>SOLUTION: The interior surface shape measuring method is intended for industrial products, having internal space, such as various kinds of pipes and engine blocks and the interior of living organs, such as human oral cavity. In order to measure the cross-sectional shape of the interior to be measured 3, a disc-shaped light beam Sb is irradiated at a predetermined position of the interior to be measured; the trace of light, indicating the interior shape due to the irradiation light Sb, is imaged by an imaging sensor 2 and the image data of the trace of light are accumulated; and the distance between the reference position of an imaging system, including the imaging sensor 2 and the interior surface to be measured 3, is calculated from the accumulated image data of the trace of light, to measure the shape Ip of the interior surface to be measured 3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は各種の管やエンジンブロックなどの内部空間を有する工業製品、或は、人体の口腔など生体器官の内部形状を非接触で測定する方法並びにその方法を用いた測定装置に関する。   The present invention relates to an industrial product having an internal space such as various pipes and engine blocks, or a method for measuring the internal shape of a living organ such as the oral cavity of a human body in a non-contact manner and a measuring apparatus using the method.

様々な物体の内部形状の測定は、各種パイプの内径測定をはじめとしてエンジンなどの内部形状の測定など多くの工業分野において高い需要がある。また、工業用に限らず、例えば医学や歯学の分野にあっても口腔内形状や胃の内部形状などについての測定要求がある。しかも、これらの測定では対象物の内面に接触しないで測定すること(非接触測定)が望まれている。   The measurement of the internal shape of various objects is in high demand in many industrial fields such as the measurement of the internal shape of engines, as well as the measurement of the internal diameter of various pipes. Moreover, there is a demand for measurement of the intraoral shape, the internal shape of the stomach, and the like even in the fields of medicine and dentistry, not limited to industrial use. Moreover, in these measurements, it is desired to perform measurement without contact with the inner surface of the object (non-contact measurement).

しかし乍ら、これまでには内部形状を非接触で測定したり観測する適切な測定手法が見つからないために、対象物の内面に触れながら計測する方式やファイバースコープなどにより観察して検査するなどの方法がとられてきた(特許文献1,2参照)。
特開2004−101190号公報 特開平11−23237号公報
However, since no suitable measurement method for measuring or observing the internal shape without contact has been found so far, the method of measuring while touching the inner surface of the object or inspecting and inspecting with a fiberscope, etc. Has been adopted (see Patent Documents 1 and 2).
JP 2004-101190 A Japanese Patent Laid-Open No. 11-23237

そこで本発明は、光学的な手段を利用して対象物内面の形状を非接触で測定する方法とこの方法を用いた測定装置について提供することを課題とする。
即ち、シート状の光の帯によって対象物の内部を照明し、そのシート状の光によりいわゆる光切断された対象物の断面(内面)をCCDなどのイメージセンサ(以下、撮像センサともいう)によって捉え、これにより当該対象物の内径や内部形状を非接触で測定する方法と、この方法を用いた測定装置を提供することが本発明の課題である。
Therefore, an object of the present invention is to provide a method for measuring the shape of the inner surface of an object in a non-contact manner using an optical means and a measuring apparatus using this method.
That is, the inside of an object is illuminated by a sheet-like light band, and a cross-section (inner surface) of the object so-called light-cut by the sheet-like light is imaged by an image sensor (hereinafter also referred to as an imaging sensor) such as a CCD. It is an object of the present invention to provide a method for measuring the inner diameter and the internal shape of the target object in a non-contact manner, and a measuring apparatus using this method.

上記課題を解決することを目的としてなされた本発明による内部形状の測定方法の構成は、各種の管やエンジンブロックなどの内部空間を有する工業製品や人体の口腔などの生体器官の内部を測定対象としその対象内面の断面形状を測定するに当り、測定する内面の所定位置に光ビームを円盤状に照射し、その照射光による内面形状を表わす光跡を撮像センサにより撮影して前記光跡の画像データを蓄積し、蓄積した光跡画像のデータから前記撮像センサを含む撮影系の基準位置と測定対象内面との距離を算出して当該内面の形状を測定することを特徴とするものである。   The configuration of the internal shape measuring method according to the present invention, which has been made for the purpose of solving the above-mentioned problems, is an object to be measured inside an industrial product having an internal space such as various pipes or engine blocks, or a living organ such as a human oral cavity. In measuring the cross-sectional shape of the inner surface of the object, a light beam is irradiated in a disk shape at a predetermined position on the inner surface to be measured, and a light trace representing the inner surface shape by the irradiated light is photographed by an imaging sensor, and The image data is accumulated, the distance between the reference position of the imaging system including the imaging sensor and the inner surface of the measurement target is calculated from the accumulated light trace image data, and the shape of the inner surface is measured. .

次に、上記課題を解決することができる本発明による内部形状の測定装置の構成は、各種の管やエンジンブロックなどの内部空間を有する工業製品や人体の口腔などの生体器官の内部を測定対象としその内面形状を測定する装置において、測定対象の所定位置に光ビームを円盤状に広げて照射する手段と、照射した光ビームにより測定対象の内面をセクショニングすることによって得られる前記対象の断面光跡を撮影する撮影手段と、撮影した光跡画像の座標データから撮影光学系の基準位置と測定対象内面との距離を算出する距離算出手段とを備えたことを特徴とするものである。   Next, the configuration of the internal shape measuring device according to the present invention that can solve the above-mentioned problems is to measure the inside of a living organ such as an industrial product or an oral cavity of a human body having internal spaces such as various tubes and engine blocks. In the apparatus for measuring the inner surface shape of the target object, the cross-sectional light of the target obtained by sectioning the inner surface of the measurement target with the irradiated light beam and means for irradiating the measurement target with a light beam in a disc shape It is characterized by comprising photographing means for photographing a trace and distance calculating means for calculating the distance between the reference position of the photographing optical system and the inner surface of the measurement object from the coordinate data of the photographed light trace image.

上記の測定装置において光跡撮影手段は、光源の光を円錐ミラー又は円錐プリズムにより光シート状に照射する光学系と撮像センサ型の撮影手段により構成し、前記光学系と撮影手段を一緒に移動させるようにしておき、対象内面に対しその内面形状の測定を一断面について行った後、前記光学系と撮影手段を逐次的に移動させ、各移動位置における内面形状を次々と測定するようにした。本明細書では、光シート状の照射を光ビームの円盤状照射ともいう。   In the above measuring apparatus, the light trace photographing means is composed of an optical system that irradiates light from the light source in the form of a light sheet with a conical mirror or conical prism, and an imaging sensor type photographing means, and the optical system and the photographing means are moved together. After measuring the inner surface shape of the target inner surface for one cross section, the optical system and the photographing means were sequentially moved so that the inner surface shape at each moving position was measured one after another. . In this specification, light sheet-like irradiation is also referred to as disk-like irradiation of a light beam.

本発明は、対象物の内面(断面)形状の測定において、測定対象内面の所定位置に光ビームを円盤状に照射して光ビームを円周方向に走査させることなく撮影を行い、内面形状を表わす光跡を瞬時に捉えてその光跡の画像データを蓄積し、撮影した光跡画像のデータから撮影系の基準位置と測定対象内面との距離を算出して当該内面の形状を測定するようにしたから、物体の内面形状(内径を含む)を非接触方式で容易に測定することが可能になる。   In the measurement of the inner surface (cross-section) shape of an object, the present invention performs imaging without irradiating a predetermined position on the inner surface of the measurement object with a light beam in a disk shape and scanning the light beam in the circumferential direction. Instantly capture the light trace that represents it, accumulate the image data of the light trace, calculate the distance between the reference position of the imaging system and the inner surface of the measurement object from the data of the captured light trace, and measure the shape of the inner surface Therefore, the inner surface shape (including the inner diameter) of the object can be easily measured by a non-contact method.

次に本発明の実施の形態例について添付した図を参照しつつ説明する。
添付図において、図1は本発明の内部形状測定における測定原理を説明するために模式的に表した側断面図、図2は同じく測定原理を説明するための側断面図、図3は本発明の内部形状測定装置の一例を説明するための側断面図、図4は本発明で使用する円盤状ビームの発生原理を説明するための側面図、図5は本発明により測定した内面形状の測定例を説明するための斜視図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings.
In the attached drawings, FIG. 1 is a side sectional view schematically showing the measurement principle in the internal shape measurement of the present invention, FIG. 2 is a side sectional view for explaining the measurement principle, and FIG. 3 is the present invention. 4 is a side sectional view for explaining an example of the internal shape measuring apparatus, FIG. 4 is a side view for explaining the generation principle of the disc-shaped beam used in the present invention, and FIG. 5 is a measurement of the inner surface shape measured by the present invention. It is a perspective view for demonstrating an example.

図1,図2において、1はレーザ光などを光源としてシート状の光の帯(以下、シート光という)を生成するデバイス(以下、光源部1又は光源1という)であり、図4(a)に示す円錐ミラーeMや図4(b)に示す円錐プリズムePを用いて光源1の光ビームをシート状光Sb(又は円盤状の光Sb)に変換して出力する手段である。   1 and 2, reference numeral 1 denotes a device (hereinafter referred to as a light source unit 1 or a light source 1) that generates a sheet-like light band (hereinafter referred to as sheet light) using laser light or the like as a light source. ) Or a conical prism eP shown in FIG. 4B, the light beam from the light source 1 is converted into a sheet-like light Sb (or disk-like light Sb) and output.

2は、前記のシート状光Sbが対象物の内面に照射されて形成する線状の切断面、いわゆる光切断面を捉えるためのイメージセンサであり、CCDカメラやデジタルカメラなどの撮像センサを利用する。前記シート状光Sbは測定対象の内部3(又は内面3)に光のシート(帯)による断面線、つまり光切断面を形成する。   Reference numeral 2 denotes an image sensor for capturing a linear cut surface formed by irradiating the inner surface of the object with the sheet-like light Sb, that is, a so-called light cut surface, and uses an image sensor such as a CCD camera or a digital camera. To do. The sheet-like light Sb forms a cross-sectional line by a light sheet (band), that is, a light cut surface, in the interior 3 (or the inner surface 3) of the measurement object.

この光切断面を上記の撮像センサ(以下、カメラ2という)で捉え(撮影し)、対象内面上の点A,B(図1,図2参照)などの座標を算出する場合について述べる。   A case will be described in which this light cut surface is captured (captured) by the imaging sensor (hereinafter referred to as camera 2), and coordinates such as points A and B (see FIGS. 1 and 2) on the target inner surface are calculated.

図1において、いま、光源部1から対象内面3の上方へ向け照射されるシート状光Sbがその軸Gに直角であれば、対象内面3の点Aに当たり、その一点Aがカメラ2により捉えられ(撮影され)、そのときに見込まれる角度φが得られる。その結果、カメラ2と光源部1との間の距離がlと設定されていれば、図1の点Qからの距離QA=rが算出できる。   In FIG. 1, if the sheet-like light Sb emitted from the light source unit 1 toward the upper side of the target inner surface 3 is perpendicular to the axis G, it hits the point A on the target inner surface 3 and one point A is captured by the camera 2. The angle φ expected at that time is obtained. As a result, if the distance between the camera 2 and the light source unit 1 is set to 1, the distance QA = r from the point Q in FIG. 1 can be calculated.

ここで、光源部1の代表位置をP、カメラ2の代表位置をCで表すこととし、またカメラ2と光源部1の軸間距離はΔz離れているものとする。ここで、光源部1の光学素子(たとえば円錐型ミラーeMやプリズムeP)の精度が十分でなかったり、あるいは光学系の調整が厳密でない場合には、出射する光が光軸Gに直角でなく角度θ傾いて出射することとなって、光は点Aではなくて点Bに至ることとなる。この結果、点Aではなく点Bが測定されることとなる。すなわち図1に示すように点Aではなくて、点AからΔr,Δlだけ離れた点Bを測定することとなる。   Here, it is assumed that the representative position of the light source unit 1 is represented by P and the representative position of the camera 2 is represented by C, and the distance between the axes of the camera 2 and the light source unit 1 is Δz apart. Here, when the accuracy of the optical element (for example, the conical mirror eM or the prism eP) of the light source unit 1 is not sufficient or the adjustment of the optical system is not strict, the emitted light is not perpendicular to the optical axis G. The light is emitted at an angle θ, and the light reaches point B instead of point A. As a result, the point B is measured instead of the point A. That is, instead of the point A as shown in FIG. 1, the point B separated from the point A by Δr and Δl is measured.

この場合,図1から次の関係式(1),(2)が成り立つ。   In this case, the following relational expressions (1) and (2) hold from FIG.

Figure 2007285891
Figure 2007285891

Figure 2007285891
Figure 2007285891

ここで、角度φは点Bをカメラ2から見込む角度である。本来ならばカメラ2からの角度φ0となる点Aを測定したいのであるが、実際は点Bが測定されることとなる。
また、角度θは既知であり、カメラ2と光源部1の距離l(QC)や光軸間距離Δz((PQ)も設定値として既知である。しかし、角度θや光軸間距離Δzが存在するために点Aと点Bとの差Δr,Δlが生じてしまう。そこでこの場合に測定される点Bのカメラ軸からの距離r+Δrを求める。
これは上記の式(1)と式(2)とから簡単に次の式(3)により計算できる。
Here, the angle φ is an angle at which the point B is viewed from the camera 2. Originally, it is desired to measure the point A at the angle φ 0 from the camera 2, but actually the point B is measured.
Further, the angle θ is known, and the distance 1 (QC) between the camera 2 and the light source unit 1 and the optical axis distance Δz ((PQ) are also known as set values. However, the angle θ and the optical axis distance Δz are also known. Therefore, the difference Δr, Δl between the point A and the point B occurs, so the distance r + Δr from the camera axis of the point B measured in this case is obtained.
This can be easily calculated by the following equation (3) from the above equations (1) and (2).

Figure 2007285891
Figure 2007285891

このことは光源部1のビーム出射角である角度θが大きく影響することを示しており,距離Δrと距離Δlの関係は未知なのでθが大きくなると点Aとは離れた点Bが測定されてしまうことを示している。一方、図1からも容易に判るように、式(4)の関係があるので、式(3)と式(1)から次の式(5)と同(6)が得られる。   This indicates that the angle θ which is the beam emission angle of the light source unit 1 has a great influence, and since the relationship between the distance Δr and the distance Δl is unknown, when θ increases, a point B away from the point A is measured. It shows that it will end. On the other hand, as can be easily seen from FIG. 1, since there is a relation of the expression (4), the following expressions (5) and (6) are obtained from the expressions (3) and (1).

Figure 2007285891
Figure 2007285891

Figure 2007285891
Figure 2007285891

Figure 2007285891
Figure 2007285891

これは式(3)から判るように、角度θが0であれば、式(4)になり、このことは図2からも容易に判る。   As can be seen from equation (3), if angle θ is 0, equation (4) is obtained, and this can be easily understood from FIG.

ここで、もしも角度θが小さくできれば、式(5),(6)は次の式(7),(8)近似できる。   Here, if the angle θ can be reduced, the equations (5) and (6) can be approximated by the following equations (7) and (8).

Figure 2007285891
Figure 2007285891

Figure 2007285891
Figure 2007285891

このことは、角度θが0、すなわち光ビームが光軸Gに直角に出射するようにすれば距離ΔlやΔrは0とみなせることとなって、正確な内面の径が測定できることを意味している。   This means that if the angle θ is 0, that is, if the light beam is emitted at right angles to the optical axis G, the distances Δl and Δr can be regarded as 0, and an accurate inner surface diameter can be measured. Yes.

以上のことから,実際的な応用のためにはビーム出射角θをできるだけ微小とすることが,距離Δlや距離Δrを生じさせないために大切である。またカメラ2の光軸と光源部1の光軸との軸間距離Δzも小さくするような配置を行えば、内径が小さい場合にも測定装置を挿入し易くなるし、光源部1によって光切断面がケラレて観測できなくなることとも防ぐことができる。この場合には、測定装置の光学系は図2のようになる。   From the above, for practical application, it is important to make the beam emission angle θ as small as possible so as not to cause the distance Δl and the distance Δr. If the arrangement is made such that the distance Δz between the optical axis of the camera 2 and the optical axis of the light source unit 1 is also reduced, the measuring device can be easily inserted even when the inner diameter is small. It can also prevent the surface from being vignetted and unobservable. In this case, the optical system of the measuring apparatus is as shown in FIG.

図2の場合は上記の式において距離Δzが小さい場合に相当し、さらに光源部1の出射光の誤差角度θも小さくできれば、式(4)によって点Aまでの距離,すなわち内径や内部形状を知ることができることを意味している。   The case of FIG. 2 corresponds to the case where the distance Δz is small in the above equation, and if the error angle θ of the light emitted from the light source unit 1 can also be reduced, the distance to the point A, that is, the inner diameter and the internal shape can be obtained by equation (4). It means that you can know.

実際には、光源部1からの光が光軸Gに可能な限り直角に出射するようにするとともに,光源部1とカメラ2の光軸も一致させるように配置することが望ましい。このときに距離Δlと距離Δrは0となるので正確に点Aを特定することができるからである。   Actually, it is desirable that the light from the light source unit 1 is emitted as perpendicular to the optical axis G as possible, and the optical axes of the light source unit 1 and the camera 2 are also aligned. This is because the distance Δl and the distance Δr are 0 at this time, so that the point A can be specified accurately.

本発明では、図3に示すように測定装置を構成し、光ビーム(シート状光Sb)によって光切断された内面3上の複数点の座標データを次々に算出していけば、光切断ライン上の内面形状が得られる。そこで、さらこのカメラ2と光源部1を移動させれば、次々と内面3の断面形状を得ることができる。   In the present invention, as shown in FIG. 3, if the measuring device is configured and the coordinate data of a plurality of points on the inner surface 3 light-cut by the light beam (sheet-like light Sb) is calculated one after another, the light cutting line is obtained. The upper inner shape is obtained. Therefore, if the camera 2 and the light source unit 1 are moved, the cross-sectional shape of the inner surface 3 can be obtained one after another.

なお、シート状光Sbを照射する光源部1に関しては,いくつかのリングビーム光源が知られている。そうした光源部1の原理を図4(a)と図4(b)に示す。
即ち、図4(a),(b)はリングビームを発生させるための光源部1の原理を示している。いずれも円錐状のミラーeMあるいはプリズムePを利用しており、円錐部の頂点によって光ビームが反射されるとともにリング状(円盤状)に広がるように工夫されている。図4(a)は円錐状のミラーの頂点に光ビームが当たると、円盤状にビームが広がることを利用している。また図4(b)では円錐状に空隙があるプリズムが使われており、光は同様に円盤状(リング状)に広がる。なお、図4(b)の場合において、円錐状の空隙部の表面に反射コーティングを施せば図4(a)と同じ反射ミラーとなる。
Regarding the light source unit 1 that irradiates the sheet-like light Sb, several ring beam light sources are known. The principle of the light source unit 1 is shown in FIGS. 4 (a) and 4 (b).
4 (a) and 4 (b) show the principle of the light source unit 1 for generating a ring beam. In either case, a conical mirror eM or prism eP is used, and the light beam is reflected by the apex of the conical portion and spreads in a ring shape (disc shape). FIG. 4 (a) utilizes the fact that the beam spreads in a disk shape when the light beam hits the apex of the conical mirror. In FIG. 4B, a prism having a conical gap is used, and the light spreads in a disk shape (ring shape). In the case of FIG. 4 (b), the same reflective mirror as in FIG. 4 (a) is obtained by applying a reflective coating to the surface of the conical gap.

実際に本発明方法により測定を行った場合の例を図5に示す。すなわち図3に示すように光源部1とカメラ部2とを図の矢印方向に移動し、かつ、内面の奥行方向に移動することによって、図5に示すように対象の測定した内面形状Ip(切断面形状Ipともいう)を次々と得ることが可能となる。以上によって物体の内面形状や内径を測定することが可能となるのである。   FIG. 5 shows an example of the actual measurement by the method of the present invention. That is, as shown in FIG. 3, by moving the light source unit 1 and the camera unit 2 in the direction of the arrow in the figure and moving in the depth direction of the inner surface, the measured inner surface shape Ip ( It is possible to obtain the cut surface shape Ip one after another. As a result, the inner shape and inner diameter of the object can be measured.

本発明は以上の通りであって、各種の管やエンジンブロックなどの内部空間を有する工業製品や人体の口腔などの生体器官の内部を測定対象としその対象内面の断面形状を測定するに当り、測定する内面の所定位置に光ビームを円盤状に照射し、その照射光による内面形状を表わす光跡を撮像センサにより撮影して前記光跡の画像データを蓄積し、蓄積した光跡画像のデータから撮影系の基準位置と測定対象内面との距離を算出して当該内面の形状を測定するようにしたので、工業分野,民生分野に限られず、様々な対象の内面(断面)形状を非接触で容易に測定することができるので、産業上きわめて有用である。   The present invention is as described above, and in measuring the cross-sectional shape of the inner surface of an object such as an industrial product having an internal space such as various tubes and engine blocks and a living organ such as the oral cavity of a human body, A predetermined position on the inner surface to be measured is irradiated with a light beam in a disk shape, a light trace representing the inner shape of the irradiated light is photographed by an imaging sensor, and the image data of the light trace is accumulated. Since the distance between the reference position of the photographic system and the inner surface of the object to be measured is calculated and the shape of the inner surface is measured, the inner surface (cross-section) shape of various objects is not contacted, not limited to the industrial and consumer fields. Therefore, it is very useful industrially.

本発明の内部形状測定における本発明の測定原理を説明するために模式的に表した側断面図。The sectional side view typically expressed in order to explain the measurement principle of the present invention in the internal shape measurement of the present invention. 図1と同じく本発明の測定原理を説明するための側断面図。The side sectional view for demonstrating the measurement principle of this invention like FIG. 本発明の内部形状測定装置の一例を説明するための側断面図。The side sectional view for explaining an example of the internal shape measuring device of the present invention. 本発明で使用する円盤状ビームの発生原理を説明するための側面図。The side view for demonstrating the generation principle of the disk shaped beam used by this invention. 本発明により測定した内面形状の測定例を説明するための斜視図。The perspective view for demonstrating the example of a measurement of the inner surface shape measured by this invention.

符号の説明Explanation of symbols

1 光源部
2 カメラ
3 測定対象の内面
Sb シート状光
Ip 測定した内面形状
G 光軸
DESCRIPTION OF SYMBOLS 1 Light source part 2 Camera 3 Inner surface of measuring object
Sb sheet light
Ip Measured inner surface shape G Optical axis

Claims (3)

各種の管やエンジンブロックなどの内部空間を有する工業製品や人体の口腔などの生体器官の内部を測定対象としその対象内面の断面形状を測定するに当り、測定する内面の所定位置に光ビームを円盤状に照射し、その照射光による内面形状を表わす光跡を撮像センサにより撮影して前記光跡の画像データを蓄積し、蓄積した光跡画像のデータから前記撮像センサを含む撮影系の基準位置と測定対象内面との距離を算出して当該内面の形状を測定することを特徴とする内面形状測定方法。   When measuring the cross-sectional shape of the inner surface of an industrial product that has internal space such as various tubes and engine blocks, and the inside of a living organ such as the oral cavity of a human body, a light beam is applied to a predetermined position on the inner surface to be measured. Irradiation in a disk shape, the light trace representing the inner surface shape by the irradiated light is photographed by the imaging sensor, the image data of the light trace is accumulated, and the reference of the photographing system including the imaging sensor from the accumulated light trace image data An inner surface shape measuring method, comprising: calculating a distance between a position and an inner surface to be measured to measure a shape of the inner surface. 各種の管やエンジンブロックなどの内部空間を有する工業製品や人体の口腔などの生体器官の内部を測定対象としその内面形状を測定する装置において、測定対象の所定位置に光ビームを円盤状に広げて照射する手段と、照射した光ビームにより測定対象の内面をセクショニングすることによって得られる前記対象の断面光跡を撮影する撮影手段と、撮影した光跡画像の座標データから撮影光学系の基準位置と測定対象内面との距離を算出する距離算出手段とを備えたことを特徴とする内面形状測定装置。   In a device that measures the inner surface shape of an industrial product that has internal space such as various pipes and engine blocks, and the inside of a living organ such as the oral cavity of a human body, a light beam is spread in a disk shape at a predetermined position of the measurement target Irradiating means, photographing means for photographing the cross-sectional light trace of the object obtained by sectioning the inner surface of the measurement object with the irradiated light beam, and a reference position of the photographing optical system from the coordinate data of the photographed light trace image And a distance calculating means for calculating the distance between the inner surface of the measuring object and the inner surface of the measuring object. 前記光跡撮影手段は、光源の光を円錐ミラー又は円錐プリズムにより光シート状に照射する光学系と撮像センサ型の撮影手段により構成し、前記光学系と撮影手段を一緒に移動させるようにしておき、対象内面に対しその内面形状の測定を一断面について行った後、前記光学系と撮影手段を逐次的に移動させ、各移動位置における内面形状を次々と測定するようにした請求項2に記載の内面形状測定装置。
The light trace photographing means includes an optical system that irradiates light from a light source in a light sheet shape with a conical mirror or a conical prism, and an imaging sensor type photographing means, and the optical system and the photographing means are moved together. Further, after the inner surface shape of the target inner surface is measured for one cross section, the optical system and the photographing means are sequentially moved, and the inner surface shape at each moving position is measured one after another. The inner surface shape measuring apparatus as described.
JP2006113713A 2006-04-17 2006-04-17 Inside surface shape measuring method and measuring apparatus using the method Pending JP2007285891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006113713A JP2007285891A (en) 2006-04-17 2006-04-17 Inside surface shape measuring method and measuring apparatus using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006113713A JP2007285891A (en) 2006-04-17 2006-04-17 Inside surface shape measuring method and measuring apparatus using the method

Publications (1)

Publication Number Publication Date
JP2007285891A true JP2007285891A (en) 2007-11-01

Family

ID=38757800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006113713A Pending JP2007285891A (en) 2006-04-17 2006-04-17 Inside surface shape measuring method and measuring apparatus using the method

Country Status (1)

Country Link
JP (1) JP2007285891A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014153152A (en) * 2013-02-07 2014-08-25 Ihi Corp Inner shape measuring apparatus
JP2015114326A (en) * 2013-12-06 2015-06-22 株式会社ミツトヨ Hole measurement apparatus and method using non-rotating cps pen
JP2016525377A (en) * 2013-05-02 2016-08-25 ブイエス メドテック, インコーポレイテッド System and method for measuring and characterizing the inner surface of a luminal structure
US10054428B2 (en) 2011-09-30 2018-08-21 Olympus Corporation Inner surface shape measurement device, detection head, and endoscope device
WO2018221653A1 (en) 2017-05-31 2018-12-06 新日鐵住金株式会社 Tubular body inner surface inspection method and tubular body inner surface inspection device
WO2020026290A1 (en) 2018-07-30 2020-02-06 日本製鉄株式会社 Tubular body inner surface inspecting device and tubular body inner surface inspecting method
JP2020117943A (en) * 2019-01-24 2020-08-06 株式会社東設土木コンサルタント Floating body device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355441A (en) * 1986-08-26 1988-03-09 Mitsubishi Electric Corp Detecting device for internal surface shape of pipe
JPH0545132A (en) * 1991-08-15 1993-02-23 Olympus Optical Co Ltd Endoscope device for measurement
JPH05107037A (en) * 1991-10-17 1993-04-27 Central Japan Railway Co Planar-luminous-flux projecting apparatus for measuring optical cutting beam
JPH05164519A (en) * 1991-12-16 1993-06-29 Central Japan Railway Co Measuring instrument for three-dimensional shape of structure surrounding railroad track
JPH10323322A (en) * 1997-05-26 1998-12-08 Olympus Optical Co Ltd Three-dimensional measurement endoscope device
JPH1156752A (en) * 1997-08-28 1999-03-02 Olympus Optical Co Ltd Device for tomographic imaging in subject body
JP2002214127A (en) * 1996-02-27 2002-07-31 Massachusetts Inst Of Technol <Mit> Method and device for performing optical measurement by using optical fiber imaging guide wire, catheter or endoscope
JP2004101190A (en) * 2002-09-04 2004-04-02 Hitachi Ltd Apparatus and method for measuring inner surface shape of conduit
JP2005195936A (en) * 2004-01-08 2005-07-21 E Base:Kk Reflecting prism and light-projecting device using the same
JP2005233925A (en) * 2004-01-19 2005-09-02 Matsushita Electric Works Ltd Optical component and laser line indicator using it
JP2006064690A (en) * 2004-07-26 2006-03-09 Univ Of Miyazaki In-tubing profile measuring device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355441A (en) * 1986-08-26 1988-03-09 Mitsubishi Electric Corp Detecting device for internal surface shape of pipe
JPH0545132A (en) * 1991-08-15 1993-02-23 Olympus Optical Co Ltd Endoscope device for measurement
JPH05107037A (en) * 1991-10-17 1993-04-27 Central Japan Railway Co Planar-luminous-flux projecting apparatus for measuring optical cutting beam
JPH05164519A (en) * 1991-12-16 1993-06-29 Central Japan Railway Co Measuring instrument for three-dimensional shape of structure surrounding railroad track
JP2002214127A (en) * 1996-02-27 2002-07-31 Massachusetts Inst Of Technol <Mit> Method and device for performing optical measurement by using optical fiber imaging guide wire, catheter or endoscope
JPH10323322A (en) * 1997-05-26 1998-12-08 Olympus Optical Co Ltd Three-dimensional measurement endoscope device
JPH1156752A (en) * 1997-08-28 1999-03-02 Olympus Optical Co Ltd Device for tomographic imaging in subject body
JP2004101190A (en) * 2002-09-04 2004-04-02 Hitachi Ltd Apparatus and method for measuring inner surface shape of conduit
JP2005195936A (en) * 2004-01-08 2005-07-21 E Base:Kk Reflecting prism and light-projecting device using the same
JP2005233925A (en) * 2004-01-19 2005-09-02 Matsushita Electric Works Ltd Optical component and laser line indicator using it
JP2006064690A (en) * 2004-07-26 2006-03-09 Univ Of Miyazaki In-tubing profile measuring device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10054428B2 (en) 2011-09-30 2018-08-21 Olympus Corporation Inner surface shape measurement device, detection head, and endoscope device
JP2014153152A (en) * 2013-02-07 2014-08-25 Ihi Corp Inner shape measuring apparatus
JP2016525377A (en) * 2013-05-02 2016-08-25 ブイエス メドテック, インコーポレイテッド System and method for measuring and characterizing the inner surface of a luminal structure
US11363965B2 (en) 2013-05-02 2022-06-21 VS Medtech, Inc. Systems and methods for measuring and characterizing interior surfaces of luminal structures
US11701033B2 (en) 2013-05-02 2023-07-18 VS Medtech, Inc. Systems and methods for measuring and characterizing interior surfaces of luminal structures
JP2015114326A (en) * 2013-12-06 2015-06-22 株式会社ミツトヨ Hole measurement apparatus and method using non-rotating cps pen
WO2018221653A1 (en) 2017-05-31 2018-12-06 新日鐵住金株式会社 Tubular body inner surface inspection method and tubular body inner surface inspection device
WO2020026290A1 (en) 2018-07-30 2020-02-06 日本製鉄株式会社 Tubular body inner surface inspecting device and tubular body inner surface inspecting method
US11428647B2 (en) 2018-07-30 2022-08-30 Nippon Steel Corporation Tubular body inner surface inspection apparatus and tubular body inner surface inspection method
JP2020117943A (en) * 2019-01-24 2020-08-06 株式会社東設土木コンサルタント Floating body device

Similar Documents

Publication Publication Date Title
US11629954B2 (en) Intraoral scanner with fixed focal position and/or motion tracking
JP6779199B2 (en) Equipment for dental confocal imaging
JP2007285891A (en) Inside surface shape measuring method and measuring apparatus using the method
US20170328704A1 (en) Chromatic confocal system
US8243286B2 (en) Device and method for the contactless detection of a three-dimensional contour
JP3837431B2 (en) Pipe inner surface shape measuring device
JP2009204991A (en) Compound-eye imaging apparatus
TWI390650B (en) Shape measuring device, and shape measuring method
KR101875467B1 (en) 3-dimensional shape measurment apparatus and method thereof
Jackson et al. Error analysis and calibration for a novel pipe profiling tool
JP2006058321A (en) Three-dimensional confocal microscopic system
JP2012177596A (en) Holder for calibration and method for calibrating photo cutting type shape measuring instrument
JP2007017394A (en) Light measurement system and method
JP2012013593A (en) Calibration method for three-dimensional shape measuring machine, and three-dimensional shape measuring machine
JP5375239B2 (en) Image processing apparatus, inspection apparatus for long objects, and computer program
JP2019150574A (en) Three-dimensional shape data creation method and three-dimensional shape data creation system
US20230263396A1 (en) Intraoral scanner having tomographic imaging function and method for detecting cracks in oral structures using the same
US20230194245A1 (en) Calibration method of optical coherence tomography device and camera
US20230263395A1 (en) Intraoral scanner having tomographic imaging function and method for detecting abrasion or filling of oral structures using the same
JP2010014546A (en) Fiducial gage and method for three-dimensional measurement
JP2014173901A (en) Measurement device and article manufacturing method
JP2021113701A (en) Inner surface shape measurement device
JPS62291509A (en) Distance measuring apparatus
JP2009186368A (en) Shape measuring apparatus
JP2000121331A (en) Optical type hole shape measuring method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080118

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100630

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100706

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100803

A521 Written amendment

Effective date: 20100804

Free format text: JAPANESE INTERMEDIATE CODE: A821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A02 Decision of refusal

Effective date: 20110201

Free format text: JAPANESE INTERMEDIATE CODE: A02