JP2021113701A - Inner surface shape measurement device - Google Patents

Inner surface shape measurement device Download PDF

Info

Publication number
JP2021113701A
JP2021113701A JP2020005537A JP2020005537A JP2021113701A JP 2021113701 A JP2021113701 A JP 2021113701A JP 2020005537 A JP2020005537 A JP 2020005537A JP 2020005537 A JP2020005537 A JP 2020005537A JP 2021113701 A JP2021113701 A JP 2021113701A
Authority
JP
Japan
Prior art keywords
light
image
distance
surface shape
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020005537A
Other languages
Japanese (ja)
Inventor
鎌倉吉寿
Yoshitoshi Kamakura
吉澤徹
Toru Yoshizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2020005537A priority Critical patent/JP2021113701A/en
Publication of JP2021113701A publication Critical patent/JP2021113701A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

To provide a device and method for acquiring a light trail image without generating ghost images by using a shield member so as to contactlessly measure an inner surface shape of an object using optical means.SOLUTION: The reason why ghost images appear in a light trail image acquired by an inner surface measurement device is that light trails reflected inside a transparent tube reach a light receiving member. A light trail image can be acquired without generating ghost images by installing a light-absorbing shield member in a path of internal reflection light to the light receiving member on a central axis G of the transparent tube.SELECTED DRAWING: Figure 1

Description

本発明は各種の管やエンジンブロックなどの内部空間を有する工業製品、コンビナートなどにある配管、或は、人体の口腔など生体器官の内部形状を非接触で測定する方法並びにその方法を用いた測定装置に関する。 The present invention is a method for non-contactly measuring the internal shape of an industrial product having an internal space such as various pipes or an engine block, a pipe in a complex, or a biological organ such as the oral cavity of the human body, and measurement using the method. Regarding the device.

様々な物体の内部形状の測定は、各種パイプの内径測定をはじめとしてエンジンなどの内部形状の測定など多くの工業分野において高い需要があり、特許文献1と同様のニーズがあり、特許文献2の先行事例がある。しかしながら、従来の装置は迷光の対策を行っておらず、透明管の内面側での内部反射の影響を受けた装置であるため、光跡画像にゴースト像が発生する。ゴースト像が計測の品質を低下する原因という問題点があった。 The measurement of the internal shape of various objects is in high demand in many industrial fields such as the measurement of the inner diameter of various pipes and the measurement of the internal shape of engines, etc., and has the same needs as those of Patent Document 1. There is a precedent case. However, since the conventional device does not take measures against stray light and is affected by the internal reflection on the inner surface side of the transparent tube, a ghost image is generated in the light trail image. There was a problem that the ghost image deteriorated the quality of measurement.

特開2007−285891号公報JP-A-2007-285891 特開2015−045193号公報Japanese Unexamined Patent Publication No. 2015-0459193

本発明は、透明管からの内部反射があったとしても、ゴースト像を発生しない光跡画像を取得し、光学的な手段を利用して対象物内面の形状を非接触で測定する装置と方法を提供することを課題とする。即ち、シート状の光の帯によって対象物の内部を照明し、そのシート状の光によりいわゆる光切断された対象物の断面(内面)を迷光の影響を取り除きつつCCDなどのイメージセンサ(以下、撮像センサともいう)によって捉え、これにより当該対象物の内径や内部形状や外形形状などを計算機にて数値化する測定装置を提供することと、この装置を用いた方法を提供することが本発明の課題である。 The present invention is an apparatus and method for acquiring a light trail image that does not generate a ghost image even if there is internal reflection from a transparent tube, and measuring the shape of the inner surface of an object in a non-contact manner by using optical means. The challenge is to provide. That is, an image sensor such as a CCD (hereinafter referred to as CCD) illuminates the inside of the object with a sheet-shaped band of light, and removes the influence of stray light on the cross section (inner surface) of the object that is so-called light-cut by the sheet-shaped light. It is the present invention to provide a measuring device for quantifying the inner diameter, internal shape, outer shape, etc. of the object by a computer (also referred to as an image sensor), and to provide a method using this device. Is the issue.

本発明は、
(1)投光部材、受光部材、筒状部材、遮蔽部材と一つの剛体とまとめる固定部材と撮影した光跡画像の座標データから撮影光学系の基準位置と測定対象内面との距離を算出する距離算出する手段を有したことを特徴とする内面形状計測装置。
(2)各種の管やエンジンブロックなどの内部空間を有する工業製品、コンビナートなどにある配管、或は人体の口腔などの生体器官の内部を測定対象としその内面形状を測定する装置において、測定対象の所定位置に光ビームを円盤状に広げて照射する手段と、照射した光ビームにより測定対象の内面をセクショニングすることによって得られる前記対象の断面光跡を撮影すると同時に、遮蔽体により内部反射を防ぐ撮影手段と、撮影した光跡画像の座標データから撮影光学系の基準位置と測定対象内面との距離を算出する距離算出手段とを備えたことを特徴とする内面形状測定方法。
である。
The present invention
(1) Calculate the distance between the reference position of the photographing optical system and the inner surface of the measurement target from the coordinate data of the photographed light trail image and the fixing member that combines the light projecting member, the light receiving member, the tubular member, and the shielding member into one rigid body. An inner surface shape measuring device characterized by having a means for calculating a distance.
(2) Measurement target in an industrial product having an internal space such as various pipes and engine blocks, a pipe in a complex, or a device for measuring the inner surface shape of a biological organ such as the oral cavity of a human body. A means of irradiating a light beam by spreading it in a disk shape at a predetermined position of the above, and a cross-sectional light trail of the object obtained by sectioning the inner surface of the object to be measured by the irradiated light beam, and at the same time, internally reflecting by a shield. A method for measuring an inner surface shape, which comprises a photographing means for preventing and a distance calculating means for calculating a distance between a reference position of a photographing optical system and an inner surface to be measured from coordinate data of a captured light trail image.
Is.

投影部材は、測定対象の所定位置に光ビームを円盤状に広げてシート状の光の帯(以下、シート状光Sbという)を照射する手段を持つ部材である。投影部材の構成はコリメートされたレーザ光lsを発する光源部と光の帯を生成する円錐ミラーあるいは円錐プリズム(まとめてeMとする)と光源部とeMを固定する部品からなる。光源部はコリメートされた点光源を、eMの頂点近傍に円錐軸方向から照射するデバイスであり、次の2つの構造があり得る。1)円筒部材より径を小さくした半導体レーザを用いる構造、2)光源本体は内面形状計測の装置外部にあるが、シングルモードの光ファイバでガイドする構造。また、使用する光源の波長は受光部材で観測可能な波長であればよく、特定の波長である必要はない。 The projection member is a member having means for irradiating a sheet-shaped light band (hereinafter referred to as sheet-shaped light Sb) by spreading a light beam in a disk shape at a predetermined position to be measured. The composition of the projection member consists of a light source unit that emits collimated laser beam ls, a conical mirror or conical prism that generates a band of light (collectively referred to as eM), and a component that fixes the light source unit and eM. The light source unit is a device that irradiates a collimated point light source near the apex of eM from the direction of the conical axis, and may have the following two structures. 1) A structure that uses a semiconductor laser whose diameter is smaller than that of a cylindrical member. 2) A structure in which the light source body is located outside the device for measuring the inner surface shape, but is guided by a single-mode optical fiber. Further, the wavelength of the light source used may be any wavelength that can be observed by the light receiving member, and does not have to be a specific wavelength.

円錐ミラーは角度が90°のいわゆる円錐ミラーであっても、円柱材に直点角度が90°の円錐にくり抜き鏡面コートした部品のどちらでもよい。また、円錐プリズムはガラス等の透明の円柱の素材に直点角度が90°の円錐をくり抜いた部品である。eMの径は円筒部材よりの径より細くする必要があり、光源部のコリメートされた点光源の径よりも大きくすることが望ましい。シート状光Sbは、eMの頂点の角度が90°であるため、点光源を円錐軸方向からその頂点近傍で反射するため、円錐軸と同じ法線を持つ平面のシート状の光の帯が生成される。 The conical mirror may be a so-called conical mirror having an angle of 90 °, or a component obtained by hollowing out and mirror-coating a conical material having a direct point angle of 90 °. Further, the conical prism is a component obtained by hollowing out a cone having a direct point angle of 90 ° in a transparent cylindrical material such as glass. The diameter of the eM needs to be smaller than the diameter of the cylindrical member, and is preferably larger than the diameter of the collimated point light source of the light source portion. Since the angle of the apex of eM is 90 °, the sheet-like light Sb reflects the point light source from the direction of the conical axis near the apex, so that a flat sheet-like light band having the same normal as the conical axis is formed. Will be generated.

受光部材はいわゆるイメージセンサであり、CCDカメラやデジタルカメラなどである。内部にある素子は2次元配列の撮像素子であればよい。イメージセンサの開口部は円筒部材の片端の内側に配置しているため、円筒部材の径よりも小さくする必要があるが、それ以外の受光部材のサイズの制限はない。受光部材の設置位置は、撮像素子の光軸が次で説明する円筒部材の中心軸に一致することが望ましく、また、シート状光Sbの平面の法線方向と一致することが望ましい。 The light receiving member is a so-called image sensor, such as a CCD camera or a digital camera. The element inside may be an image sensor having a two-dimensional array. Since the opening of the image sensor is arranged inside one end of the cylindrical member, it needs to be smaller than the diameter of the cylindrical member, but there is no other size limitation on the light receiving member. It is desirable that the optical axis of the image sensor coincides with the central axis of the cylindrical member described below, and it is desirable that the installation position of the light receiving member coincides with the normal direction of the plane of the sheet-shaped light Sb.

円筒部材は円筒形状のガラス、あるいは透明樹脂でできている透明管である。その設置位置は投光部材と受光部の間にあり、受光部材のイメージセンサの中心を通る光軸と円筒中心軸Gが一致することが望ましい。この構造のため、投光部材から発生した光ビームシートSbが物体に当たって生じる散乱光は、受光部材に到達する前に一度は必ず円筒部材上を通過する構造になっている。円筒部材の径のサイズは、投光部材の径のサイズあるいは受光部材のイメージセンサのサイズより大きくする必要はあるが、径のサイズの上限はない。 The cylindrical member is a transparent tube made of cylindrical glass or transparent resin. The installation position is between the light projecting member and the light receiving portion, and it is desirable that the optical axis passing through the center of the image sensor of the light receiving member and the cylindrical center axis G coincide with each other. Due to this structure, the scattered light generated by the light beam sheet Sb generated from the light projecting member hitting the object always passes over the cylindrical member at least once before reaching the light receiving member. The diameter of the cylindrical member needs to be larger than the diameter of the light projecting member or the size of the image sensor of the light receiving member, but there is no upper limit to the diameter size.

遮蔽部材は細長い棒状のものである。設置位置は固定部材に連結されており、遮蔽部材の表面は吸光率が高い、もしくは反射率も透過率も小さい素材にすることが望ましい。その形状は円筒部材の内に入れられるが、断面形状は円錐、円柱、角柱、角錐、筒などと制約ない。長さに関しては、後述する。 The shielding member is an elongated rod. The installation position is connected to the fixing member, and it is desirable that the surface of the shielding member is made of a material having high absorbance or low reflectance and transmittance. The shape is put in the cylindrical member, but the cross-sectional shape is not limited to a cone, a cylinder, a prism, a pyramid, a cylinder, and the like. The length will be described later.

固定部材は一つの剛体としてまとめる部材であるが、装置内に少なくとも3つ以上必要である。投影部材と円筒部材、受光部材と円筒部材間の固定と、遮蔽部材と投影部材もしくは円筒部材を固定する部材である。各部品の位置関係がずれずに保つ程度の剛性のある素材である必要はあるが、それ以外の素材あるいはサイズの条件の制約はない。
今後、投光部材、受光部材、筒状部材、遮蔽部材と一つの剛体とまとめる固定部材から構成される部をセンサヘッド部(sH)と呼ぶことにする。このセンサヘッド部sHの基準位置Oは円筒材中心軸Gとシート状光Sbで作られる平面の交点であり、撮影光学系の基準位置である。点OはeMの頂点と同一でなくても構わない。
The fixing member is a member that is grouped as one rigid body, but at least three or more are required in the device. It is a member for fixing the projection member and the cylindrical member, the light receiving member and the cylindrical member, and the shielding member and the projection member or the cylindrical member. It is necessary that the material is rigid enough to keep the positional relationship of each part unchanged, but there are no other restrictions on the material or size conditions.
From now on, a part composed of a light projecting member, a light receiving member, a tubular member, a shielding member and a fixing member that is integrated into one rigid body will be referred to as a sensor head part (sH). The reference position O of the sensor head portion sH is the intersection of the central axis G of the cylindrical material and the plane formed by the sheet-shaped light Sb, and is the reference position of the photographing optical system. The point O does not have to be the same as the vertex of eM.

撮影した光跡画像の座標データから撮影光学系の基準位置と測定対象内面との距離を算出する距離算出手段とを備えたことを特徴とする内面形状測定方法について説明をする。距離算出に当たり、1ショットの光跡画像から1断面の形状を計算機にて計算をする部と、それら断面の形状を計算機にてまとめ合わせた部の二つから成り立つ。また、計算機とセンサヘッド部sHはbluetooth、USB等のインターフェイスで接続し光跡画像を取得する。 The inner surface shape measuring method characterized by providing a distance calculating means for calculating the distance between the reference position of the photographing optical system and the inner surface to be measured from the coordinate data of the photographed light trail image will be described. In calculating the distance, it consists of two parts: a part that calculates the shape of one cross section from a light trail image of one shot with a computer, and a part that combines the shapes of those cross sections with a computer. In addition, the computer and the sensor head unit sH are connected by an interface such as bluetooth or USB to acquire a light trail image.

1ショットの光跡画像から1断面の形状を計算機にて計算をする部について説明をする。計測対象の内面にシート状光Sbが当り、当たった点から光が散乱する。その散乱光を受光部材で画像を取得の画像が、計測対象の内面の断面としてとらえた光跡画像である。円筒材中心軸Gに対し、受光部材と円筒部材は軸対称に設置しており、距離算出手段は特定の1方向を説明すれば、同様の手段で中心軸周りを同様の手段で説明できるため、軸Gは水平線に平行にあり、シートビームが鉛直方向にある場合で、距離算出方法を説明する。
いま、受光部材1から鉛直方向へ向けて照射されるシート状光Sbが計測対象上のA点にあたり、散乱する光が受光部材にて捉えられ(撮影され)、そのときに見込まれる角度φが得られる。その結果、受光部材と投光部材との間の距離がlと設定されていれば、直角三角形において、1辺と直角ともう一角φから三角形の形状が確定し、原点Oからの距離OA=rが算出できる。
A part for calculating the shape of one cross section from a one-shot light trail image by a computer will be described. The sheet-shaped light Sb hits the inner surface of the measurement target, and the light is scattered from the hit point. The image obtained by acquiring an image of the scattered light by the light receiving member is a light trail image captured as a cross section of the inner surface of the measurement target. Since the light receiving member and the cylindrical member are installed axisymmetrically with respect to the central axis G of the cylindrical material, the distance calculation means can explain the circumference of the central axis by the same means if a specific one direction is explained. The distance calculation method will be described when the axis G is parallel to the horizon and the sheet beam is in the vertical direction.
Now, the sheet-shaped light Sb emitted from the light receiving member 1 in the vertical direction hits point A on the measurement target, and the scattered light is captured (photographed) by the light receiving member, and the angle φ expected at that time is can get. As a result, if the distance between the light receiving member and the light projecting member is set to l, the shape of the triangle is determined from one side, the right angle, and the other angle φ in the right triangle, and the distance OA from the origin O = r can be calculated.

照射されるシート状光Sbがその軸Gに直角でなく、傾いている場合シート状光Sbであっても、その傾きの値θを三次元計測装置など予め得ることによって、距離OAを算出できる。受光部の中心位置をCとすると、∠AOC、距離OCが既知で、∠OCAが撮影から得られるため、三角形の3辺と角度の値が確定するからである。 When the sheet-shaped light Sb to be irradiated is not perpendicular to the axis G and is tilted, even if the sheet-shaped light Sb is tilted, the distance OA can be calculated by obtaining the tilt value θ in advance by a three-dimensional measuring device or the like. .. This is because, assuming that the center position of the light receiving portion is C, ∠AOC and distance OC are known, and since ∠OCA is obtained from photography, the values of the three sides of the triangle and the angle are fixed.

次に複数の断面をまとめて内面形状を得る方法を説明する。この部は、1断面の内面形状で構わない用途の装置においては、省いても構わない。センサヘッド部は、エンコーダー等が取り付けられていて、位置と方向を特定できる1軸もしくは多軸の移動スライダーに取り付けか、多関節ロボットに取り付ける。移動スライダーの場合、1つの移動スライダーの移動軸と、G軸と平行になるように設置し、移動スライダーの原点と撮影光学系の基準位置Oを合わせるのが望ましい。多関節ロボットの場合は、関節の先端の円筒軸とG軸の方向に合わせるのが望ましい。 Next, a method of obtaining an inner surface shape by collecting a plurality of cross sections will be described. This portion may be omitted in a device for which the inner surface shape of one cross section is acceptable. The sensor head unit is attached to an encoder or the like and is attached to a uniaxial or multi-axis movement slider that can specify the position and direction, or is attached to an articulated robot. In the case of a moving slider, it is desirable to install it so that the moving axis of one moving slider is parallel to the G axis, and align the origin of the moving slider with the reference position O of the photographing optical system. In the case of an articulated robot, it is desirable to align it with the direction of the cylindrical axis and the G axis at the tip of the joint.

センサヘッド部の位置と方向を確定し、そのタイミングで光跡画像を取得すことにより得られた1断面の形状は、電動スライダー等の座標系もしくは多関節ロボットの座標系に変換することができる。すなわち、1断面の形状に回転とX,Y,Z座標のシフト量を加味した回転行列を掛け合わせて座標変換することである。これを複数断面繰り返し行い、積み重ねることによって、内面形状計測データを得られる。 The shape of one cross section obtained by determining the position and direction of the sensor head portion and acquiring the light trail image at that timing can be converted into a coordinate system such as an electric slider or a coordinate system of an articulated robot. .. That is, the coordinates are transformed by multiplying the shape of one cross section by the rotation matrix that takes into account the shift amount of the X, Y, and Z coordinates. By repeating this for a plurality of cross sections and stacking them, internal surface shape measurement data can be obtained.

次に遮蔽体により内部反射を防ぐ撮影手段について説明する。まず、円筒部材に入った光が迷光となり、中心軸G上にある受光部材にゴースト像を引き起こすメカニズムを説明する。投影部材から発したSbは計測対象に当たり、散乱をする。その光は計測対から受光部材へ最短距離で行く光しかなければゴースト像は現れない。一方、円筒部材の各界面で反射し、最短以外の経路が存在する場合には、ゴースト像になるのである。
この現象をわかりやすくするため、図2を使って説明する。ここでは、円筒の肉厚は無限に薄い透明管とする。というのは、光跡は透明管を通過中は屈折しているが、ガラス管が平行であるため、ガラス管への入射光と透過光の角度変化がないため、メカニズムの説明に支障がないためである。
Next, a photographing means for preventing internal reflection by a shield will be described. First, the mechanism by which the light entering the cylindrical member becomes stray light and causes a ghost image on the light receiving member on the central axis G will be described. Sb emitted from the projection member hits the measurement target and scatters. The ghost image does not appear unless the light travels from the measurement pair to the light receiving member at the shortest distance. On the other hand, it is reflected at each interface of the cylindrical member, and when there is a path other than the shortest, it becomes a ghost image.
In order to make this phenomenon easy to understand, it will be described with reference to FIG. Here, the wall thickness of the cylinder is an infinitely thin transparent tube. This is because the light trail is refracted while passing through the transparent tube, but since the glass tubes are parallel, there is no change in the angle between the incident light and the transmitted light on the glass tube, so there is no problem in explaining the mechanism. Because.

今、撮像センサが無限小の面積を持ち、円筒長を十分長くした円筒管とし、光の軌跡を円筒底面から光跡をみると、分かりやすい。光の反射の際は入射角と反射角が同じ大きさであるため、図2(b)のSb1の円筒部材中心軸Gを通過せずには反射する場合、何度反射しても円筒中心軸G上を通過することはない。この場合、迷光は撮像センサに入ることはない。一方、図2(b)のSb2の一度円筒中心軸Gを通過して反射すると、再度反射するまでに、再度円筒中心軸G上を必ず通過する。迷光が中心軸上通過する位置がちょうど円筒底面であると、撮像センサがあり、迷光を検出しゴースト像となる。 Now, it is easy to understand if the image sensor has an infinitesimal area and is a cylindrical tube with a sufficiently long cylindrical length, and the trajectory of light is seen from the bottom of the cylinder. When light is reflected, the angle of incidence and the angle of reflection are the same, so if the light is reflected without passing through the central axis G of the cylindrical member of Sb1 in FIG. 2 (b), the center of the cylinder no matter how many times it is reflected. It does not pass on the axis G. In this case, the stray light does not enter the image sensor. On the other hand, once Sb2 in FIG. 2B passes through the cylindrical central axis G and is reflected, it always passes on the cylindrical central axis G again before being reflected again. If the position where the stray light passes on the central axis is exactly the bottom surface of the cylinder, there is an image sensor, and the stray light is detected and a ghost image is obtained.

有限の大きさを持つ受光部材についても考えてみる。事実、撮像センサのサイズは1インチなど有限のサイズを持つ。また、撮像センサの前に対物レンズ取り付けてあることが多く、対物レンズ直前位置では、撮像センサの数倍の範囲を受光する。受光部材2直前で、受光する範囲を半径Δとする場合、遮蔽部材の断面は半径Δの円より大きい断面形状であることが望ましことは明らかである。というのは、入射角と反射角が等しいため、図2(b)のSb1の中心軸Gと入射光の最接近位置は反射光の最接近位置とのその値は等しく、中心軸GよりΔ以内に入ることはないからである。 Consider also a light receiving member having a finite size. In fact, the size of the image sensor has a finite size such as 1 inch. In addition, the objective lens is often attached in front of the image sensor, and at the position immediately before the objective lens, light is received in a range several times that of the image sensor. When the light receiving range is set to the radius Δ immediately before the light receiving member 2, it is clear that it is desirable that the cross section of the shielding member has a cross-sectional shape larger than a circle having a radius Δ. This is because the angle of incidence and the angle of reflection are equal, so the closest position of the central axis G of Sb1 in FIG. 2 (b) and the closest position of the incident light are the same as the closest position of the reflected light, and Δ from the central axis G. This is because it does not come within.

遮光部材の長さは円筒部材の両端を貫通していると、完全にゴースト像を除去できるのだが、貫通する必要はない。遮光部材と受光部材の間に隙間があると、その隙間を通る光跡が内部反射する。この隙間が狭いと、反射角度が小さく反射率が小さくなるため、事実上ゴースト光跡が発生しない。隙間幅の長さ透明管内部の反射率に関連性があり、幅が広くなるほど反射率が高くなり、反射率が5%以下になる範囲になる遮光部材の長さが望ましい。 If the length of the light-shielding member penetrates both ends of the cylindrical member, the ghost image can be completely removed, but it is not necessary to penetrate it. If there is a gap between the light-shielding member and the light-receiving member, the light trail passing through the gap is internally reflected. When this gap is narrow, the reflection angle is small and the reflectance is small, so that ghost light trails are virtually not generated. The length of the gap width is related to the reflectance inside the transparent tube, and the wider the width, the higher the reflectance, and the length of the light-shielding member within the range where the reflectance is 5% or less is desirable.

投影部材から計測対象へ照射され、その散乱光を受光部材で得られた光跡画像には、ゴースト像が映らなくなる。 The ghost image does not appear in the light trail image obtained by irradiating the measurement target from the projection member and the scattered light by the light receiving member.

本発明の内部形状測定における装置構成を表した側面図。The side view which showed the apparatus structure in the internal shape measurement of this invention. 円筒管内での内部反射する際の光跡を説明する側面図(a)と底面図(b)。A side view (a) and a bottom view (b) illustrating a light trail during internal reflection in a cylindrical tube. 本発明のプロトタイプを側面から撮影した写真。A photograph of the prototype of the present invention taken from the side. 本発明のプロトタイプで得られた光跡画像(a)と、比較対象の旧来の装置で得られた光跡画像(b)。The light trail image (a) obtained by the prototype of the present invention and the light trail image (b) obtained by the conventional device to be compared. 投影部材1にある、シートビーム光を生成する部材を説明する側面図。円錐ミラー(a)円錐プリズム(b)The side view explaining the member which generates the sheet beam light in the projection member 1. Conical mirror (a) Conical prism (b) 内面の計測結果の一例。1断面の例(a)と、スライドして得られた計測例(b)An example of the measurement result of the inner surface. Example (a) of one cross section and measurement example (b) obtained by sliding

本発明を実施例でもって説明する。 The present invention will be described with reference to examples.

図3のプロトタイプを次の機械構成で製作した説明をする。外形がΦ20mm、全長170mmの円筒形状のセンサ部とPCより構成されている。投光部材は底面がφ5mmの円錐ミラーとφ5mmの出力5W緑色を発光する半導体レーザから構成する。受光部材はARTCAM-022MINIのカメラにSマウントの対角の画角が142°のレンズを取り付けたものから構成し、このカメラはUSBケーブルにてPC (NEC Lavie LZ2750/S)と接続する。円筒部材は外形φ20mm×70mm、厚さ1.5mmの透明のアクリル樹脂である。遮蔽部材はφ5mm長さ55mmのアルマイト処理をしたアルミニウムの棒である。 The prototype of FIG. 3 will be described with the following mechanical configuration. It consists of a cylindrical sensor unit with an outer diameter of Φ20 mm and a total length of 170 mm and a PC. The floodlight member consists of a conical mirror with a bottom surface of φ5 mm and a semiconductor laser that emits a green output of 5 W with a diameter of 5 mm. The light receiving member consists of an ARTCAM-022 MINI camera with a lens with a diagonal angle of view of 142 ° attached to the S mount, and this camera is connected to a PC (NEC Lavie LZ2750 / S) with a USB cable. The cylindrical member is a transparent acrylic resin with an outer diameter of φ20 mm × 70 mm and a thickness of 1.5 mm. The shielding member is an alumite-treated aluminum rod with a diameter of 5 mm and a length of 55 mm.

1つ目の固定部材は半導体レーザとアルミニウムの棒を固定している。2つ目の固定部材はカメラと透明のアクリル樹脂間を固定している。3つ目の固定部材は図3の6の部分に相当し、半導体レーザを挟み込み、投影部材と透明のアクリル樹脂管の内側に固定している。軸Gと平面ビームSbの傾きは90°から4′以内に取り付けてある。
図3のプロトタイプを白色の紙コップ内に挿入し、光跡画像を取得した画像が図4(a)である。比較対象として、本発明前の装置で白色の紙コップ内に挿入し、光跡画像を取得した画像は図4(b)である。遮蔽部材あることによって、光跡画像にゴースト像を発生しないことは明らかである。
The first fixing member fixes the semiconductor laser and the aluminum rod. The second fixing member fixes between the camera and the transparent acrylic resin. The third fixing member corresponds to the portion 6 in FIG. 3, sandwiching the semiconductor laser, and fixing the projection member and the inside of the transparent acrylic resin tube. The inclination of the axis G and the plane beam Sb is installed within 90 ° to 4'.
FIG. 4A is an image obtained by inserting the prototype of FIG. 3 into a white paper cup and acquiring a light trail image. For comparison, FIG. 4 (b) shows an image obtained by inserting a light trail image into a white paper cup with the device before the present invention. It is clear that the presence of the shielding member does not generate a ghost image in the light trail image.

図6(a)は撮影した光跡画像の座標データから撮影光学系の基準位置と測定対象内面との距離を算出する距離算出した一例である。図6(b)は本発明した内面形状計測装置を電動スライダー(駿河精機社製KXL06075-C1-C5A)に取り付けて、計測した結果である。 FIG. 6A is an example of calculating the distance between the reference position of the photographing optical system and the inner surface of the measurement target from the coordinate data of the photographed light trail image. FIG. 6B shows the measurement results obtained by attaching the inner surface shape measuring device of the present invention to an electric slider (KXL06075-C1-C5A manufactured by Suruga Seiki Co., Ltd.).

本発明は以上の通りであって、各種の管やエンジンブロックなどの内部空間を有する工業製品、コンビナートなどにある配管、或は、人体の口腔などの生体器官の内部を測定対象としその対象内面の断面形状を測定するに当り、測定する内面の所定位置に光ビームを円盤状に照射し、その照射光による内面形状を表わす光跡を撮像センサにより撮影して前記光跡の画像データを蓄積し、蓄積した光跡画像のデータから撮影系の基準位置と測定対象内面との距離を算出して当該内面の形状を測定するようにしたので、工業分野,民生分野に限られず、様々な対象の内面(断面)形状を非接触で容易に測定することができるので、産業上きわめて有用である。 The present invention is as described above, and the inside surface of an industrial product having an internal space such as various pipes and engine blocks, a pipe in a complex, or a biological organ such as the oral cavity of a human body is measured. In measuring the cross-sectional shape of the above, a light beam is irradiated in a disk shape at a predetermined position on the inner surface to be measured, and a light trail showing the inner surface shape due to the irradiation light is photographed by an imaging sensor to accumulate image data of the light trail. However, since the distance between the reference position of the imaging system and the inner surface of the measurement target is calculated from the accumulated light trail image data to measure the shape of the inner surface, various targets are not limited to the industrial and consumer fields. Since the shape of the inner surface (cross section) of the surface can be easily measured without contact, it is extremely useful in industry.

1 投影部材
2 受光部材
3 測定対象の内面
4 透明管
5 遮蔽部材
6 固定具部材
G 4の中心軸
Sb シート状光
Sb1 中心軸を通過しないシート状光
Sb2 中心軸を通過するシート状光
A 3とSbが接する1点
P 4の内面上にある、1点
C 2内にある撮像素子の中心の位置
δ 2と5の隙間の距離
O 装置原点
r Oと測定対象物間の距離
R0 4の円筒管の半径
Lb コリメートされたレーザ光
eM 円錐ミラーもしくは円錐プリズム
1 Projection member
2 Light receiving member
3 Inner surface of measurement target
4 transparent tube
5 Shielding member
6 Fixture member
Central axis of G4
Sb sheet-like light
Sb1 Sheet-like light that does not pass through the central axis
Sheet-like light passing through the Sb2 central axis
One point where A3 and Sb meet
One point on the inner surface of P4
Distance between the center position δ 2 and 5 of the image sensor in C 2
O Distance between device origin r O and object to be measured
Radius of cylindrical tube of R04
Lb collimated laser beam
eM Conical Mirror or Conical Prism

Claims (2)

投光部材、受光部材、筒状部材、遮蔽部材と一つの剛体とまとめる固定部材と撮影した光跡画像の座標データから撮影光学系の基準位置と測定対象内面との距離を算出する距離算出する手段を有したことを特徴とする内面形状計測装置。 Calculate the distance between the reference position of the imaging optical system and the inner surface of the measurement target from the coordinate data of the captured light trail image and the fixing member that combines the light projecting member, light receiving member, tubular member, and shielding member into one rigid body. An inner surface shape measuring device characterized by having means. 各種の管やエンジンブロックなどの内部空間を有する工業製品や人体の口腔などの生体器官の内部を測定対象としその内面形状を測定する装置において、測定対象の所定位置に光ビームを円盤状に広げて照射する手段と、照射した光ビームにより測定対象の内面をセクショニングすることによって得られる前記対象の断面光跡を撮影すると同時に、遮蔽体により内部反射を防ぐ撮影手段と、撮影した光跡画像の座標データから撮影光学系の基準位置と測定対象内面との距離を算出する距離算出手段とを備えたことを特徴とする内面形状測定方法。


In a device that measures the inner surface shape of an industrial product having an internal space such as various tubes or engine blocks or a biological organ such as the oral cavity of a human body as a measurement target, a light beam is spread in a disk shape at a predetermined position of the measurement target. The means for irradiating the target, the means for photographing the cross-sectional light trail of the object obtained by sectioning the inner surface of the object to be measured by the irradiated light beam, and the means for preventing internal reflection by a shield, and the photographed light trail image. An inner surface shape measuring method including a distance calculating means for calculating a distance between a reference position of a photographing optical system and an inner surface to be measured from coordinate data.


JP2020005537A 2020-01-17 2020-01-17 Inner surface shape measurement device Pending JP2021113701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020005537A JP2021113701A (en) 2020-01-17 2020-01-17 Inner surface shape measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020005537A JP2021113701A (en) 2020-01-17 2020-01-17 Inner surface shape measurement device

Publications (1)

Publication Number Publication Date
JP2021113701A true JP2021113701A (en) 2021-08-05

Family

ID=77076867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020005537A Pending JP2021113701A (en) 2020-01-17 2020-01-17 Inner surface shape measurement device

Country Status (1)

Country Link
JP (1) JP2021113701A (en)

Similar Documents

Publication Publication Date Title
JP5829381B2 (en) Method and apparatus for measuring relative position of specular reflection surface
EP3164670B1 (en) Confocal surface topography measurement with a focal plane inclined with respect to the direction of the relative movement of confocal apparatus and sample
RU2523092C2 (en) Method and apparatus for measuring profile of spherical incurved, particularly, cylindrical bodies
US20130057650A1 (en) Optical gage and three-dimensional surface profile measurement method
JP6382303B2 (en) Surface roughness measuring device
JPWO2008072369A1 (en) Measuring apparatus and measuring method
JP4335218B2 (en) Speckle capture device, optical mouse and speckle capture method
CA2915855C (en) Device for optical profilometry with conical light beams
US9562761B2 (en) Position measuring device
US20220137425A1 (en) Collimator
US9677875B2 (en) Measuring surface curvature
JP2010145468A (en) Height detection device and toner height detection apparatus using the same
JP2021113701A (en) Inner surface shape measurement device
JP6743788B2 (en) Displacement sensor
JP2010216922A (en) Optical displacement meter and optical displacement measurement method
JP2006292513A (en) Refractive index distribution measuring method for refractive index distribution type lens
JP5487920B2 (en) Optical three-dimensional shape measuring apparatus and optical three-dimensional shape measuring method
JP2007264402A (en) Omniazimuth visual sensor
TWI357970B (en) Optical measuring system
JP2013015490A (en) Measuring apparatus
JP2009250676A (en) Distance measuring apparatus
JP2009222672A (en) Optical displacement measuring apparatus and multifunctional optical displacement measuring apparatus
JP2007315865A (en) Three-dimensional displacement measuring device and measuring method
JP6097123B2 (en) 3D measurement system
RU2366893C1 (en) Device for measurement of angular and linear coordinates of object