JP2009250676A - Distance measuring apparatus - Google Patents

Distance measuring apparatus Download PDF

Info

Publication number
JP2009250676A
JP2009250676A JP2008096245A JP2008096245A JP2009250676A JP 2009250676 A JP2009250676 A JP 2009250676A JP 2008096245 A JP2008096245 A JP 2008096245A JP 2008096245 A JP2008096245 A JP 2008096245A JP 2009250676 A JP2009250676 A JP 2009250676A
Authority
JP
Japan
Prior art keywords
light
light receiving
parallel
distance measuring
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008096245A
Other languages
Japanese (ja)
Inventor
Koichiro Komatsu
宏一郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2008096245A priority Critical patent/JP2009250676A/en
Publication of JP2009250676A publication Critical patent/JP2009250676A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • G01B11/12Measuring arrangements characterised by the use of optical techniques for measuring diameters internal diameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a distance measuring apparatus in which a probe part resists damage and is easy to be replaced. <P>SOLUTION: Light from a light source 2 is made to be a parallel light beam by a collimator lens 3 and is irradiated nearly perpendicularly on the inner wall of a hole 1 from an exit face 14. The scattered light is received by a micro aperture 15, is reflected by mirrors 17, 18 repeatedly, and is guided to a light receiving lens 4 to be received. The light received by the light receiving lens is imaged on a linear sensor 5. If a light receiving position on the linear sensor 5 is determined, the incident angle of the scattered light incident on the micro aperture 15 is determined, thereby allowing the distance from the exit face 14 to the inner wall of the hole 1 to be calculated on the basis of the principle of triangular surveying. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、距離測定装置に関するものである。   The present invention relates to a distance measuring device.

従来、金属加工などによる穴の形状は、ノギスなどの検具を用いて測定されてきた。ところが、ノギスなどの検具では歯の当たっている部分のうち一番狭い間隔のみしか測れないため、穴内部の形状を測定するには十分ではなかった。   Conventionally, the shape of a hole by metal processing or the like has been measured using a check tool such as a caliper. However, a caliper or other inspection tool can measure only the narrowest of the contacted parts of the teeth, and is not sufficient for measuring the shape inside the hole.

そこで、タッチプローブなどの接触式のセンサを用いた形状測定機による検査が行われるようになったが、接触式であるために接触子の磨耗や接触圧によって誤差が生じてしまうという問題があった。   Therefore, inspection by a shape measuring machine using a contact type sensor such as a touch probe has been carried out. However, since it is a contact type, there is a problem that an error occurs due to wear or contact pressure of the contact. It was.

一方、特開2007−285891号公報(特許文献1)には、穴内部に円盤状に広がるレーザ光を照射して、穴の内部に当たった位置をカメラで撮像して、その中心からの距離を算出するという方法が提案されている。
特開2007−285891号公報
On the other hand, Japanese Patent Application Laid-Open No. 2007-285891 (Patent Document 1) irradiates a laser beam spreading in a disk shape inside a hole, images the position hitting the inside of the hole with a camera, and distance from the center thereof. There has been proposed a method of calculating.
JP 2007-285891 A

ところが、穴内部にプローブを挿入して形状測定を行う際に、特にロボットアームなどに取り付けた場合、挿入する部品を穴の内壁などに衝突させてしまいやすく、特許文献1に記載されるような複雑な構造のプローブでは損傷して測定できなくなってしまうという問題点がある。   However, when the probe is inserted into the hole and shape measurement is performed, especially when the probe is attached to a robot arm or the like, the inserted component easily collides with the inner wall of the hole. There is a problem that a probe having a complicated structure is damaged and cannot be measured.

本発明はこのような事情に鑑みてなされたもので、挿入するプローブの部分を簡単な形にすることにより、プローブ部分を損傷しにくく、かつ、プローブ部分を交換容易な距離測定装置を提供することを課題とする。   The present invention has been made in view of the above circumstances, and provides a distance measuring device that makes it difficult to damage the probe portion and allows easy replacement of the probe portion by simplifying the portion of the probe to be inserted. This is the issue.

前記課題を解決するための第1の手段は、出射開口(A)を介して、被検物体に、前記被検物体の表面にほぼ点状光とみなせる照明光を照明する照明光学系と、
前記出射開口から一定の距離だけ離れた位置に設けられ、前記被検物体の表面上に前記照明光が当たる点(B)で散乱された散乱光を通過させる受光開口(C)と、
前記受光開口を通過した光を、出射位置においてもこの通過光と直線ABとのなす角θ又はこのθに定数を加えた値となるように、繰り返し反射により導く導光部と、前記導光部により導かれた光を受光し、受光した位置を検知する受光位置検知素子上に結像させる受光光学系と、
前記受光位置検知素子が検知した光の位置により、前記被検物体までの距離を算出する演算部とを有することを特徴とする距離測定装置である。
A first means for solving the above-described problem is an illumination optical system for illuminating the object to be examined with illumination light that can be regarded as substantially point-like light on the surface of the object to be examined, through the emission aperture (A),
A light receiving opening (C) that is provided at a position away from the exit opening by a certain distance and allows the scattered light scattered at the point (B) where the illumination light hits the surface of the test object to pass;
A light guide unit that repeatedly guides the light that has passed through the light receiving opening by reflection so that an angle θ between the light passing through and the straight line AB at the emission position or a value obtained by adding a constant to the θ, and the light guide A light receiving optical system that receives light guided by the unit and forms an image on a light receiving position detecting element that detects the received position;
A distance measuring apparatus comprising: an arithmetic unit that calculates a distance to the object to be detected based on a position of light detected by the light receiving position detecting element.

前記課題を解決するための第2の手段は、前記第1の手段であって、前記導光部は、互いに平行に配置され、かつ、反射面を対向させて配置された2枚のミラーであることを特徴とするものである。   The second means for solving the above-mentioned problem is the first means, wherein the light guide section is composed of two mirrors arranged in parallel to each other and with the reflecting surfaces facing each other. It is characterized by being.

前記課題を解決するための第3の手段は、前記第1の手段又は第2の手段であって、前記受光位置検知素子は、前記受光光学系の焦点位置に配置されていることを特徴とするものである。   The third means for solving the problem is the first means or the second means, wherein the light receiving position detecting element is arranged at a focal position of the light receiving optical system. To do.

前記課題を解決するための第4の手段は、前記第1の手段から第3の手段のいずれかであって、前記照明光学系は、光源と、コリメータレンズ系と、互いに平行に配置され、かつ、反射面を対向させて配置された2枚のミラーとを有し、前記光源からの光を前記コリメータレンズ系で平行光とし、前記2枚のミラーでそれぞれ反射させた後、前記出射開口に導くものであることを特徴とするものである。   The fourth means for solving the problem is any one of the first to third means, wherein the illumination optical system is arranged in parallel with each other, the light source and the collimator lens system, And two mirrors arranged with the reflecting surfaces facing each other, and the light from the light source is converted into parallel light by the collimator lens system and reflected by the two mirrors, respectively, and then the exit aperture It is the one that leads to.

本発明によれば、プローブ部分を損傷しにくく、かつ、プローブ部分を交換容易な距離測定装置を提供することができる。   According to the present invention, it is possible to provide a distance measuring device that is less likely to damage a probe portion and that can be easily replaced.

以下、本発明の実施の形態の例を、図を用いて説明する。以下の図においては、紙面の左右方向にx軸、紙面に垂直な方向にy軸、紙面の上下方向にz軸をとるものとする。図1は、本発明の実施の形態の第1の例である距離測定装置のプローブ部を示す図である。このプローブは、穴1の内径を測定するのに使用されるが、実際に直接測定しているのは、プローブから穴1の内壁までの距離である。プローブを回転させることにより、360°方向に亘って穴1の内壁までの距離が分かり、これにより、穴1の内径を計算で求めることができる。又、プローブを上下させることにより、穴の深さごとの内径を測定することができる。プローブを回転させる代わりに穴1を回転させてもよく、プローブを上下させる代わりに穴1を上下させてもよい。   Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. In the following drawings, it is assumed that the x axis is in the left-right direction of the paper, the y axis is in the direction perpendicular to the paper, and the z axis is in the vertical direction of the paper. FIG. 1 is a diagram showing a probe unit of a distance measuring apparatus which is a first example of an embodiment of the present invention. This probe is used to measure the inner diameter of the hole 1, but what is actually measured directly is the distance from the probe to the inner wall of the hole 1. By rotating the probe, the distance to the inner wall of the hole 1 can be determined over the 360 ° direction, whereby the inner diameter of the hole 1 can be calculated. Also, by moving the probe up and down, the inner diameter for each hole depth can be measured. Instead of rotating the probe, the hole 1 may be rotated, and instead of moving the probe up and down, the hole 1 may be moved up and down.

ほぼz方向に深さを有する被検物体である穴1にガラスやプラスチックなどの光透過性部材からなるひし形の角柱状の光学素子10を挿入する。光学素子10の上下部分は、紙面に垂直な平面で、45°の角度に切断されている。切断角度は必ずしも45°である必要はない。全反射条件が成り立ち平行とされていればよい。又、この部分に反射膜を蒸着する等により通常のミラーとして使用するようにすれば、全反射条件が成り立たなくてもよい。   A rhombus prismatic optical element 10 made of a light transmitting member such as glass or plastic is inserted into a hole 1 which is a test object having a depth substantially in the z direction. The upper and lower portions of the optical element 10 are planes perpendicular to the paper surface and are cut at an angle of 45 °. The cutting angle is not necessarily 45 °. It is only necessary that the total reflection condition is satisfied and parallel. Further, if the mirror is used as a normal mirror by depositing a reflective film on this portion, the total reflection condition may not be satisfied.

レーザやLEDなどの発光部の十分小さい光源2から出射した光を、コリメータレンズ3を介してx軸に平行で光束径の一定な光束として、光学素子10の側方の照明光入射面11から入射させる。光束は第1の反射面12(全反射面)で直角に反射され、光学素子10の中を、穴1の奥の方向(z軸方向)に向かって進む。この光束の進行方向は、なるべくz軸方向に平行となるようにとした方が、光学素子10の太さを小さくできるので好ましい。   Light emitted from a light source 2 having a sufficiently small light emitting portion such as a laser or LED is converted from the illumination light incident surface 11 on the side of the optical element 10 as a light beam having a constant light beam diameter parallel to the x axis through the collimator lens 3. Make it incident. The light beam is reflected at a right angle by the first reflection surface 12 (total reflection surface) and travels through the optical element 10 in the direction toward the back of the hole 1 (z-axis direction). It is preferable that the traveling direction of the light beam be as parallel as possible to the z-axis direction because the thickness of the optical element 10 can be reduced.

そして、さらに第2の反射面13で再びほぼ90度の角度をなす方向に折り曲げられてx軸に平行な光束となり、照明光の出射口14(出射開口、記号Aで示す)から被検物体である穴1の内壁を照射する。光束の径が細いので、照射された部分(記号Bで示す)は、ほぼ点とみなされる。穴1の内壁では光の照射された部分のみ散乱光を発する。散乱光は点Bを中心に四方八方へ広がるが、微小開口15(受光開口、記号Cで示す)を設け、この微小開口15を通過する光線のみを受光するようにする。則ち、微小開口15の近傍の部分には、遮光材が設けられており、微小開口15以外の部分では、光学素子10の側面を散乱光が通過しないようにされている。この実施の形態では、微小開口15と出射口14を結ぶ線はz軸に平行とされている。しかし、必ずしもこのようにする必要はない。   Further, the second reflecting surface 13 is bent again in a direction that forms an angle of approximately 90 degrees to become a light beam parallel to the x-axis, and the object to be examined is emitted from the illumination light exit 14 (exit aperture, indicated by symbol A). The inner wall of the hole 1 is irradiated. Since the diameter of the light beam is thin, the irradiated portion (indicated by symbol B) is regarded as a point. The inner wall of the hole 1 emits scattered light only in the portion irradiated with light. The scattered light spreads in all directions around the point B, but a minute aperture 15 (light receiving aperture, indicated by symbol C) is provided so that only the light beam passing through the minute aperture 15 is received. In other words, a light shielding material is provided in the vicinity of the minute aperture 15, and the scattered light is prevented from passing through the side surface of the optical element 10 in the portion other than the minute aperture 15. In this embodiment, the line connecting the minute opening 15 and the emission port 14 is parallel to the z-axis. However, this is not always necessary.

微小開口15を通過した光は、平行になるように対向して設けられた、光学素子10の側面の反射部16,17に入射する。   The light that has passed through the minute opening 15 enters the reflecting portions 16 and 17 on the side surface of the optical element 10 that are provided so as to be parallel to each other.

光学素子10に対して入射角度θで入射する散乱光は、スネルの法則(sinθ=nsinθ’、nは光学素子10の屈折率)により出射角度θ’に屈折される。反射部16,17に入射角θ’で入射する光の反射では反射角と入射角が等しいので、平行な反射面に対して光線は常にθ’だけ傾いている状態が保持される。この実施の形態では、反射部16,17は、ABCを含む平面に垂直な平面であり、かつBC軸に平行とされている。しかし、反射部16,17同士が平行でABCを含む平面に垂直な平面であれば、必ずしもBC軸に平行である必要は無い。   Scattered light incident on the optical element 10 at an incident angle θ is refracted at an emission angle θ ′ according to Snell's law (sin θ = n sin θ ′, where n is the refractive index of the optical element 10). In the reflection of the light incident on the reflecting portions 16 and 17 at the incident angle θ ′, the reflection angle is equal to the incident angle, so that the state where the light beam is always inclined by θ ′ with respect to the parallel reflecting surface is maintained. In this embodiment, the reflection parts 16 and 17 are planes perpendicular to the plane including ABC and are parallel to the BC axis. However, as long as the reflecting portions 16 and 17 are parallel to each other and are a plane perpendicular to the plane including ABC, it is not always necessary to be parallel to the BC axis.

反射部16,17の部分には、反射膜がコーティングされてミラーを構成している。 微小開口15を通過した散乱光は角度θ’を保持しつつこの二つの反射部16,17の間で反射を繰り返し、受光窓18から出射して、受光光学系である受光レンズ4に入射する。二つの反射部16,17が導光部となる。角度θ’で導光部において反射を繰り返した光は、出射窓18でもスネルの法則(nsinθ’=sinθ)により屈折されて光学素子10から出射角度θで出射する。   The reflective portions 16 and 17 are coated with a reflective film to form a mirror. The scattered light that has passed through the minute aperture 15 is repeatedly reflected between the two reflecting portions 16 and 17 while maintaining the angle θ ′, is emitted from the light receiving window 18, and enters the light receiving lens 4 that is a light receiving optical system. . The two reflection parts 16 and 17 become a light guide part. The light that is repeatedly reflected at the light guide at the angle θ ′ is refracted by the Snell's law (nsin θ ′ = sin θ) at the emission window 18 and is emitted from the optical element 10 at the emission angle θ.

受光レンズ4の後側焦点距離位置に、受光位置検知素子である、リニアセンサ5が設けられており、微小開口15を通過した散乱光は微小開口15に入射した角度θに応じた位置にスポットを結ぶ。このスポットの位置を検出することにより、穴1の内壁までの距離を求めることができる。なお、受光位置検知素子は、光が入射した位置を検知することができる素子であり、例えばPSDやCCD等を用いることができる。1次元の位置を検出できれば十分であるが、2次元の素子を用いても構わない。また、この実施の形態では、受光レンズ4の光軸はx軸に平行にしているが、後に述べるように、必ずしもこのようにする必要はない。   A linear sensor 5, which is a light receiving position detecting element, is provided at the rear focal length position of the light receiving lens 4, and the scattered light that has passed through the minute aperture 15 is spotted at a position corresponding to the angle θ incident on the minute aperture 15. Tie. By detecting the position of this spot, the distance to the inner wall of the hole 1 can be obtained. The light receiving position detecting element is an element that can detect the position where light is incident, and for example, a PSD or a CCD can be used. It is sufficient if a one-dimensional position can be detected, but a two-dimensional element may be used. In this embodiment, the optical axis of the light receiving lens 4 is parallel to the x axis. However, as described later, it is not always necessary to do so.

照射光である平行光束が折り曲げミラーである第2の反射面13でほぼ直角で折り曲げられてx軸に平行な光束となり、穴1の内壁にほぼ垂直に入射するようにされている。よって、三角測量の原理で、照明光の出射口14から穴1の内壁までの距離hは、図1における照明光の出射口14と微小開口15の距離Lと検出される散乱光の角度θ(微小開口15を通過した散乱光と直線AB(又はx軸)とがなす角度)とから次の式で表すことができる。

Figure 2009250676
A parallel light beam as irradiation light is bent at a substantially right angle by the second reflecting surface 13 as a folding mirror to become a light beam parallel to the x-axis, and is incident on the inner wall of the hole 1 substantially perpendicularly. Therefore, on the principle of triangulation, the distance h from the illumination light exit 14 to the inner wall of the hole 1 is the distance L between the illumination light exit 14 and the minute aperture 15 in FIG. 1 and the detected scattered light angle θ. (An angle formed by the scattered light passing through the minute aperture 15 and the straight line AB (or the x axis)) can be expressed by the following equation.
Figure 2009250676

ミラー16,17の反射面が、平行であり、かつ、直線ABに垂直であれば(すなわちy−z平面に平行であれば)、ミラー16,17からなる導光部中での光線の角度は保存され、光学素子10からは角度θで出射する。ので、受光レンズ4の光軸x軸に平行であるならば、受光レンズ4の焦点距離をfとすると、スポットのできる像高をxとするならば次のような関係がある。

Figure 2009250676
If the reflecting surfaces of the mirrors 16 and 17 are parallel and perpendicular to the straight line AB (that is, parallel to the yz plane), the angle of the light beam in the light guide section composed of the mirrors 16 and 17 Is stored and emitted from the optical element 10 at an angle θ. Therefore, if it is parallel to the optical axis x-axis of the light-receiving lens 4, the focal length of the light-receiving lens 4 is f, and if the image height that can be spotted is x, there is the following relationship.
Figure 2009250676

つまり微小開口15から穴1の内壁までの距離hは、次の式で表すことができる。これらの演算は、リニアセンサ15の出力を受けて、図示しない演算部で行われる。

Figure 2009250676
That is, the distance h from the minute opening 15 to the inner wall of the hole 1 can be expressed by the following equation. These calculations are performed by a calculation unit (not shown) in response to the output of the linear sensor 15.
Figure 2009250676

リニアセンサ上の位置検出分解能がΔxのとき、検出できる穴の内壁までの距離の差Δhは次のように計算できる。

Figure 2009250676
When the position detection resolution on the linear sensor is Δx, the difference Δh in distance to the inner wall of the hole that can be detected can be calculated as follows.
Figure 2009250676

例えば、リニアセンサ5の画素のピッチが5μmのとき、照明光の出射口14と微小開口15の距離Lを1mm、受光レンズ4の焦点距離fを10mmとすると、穴1の内壁までの距離hが2mm程度のときに約2μmの精度で検出できる。また、微小開口15の大きさは小さいほど精度が向上するが、光量が低下するため、および回折が発生するため現実的には数μm程度が限界で実用上は数十μm程度がよい。   For example, when the pitch of the pixels of the linear sensor 5 is 5 μm, the distance h to the inner wall of the hole 1 is 1 mm when the distance L between the exit 14 of the illumination light and the minute opening 15 is 1 mm and the focal length f of the light receiving lens 4 is 10 mm. Can be detected with an accuracy of about 2 μm. In addition, the accuracy is improved as the size of the minute aperture 15 is smaller. However, since the amount of light is reduced and diffraction occurs, the actual limit is about several μm, and practically about several tens μm is preferable.

本実施の形態においては上述のように、受光レンズ4に入射する光線の入射角度θで穴までの距離を測定するので、ミラー16と受光窓18の境界に光がさしかかった場合でも、図2に示すように、ミラー16と17で反射した光は常に平行に受光レンズ4に入射し、受光レンズ4の後側焦点位置におかれたリニアセンサ5上では一点に結像する。すなわち、リニアセンサ5が受光レンズ4の光軸と交わる点から、X=fθだけ離れた距離に結像する。fは受光レンズ4の焦点距離である。このため、リニアセンサ5に結像するスポットの中心を検出すれば光束の傾きを検出することができる。そして、前述の式により穴1までの距離hを算出することができる。   In the present embodiment, as described above, since the distance to the hole is measured by the incident angle θ of the light beam incident on the light receiving lens 4, even when light approaches the boundary between the mirror 16 and the light receiving window 18, FIG. As shown in FIG. 4, the light reflected by the mirrors 16 and 17 always enters the light receiving lens 4 in parallel, and forms an image at one point on the linear sensor 5 placed at the rear focal position of the light receiving lens 4. That is, an image is formed at a distance X = fθ from the point where the linear sensor 5 intersects the optical axis of the light receiving lens 4. f is the focal length of the light receiving lens 4. For this reason, if the center of the spot imaged on the linear sensor 5 is detected, the inclination of the light beam can be detected. And the distance h to the hole 1 is computable by the above-mentioned formula.

なお、光学素子10の微小開口15及び受光窓18にプリズムや切欠きを配置して、入射面は傾けて、反射部16、17に入射する角度を臨界角より大きくすることにより全反射させることができ、光を効率よく伝搬することができる。又、反射部16,17は、ABCを含む平面に垂直な平面であり、かつAC軸に平行とされている。しかし、反射部16,17同士が平行でABCを含む平面に垂直な平面であれば、必ずしもAC軸に平行である必要は無い。   Here, prisms and notches are arranged in the microscopic aperture 15 and the light receiving window 18 of the optical element 10, the incident surface is inclined, and the angle of incidence on the reflectors 16 and 17 is made to be totally reflected by making it larger than the critical angle. And light can be propagated efficiently. The reflecting portions 16 and 17 are planes perpendicular to the plane including ABC and are parallel to the AC axis. However, if the reflecting portions 16 and 17 are parallel to each other and are perpendicular to the plane including ABC, it is not always necessary to be parallel to the AC axis.

さらに、図1に示すように、第1の反射面12と第2の反射面13が平行に配置されているので、照射側の光学系の光軸(光源2、コリメータレンズ3の光軸)は受光系の光軸(照明光の出射口14から出射される平行光の光軸)に平行になり、図3に実線で示すように光学素子10が傾斜して取り付けられた場合でも、照明光の出射口14から出射される光は、図3に一点鎖線で示した本来の光線(光源2、コリメータレンズ3の光軸に平行な直線)に対して平行であることが保たれる。   Further, as shown in FIG. 1, since the first reflecting surface 12 and the second reflecting surface 13 are arranged in parallel, the optical axis of the optical system on the irradiation side (the optical axis of the light source 2 and the collimator lens 3). Is parallel to the optical axis of the light receiving system (the optical axis of the parallel light emitted from the illumination light exit port 14), and illumination is performed even when the optical element 10 is mounted with an inclination as shown by the solid line in FIG. The light emitted from the light emission port 14 is kept parallel to the original light beam (a straight line parallel to the optical axis of the light source 2 and the collimator lens 3) indicated by a one-dot chain line in FIG.

また、ミラー16と17で何度反射しても受光レンズ4に入射する光線の入射角度は変化しない。光学素子10がδだけ傾斜して取り付けられた場合には、物体を照射する光線と微小開口15を結ぶ線が傾斜するので、微小開口15を通過する光線の傾きθ’が次の式のように変化する。

Figure 2009250676
Further, the incident angle of the light beam incident on the light receiving lens 4 does not change no matter how many times it is reflected by the mirrors 16 and 17. When the optical element 10 is mounted with an inclination of δ, the line connecting the light beam that irradiates the object and the minute aperture 15 is inclined, so the inclination θ ′ of the light beam that passes through the minute aperture 15 is expressed by the following equation: To change.
Figure 2009250676

δが小さければ近似的に次のような式になる。実際の測定装置においては、この値θ’の最大値は、5分角程度にすれば、測定上ほとんど問題にならない。

Figure 2009250676
If δ is small, the following equation is approximately obtained. In an actual measuring apparatus, if the maximum value of this value θ ′ is about 5 arc minutes, there is almost no problem in measurement.
Figure 2009250676

つまり、光学素子10の内部を通過する受光光の傾き(L/h)が小さいほど誤差の影響が少ない。そこで、照明光の出射口14と微小開口15の距離Lを小さくして受光レンズ4の焦点距離fを長くするようにして感度を保つことが望ましい。このようにすると、像高が高くなってしまうのでリニアセンサ5を、受光レンズ4の光軸からオフセットして配置してもよい。   That is, the smaller the inclination (L / h) of the received light passing through the optical element 10, the less the influence of the error. Therefore, it is desirable to maintain the sensitivity by decreasing the distance L between the illumination light exit 14 and the minute opening 15 and increasing the focal length f of the light receiving lens 4. In this case, the image height becomes high, and the linear sensor 5 may be offset from the optical axis of the light receiving lens 4.

また、光学素子10が傾斜することにより、穴1の検出位置がずれるので光学素子10を取り付けた際に、穴1に光の当たる位置を確認するようにしてずれを補正することが望ましい。   Further, since the detection position of the hole 1 is shifted due to the inclination of the optical element 10, it is desirable to correct the shift by confirming the position where the light hits the hole 1 when the optical element 10 is attached.

反射面16、17がz軸に対してδだけ傾いて平行でない場合には、微小開口15に到達する散乱光の入射角度は、直線ABと散乱光のなす角θに反射面16、17のz軸に対する傾きδを加えた値となる。   In the case where the reflecting surfaces 16 and 17 are inclined by δ with respect to the z axis and are not parallel, the incident angle of the scattered light reaching the minute aperture 15 is the angle θ formed by the straight line AB and the scattered light. A value obtained by adding a slope δ with respect to the z-axis.

その場合、散乱光はスネルの法則により微小開口15において屈折し、その屈折角はsin=−1(sin(θ+δ)/n)となる。このように反射面16、17に入射する角度は、反射面16、17がz軸に対して傾斜していない、つまりδ=0の場合と異なるが、反射面16、17が互いに平行なので反射角が保持される。 In this case, the scattered light is refracted at the minute aperture 15 by Snell's law, and the refraction angle is sin = −1 (sin (θ + δ) / n). In this way, the angle of incidence on the reflecting surfaces 16 and 17 is different from the case where the reflecting surfaces 16 and 17 are not inclined with respect to the z-axis, that is, δ = 0, but the reflecting surfaces 16 and 17 are parallel to each other so that they are reflected. The corner is preserved.

受光窓18から出射する光の出射角はθ+δとなるが、受光窓18はδだけ傾いているので、光学素子10とは独立な受光光学系4に対する入射角はθとなり、光学素子10の傾きの影響は受けない。 図4は、本発明の実施の形態の第2の例である距離測定装置のプローブ部を示す図である。このプローブは、一部を除いて図1に示したプローブと同じであるので、同じ構成要素には同じ符号を付して、その説明を省略することがある。このプローブにおいては、光源2とコリメータレンズ3が、光学素子10の中に組み込まれており、第1の反射面12,第2の反射面13を介することなく、平行光を照明光の出射口14から出射できるようになっている。その作用効果は、図1に示したものと変わらない。   The emission angle of the light emitted from the light receiving window 18 is θ + δ, but since the light receiving window 18 is inclined by δ, the incident angle with respect to the light receiving optical system 4 independent of the optical element 10 is θ, and the inclination of the optical element 10 Is not affected. FIG. 4 is a diagram showing a probe unit of a distance measuring apparatus which is a second example of the embodiment of the present invention. Since this probe is the same as the probe shown in FIG. 1 except for a part, the same components are denoted by the same reference numerals, and the description thereof may be omitted. In this probe, the light source 2 and the collimator lens 3 are incorporated in the optical element 10, and the parallel light is emitted from the illumination light without passing through the first reflection surface 12 and the second reflection surface 13. 14 can be emitted. The effect is not different from that shown in FIG.

ただし、この場合、光学素子10が破損したとき、光源2とコリメータレンズ3も同時に交換しなくてはならないので、図1に示した実施の形態の方が経済的に優れていると言えるし、光源2、コリメータレンズ3の配置にも自由度があるので、図1に示した実施の形態の方が好ましい。   However, in this case, when the optical element 10 is damaged, the light source 2 and the collimator lens 3 must be replaced at the same time, so the embodiment shown in FIG. 1 can be said to be economically superior. Since the arrangement of the light source 2 and the collimator lens 3 is also flexible, the embodiment shown in FIG. 1 is preferable.

図5は、本発明の実施の形態の第3の例である距離測定装置のプローブ部を示す図である。このプローブも、一部を除いて図1に示したプローブと同じであるので、同じ構成要素には同じ符号を付して、その説明を省略することがある。   FIG. 5 is a diagram showing a probe unit of a distance measuring apparatus which is a third example of the embodiment of the present invention. Since this probe is also the same as the probe shown in FIG. 1 except for a part, the same components are denoted by the same reference numerals and the description thereof may be omitted.

図1に示す実施の形態においては、受光光学系である受光レンズ4の光軸はABに平行とされていたが、この実施の形態においては、ABとφだけ光軸を傾けて配置されている。すなわちx軸とφだけ傾いている。リニアセンサ5が受光レンズ4の焦点位置に配置されているのは同じである。   In the embodiment shown in FIG. 1, the optical axis of the light receiving lens 4 which is a light receiving optical system is parallel to AB. However, in this embodiment, the optical axis is inclined by AB and φ. Yes. That is, it is inclined by the x axis and φ. It is the same that the linear sensor 5 is disposed at the focal position of the light receiving lens 4.

すなわち、図1に示す実施の形態では、受光レンズ4には、微小開口15を通過した散乱光は、光軸に対してθだけ傾いて入射したが、図5の場合は、(θ−φ)だけ、傾いて入射することになる。よって、リニアセンサ5では、受光レンズ4の光軸からX’=f(θ−φ)だけ離れた位置に結像することになる。fとθは既知であるので、X’が分かればθを求めることができ、前述の計算式によりhを求めることができる。このように、受光光学系である受光レンズ4の光軸は、必ずしもABに平行である必要はない。   That is, in the embodiment shown in FIG. 1, the scattered light that has passed through the minute aperture 15 enters the light receiving lens 4 with an inclination of θ with respect to the optical axis, but in the case of FIG. 5, (θ−φ ) Only incident at an angle. Therefore, the linear sensor 5 forms an image at a position away from the optical axis of the light receiving lens 4 by X ′ = f (θ−φ). Since f and θ are known, if X ′ is known, θ can be obtained, and h can be obtained by the above-described calculation formula. Thus, the optical axis of the light receiving lens 4 that is a light receiving optical system is not necessarily parallel to AB.

なお、発明の実施形態では、光学素子としてガラスを例に説明したが、内面又は外面に反射面を有する中空素子であってもよい。   In the embodiment of the invention, glass is described as an example of the optical element, but a hollow element having a reflection surface on the inner surface or the outer surface may be used.

本発明の実施の形態の第1の例である距離測定装置のプローブ部を示す図である。It is a figure which shows the probe part of the distance measuring device which is the 1st example of embodiment of this invention. 受光部に入射する光線の入射の仕方の例を示す図である。It is a figure which shows the example of the incident method of the light ray which injects into a light-receiving part. 受光素子10が傾いて取り付けられた状態を示す図である。It is a figure which shows the state in which the light receiving element 10 was inclined and attached. 本発明の実施の形態の第2の例である距離測定装置のプローブ部を示す図である。It is a figure which shows the probe part of the distance measuring device which is the 2nd example of embodiment of this invention. 本発明の実施の形態の第3の例である距離測定装置のプローブ部を示す図である。It is a figure which shows the probe part of the distance measuring device which is the 3rd example of embodiment of this invention.

符号の説明Explanation of symbols

1:穴、2:光源、3:コリメータレンズ、4:受光レンズ、5:リニアセンサ、10:光学素子、11:照明光入射面、12:第1の反射面、13:第2の反射面、14:出射面(出射開口)、15微小開口(受光開口)、16:反射部(ミラー)、17:反射部(ミラー)、18:受光窓 1: hole, 2: light source, 3: collimator lens, 4: light receiving lens, 5: linear sensor, 10: optical element, 11: illumination light incident surface, 12: first reflecting surface, 13: second reflecting surface , 14: emitting surface (exiting aperture), 15 minute aperture (receiving aperture), 16: reflecting portion (mirror), 17: reflecting portion (mirror), 18: receiving window

Claims (4)

出射開口(A)を介して、被検物体に、前記被検物体の表面にほぼ点状光とみなせる照明光を照明する照明光学系と、
前記出射開口から一定の距離だけ離れた位置に設けられ、前記被検物体の表面上に前記照明光が当たる点(B)で散乱された散乱光を通過させる受光開口(C)と、
前記受光開口を通過した光を、出射位置においてもこの通過光と直線ABとのなす角θ又はこのθに定数を加えた値となるように、繰り返し反射により導く導光部と、前記導光部により導かれた光を受光し、受光した位置を検知する受光位置検知素子上に結像させる受光光学系と、
前記受光位置検知素子が検知した光の位置により、前記被検物体までの距離を算出する演算部とを有することを特徴とする距離測定装置。
An illumination optical system that illuminates the object to be examined with illumination light that can be regarded as substantially point-like light on the surface of the object to be examined, through the exit aperture (A);
A light receiving opening (C) that is provided at a position away from the exit opening by a certain distance and allows the scattered light scattered at the point (B) where the illumination light hits the surface of the test object to pass;
A light guide unit that repeatedly guides the light that has passed through the light receiving opening by reflection so that an angle θ between the light passing through and the straight line AB at the emission position or a value obtained by adding a constant to the θ, and the light guide A light receiving optical system that receives light guided by the unit and forms an image on a light receiving position detecting element that detects the received position;
A distance measuring apparatus comprising: a calculation unit that calculates a distance to the object to be detected based on a position of light detected by the light receiving position detecting element.
前記導光部は、互いに平行に配置され、かつ、反射面を対向させて配置された2枚のミラーであることを特徴とする請求項1に記載の距離測定装置。   The distance measuring device according to claim 1, wherein the light guide unit is two mirrors that are arranged in parallel to each other and that are arranged with their reflection surfaces facing each other. 前記受光位置検知素子は、前記受光光学系の焦点位置に配置されていることを特徴とする請求項1又は請求項2に記載の距離測定装置。   The distance measuring device according to claim 1, wherein the light receiving position detecting element is disposed at a focal position of the light receiving optical system. 前記照明光学系は、光源と、コリメータレンズ系と、互いに平行に配置され、かつ、反射面を対向させて配置された2枚のミラーとを有し、前記光源からの光を前記コリメータレンズ系で平行光とし、前記2枚のミラーでそれぞれ反射させた後、前記出射開口に導くものであることを特徴とする請求項1から請求項3のうち、いずれか1項に記載の距離測定装置。   The illumination optical system includes a light source, a collimator lens system, and two mirrors that are arranged in parallel with each other and have reflecting surfaces facing each other, and transmits light from the light source to the collimator lens system. 4. The distance measuring device according to claim 1, wherein the distance measuring device converts the light into parallel light and reflects the light with the two mirrors, and then guides the light to the exit aperture. 5. .
JP2008096245A 2008-04-02 2008-04-02 Distance measuring apparatus Pending JP2009250676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008096245A JP2009250676A (en) 2008-04-02 2008-04-02 Distance measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008096245A JP2009250676A (en) 2008-04-02 2008-04-02 Distance measuring apparatus

Publications (1)

Publication Number Publication Date
JP2009250676A true JP2009250676A (en) 2009-10-29

Family

ID=41311560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008096245A Pending JP2009250676A (en) 2008-04-02 2008-04-02 Distance measuring apparatus

Country Status (1)

Country Link
JP (1) JP2009250676A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062586A (en) * 2010-11-19 2011-05-18 华中科技大学 Inner-bore laser measuring device
WO2020261094A1 (en) * 2019-06-25 2020-12-30 Ceske Vysoke Uceni Technicke V Praze Device for measuring the inner walls of holes by means of a triangulation distance measurement sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062586A (en) * 2010-11-19 2011-05-18 华中科技大学 Inner-bore laser measuring device
WO2020261094A1 (en) * 2019-06-25 2020-12-30 Ceske Vysoke Uceni Technicke V Praze Device for measuring the inner walls of holes by means of a triangulation distance measurement sensor

Similar Documents

Publication Publication Date Title
JP5829381B2 (en) Method and apparatus for measuring relative position of specular reflection surface
JP6382303B2 (en) Surface roughness measuring device
JP4316643B2 (en) Shape measuring device and shape measuring method
EP3187822A1 (en) Surface shape measuring device
JP2010145468A (en) Height detection device and toner height detection apparatus using the same
JP2009250676A (en) Distance measuring apparatus
JP5295900B2 (en) Tilt sensor
JP2009092479A (en) Three-dimensional shape measuring instrument
JP6743788B2 (en) Displacement sensor
JP2010216922A (en) Optical displacement meter and optical displacement measurement method
JP2006058115A (en) Optical displacement measuring apparatus
JP2009222672A (en) Optical displacement measuring apparatus and multifunctional optical displacement measuring apparatus
TWI357970B (en) Optical measuring system
KR20070015267A (en) Light displacement measuring apparatus
JP2016114602A (en) Surface shape measurement device, and defect determination device
JP4545580B2 (en) In-plane displacement meter
JP5141103B2 (en) Non-contact 3D shape measuring machine
JP3696228B2 (en) Distance measuring method and distance sensor
JP5330114B2 (en) Displacement tilt sensor
JP2021113701A (en) Inner surface shape measurement device
JP2010164354A (en) Autocollimator
JP2011099799A (en) Measuring apparatus and measurement method
JP4995041B2 (en) Printed solder inspection method and printed solder inspection apparatus
JP6028574B2 (en) Shape measuring device, structure manufacturing system, and structure manufacturing method
JP2002340533A (en) Method for measuring three-dimensional surface shape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110328

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20120731