JP6028574B2 - Shape measuring device, structure manufacturing system, and structure manufacturing method - Google Patents

Shape measuring device, structure manufacturing system, and structure manufacturing method Download PDF

Info

Publication number
JP6028574B2
JP6028574B2 JP2013002081A JP2013002081A JP6028574B2 JP 6028574 B2 JP6028574 B2 JP 6028574B2 JP 2013002081 A JP2013002081 A JP 2013002081A JP 2013002081 A JP2013002081 A JP 2013002081A JP 6028574 B2 JP6028574 B2 JP 6028574B2
Authority
JP
Japan
Prior art keywords
shape
hole
unit
contact
detection unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013002081A
Other languages
Japanese (ja)
Other versions
JP2014134437A (en
Inventor
孝樹 竹下
孝樹 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2013002081A priority Critical patent/JP6028574B2/en
Publication of JP2014134437A publication Critical patent/JP2014134437A/en
Application granted granted Critical
Publication of JP6028574B2 publication Critical patent/JP6028574B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、形状測定装置及び構造物製造システム並びに構造物製造方法に関するものである。   The present invention relates to a shape measuring device, a structure manufacturing system, and a structure manufacturing method.

孔や溝等の凹部の表面形状を非接触で測定可能な測定装置が知られている(例えば、特許文献1に記載してある)。これらの測定装置は、例えば、孔の深さ方向に光を送る送光部と、孔の深さ方向と略直交する方向に光の方向を変換する変換部と、変換部で方向が変化した光のうち孔の内側表面で反射した光を検出する検出部とを備える。これらの測定装置は、例えば、検出部で検出された孔の内側表面の像に基づいて、孔の表面形状を測定することができる。   A measuring device capable of measuring the surface shape of a recess such as a hole or a groove in a non-contact manner is known (for example, described in Patent Document 1). These measuring devices, for example, a light transmitting unit that transmits light in the depth direction of the hole, a conversion unit that converts the direction of the light in a direction substantially orthogonal to the depth direction of the hole, and the direction changed in the conversion unit And a detector that detects light reflected from the inner surface of the hole. These measuring devices can measure the surface shape of the hole based on, for example, an image of the inner surface of the hole detected by the detection unit.

米国特許第5895927号明細書US Pat. No. 5,895,927

しかしながら、上述したような従来技術には、以下のような問題が存在する。
底部を有する凹部を測定する場合には、プローブ等の測定子を凹部に挿入した際に、測定子の一部が底部に衝突する可能性がある。また、底部に限らず、凹部の側壁に測定子の一部が衝突する可能性もある。これらの衝突は、測定精度に悪影響を及ぼす可能性がある。
However, the following problems exist in the conventional technology as described above.
When measuring a recess having a bottom, there is a possibility that a part of the probe collides with the bottom when a probe such as a probe is inserted into the recess. Further, not only the bottom part but also a part of the measuring element may collide with the side wall of the recess. These collisions can adversely affect measurement accuracy.

本発明は、以上のような点を考慮してなされたもので、凹部の内側表面形状の情報に関する測定精度の低下を抑制できる形状測定装置及び構造物製造システム並びに構造物製造方法を提供することを目的とする。   The present invention has been made in consideration of the above points, and provides a shape measuring device, a structure manufacturing system, and a structure manufacturing method capable of suppressing a decrease in measurement accuracy related to information on the inner surface shape of a recess. With the goal.

本発明の第1の態様に従えば、孔の表面の形状を測定するための形状測定装置であって、孔の表面に光を照射し、孔の表面で反射する光を検出する撮像素子を含む形状取得部と、形状取得部で検出する信号を用い、孔の表面の形状を算出する演算部と、孔の表面との接触に伴い、形状取得部の光路に挿入するように配置される接触検出部とを備える形状測定装置が提供される。   According to a first aspect of the present invention, there is provided a shape measuring device for measuring the shape of the surface of a hole, the image sensor for irradiating the surface of the hole with light and detecting the light reflected by the surface of the hole. Including the shape acquisition unit including the signal, the calculation unit that calculates the shape of the surface of the hole using the signal detected by the shape acquisition unit, and the contact with the surface of the hole are arranged to be inserted into the optical path of the shape acquisition unit A shape measuring device including a contact detection unit is provided.

本発明の第2の態様に従えば、構造物の形状に関する設計情報に基づいて構造物を成形する成形装置と、成形装置によって成形された構造物の形状を測定する第1の態様の形状測定装置と、形状測定装置によって測定された構造物の形状を示す形状情報と設計情報とを比較する制御装置と、を備える構造物製造システムが提供される。   According to the second aspect of the present invention, a molding apparatus that molds a structure based on design information related to the shape of the structure, and a shape measurement of the first aspect that measures the shape of the structure molded by the molding apparatus. There is provided a structure manufacturing system including an apparatus and a control device that compares design information with shape information indicating the shape of the structure measured by the shape measuring device.

本発明の第3の態様に従えば、構造物の形状に関する設計情報に基づいて、構造物を成形することと、成形された構造物の形状を第1の態様の形状測定装置によって測定することと、形状測定装置によって測定された構造物の形状を示す形状情報と設計情報とを比較することと、を含む構造物製造方法が提供される。   According to the third aspect of the present invention, the structure is molded based on the design information related to the shape of the structure, and the shape of the molded structure is measured by the shape measuring apparatus according to the first aspect. And a method of manufacturing the structure including comparing the shape information indicating the shape of the structure measured by the shape measuring apparatus with the design information.

本発明では、凹部の内側表面形状の情報に関する測定精度の低下を抑制でき、形状測定精度の向上を図ることができる。   In this invention, the fall of the measurement precision regarding the information of the inner surface shape of a recessed part can be suppressed, and the improvement of a shape measurement precision can be aimed at.

第1実施形態に係る形状測定装置1Aの外観を示す図。The figure which shows the external appearance of 1 A of shape measuring apparatuses which concern on 1st Embodiment. 同形状測定装置1Aの概略構成を示す図。The figure which shows schematic structure of the same shape measuring apparatus 1A. 同形状測定装置1Aの動作を示す図。The figure which shows operation | movement of the same shape measuring apparatus 1A. 撮像画像の例を示す概念図である。It is a conceptual diagram which shows the example of a captured image. 検出部40が遮光位置となる場合のフローチャート。The flowchart in case the detection part 40 becomes a light-shielding position. 検出部40の他の形態を示す図。The figure which shows the other form of the detection part. 検出部40の他の形態を示す図。The figure which shows the other form of the detection part. 第2実施形態に係る形状測定装置を示す図。The figure which shows the shape measuring apparatus which concerns on 2nd Embodiment. 第3実施形態に係る形状測定装置を示す図。The figure which shows the shape measuring apparatus which concerns on 3rd Embodiment. 第4実施形態に係る形状測定装置を示す図。The figure which shows the shape measuring apparatus which concerns on 4th Embodiment. 構造物製造システム200のブロック構成図。The block block diagram of the structure manufacturing system 200. FIG. 構造物製造システム200による処理の流れを示したフローチャート。The flowchart which showed the flow of the process by the structure manufacturing system 200. FIG.

以下、本発明の形状測定装置及び構造物製造システム並びに構造物製造方法の実施の形態を、図1ないし図12を参照して説明する。
以下の説明においては、XYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部の位置関係について説明する。Z軸方向は、例えば鉛直方向に設定され、X軸方向及びY軸方向は、例えば、水平方向に平行で互いに直交する方向に設定される。また、X軸、Y軸、及びZ軸まわりの回転(傾斜)方向をそれぞれ、θX、θY、及びθZ方向とする。
Embodiments of a shape measuring apparatus, a structure manufacturing system, and a structure manufacturing method according to the present invention will be described below with reference to FIGS.
In the following description, an XYZ orthogonal coordinate system is set, and the positional relationship of each part will be described with reference to this XYZ orthogonal coordinate system. The Z-axis direction is set, for example, in the vertical direction, and the X-axis direction and the Y-axis direction are set, for example, in directions that are parallel to the horizontal direction and orthogonal to each other. Further, the rotation (inclination) directions around the X axis, Y axis, and Z axis are the θX, θY, and θZ directions, respectively.

(第1実施形態)
図1は、第1実施形態に係る形状測定装置1Aの外観を示す図である。図2は、本実施形態の形状測定装置1Aの概略構成を示す図である。形状測定装置1Aは、例えば光切断法を利用して、測定対象の物体Mの三次元的な形状を測定するものである。
(First embodiment)
FIG. 1 is a diagram showing an appearance of a shape measuring apparatus 1A according to the first embodiment. FIG. 2 is a diagram showing a schematic configuration of the shape measuring apparatus 1A of the present embodiment. The shape measuring apparatus 1A measures the three-dimensional shape of the object M to be measured using, for example, a light cutting method.

形状測定装置1Aは、移動装置2、制御部4、光学プローブ3を備える形状情報取得部(形状取得部)5を備える。形状測定装置1Aは、移動装置2が物体Mを保持し、移動装置2に保持されている物体Mを光学プローブ3が撮像する。移動装置2は、光学プローブ3による撮像範囲(視野)が物体M上を走査するように、物体Mと光学プローブ3とを相対的に移動させる。制御装置4は、形状測定装置1Aの各部を制御するとともに、光学プローブ3による撮像結果に基づいて物体Mの形状情報を取得する。   The shape measuring apparatus 1A includes a shape information acquisition unit (shape acquisition unit) 5 including a moving device 2, a control unit 4, and an optical probe 3. In the shape measuring apparatus 1 </ b> A, the moving device 2 holds the object M, and the optical probe 3 images the object M held by the moving device 2. The moving device 2 relatively moves the object M and the optical probe 3 so that the imaging range (field of view) of the optical probe 3 scans the object M. The control device 4 controls each part of the shape measuring device 1 </ b> A and acquires shape information of the object M based on the imaging result of the optical probe 3.

本実施形態において、形状情報は、測定対象の物体Mの少なくとも一部に関する形状、寸法、凹凸分布、表面粗さ、及び測定対象面上の点の位置(座標)、の少なくとも1つを示す情報を含む。形状測定装置1Aは、例えば、測定対象の物体Mの孔部(孔)Maに関する形状情報を取得できる。なお、測定対象の物体Mの孔部は貫通孔でも良いし、底部を有する孔でもどちらでも構わない。   In the present embodiment, the shape information is information indicating at least one of the shape, size, uneven distribution, surface roughness, and position (coordinates) of a point on the measurement target surface regarding at least a part of the object M to be measured. including. The shape measuring apparatus 1A can acquire, for example, shape information related to the hole (hole) Ma of the object M to be measured. The hole of the object M to be measured may be a through hole or a hole having a bottom.

移動装置2は、例えば測定対象の物体Mを保持可能なステージ装置である。移動装置2は、物体Mを保持する第1保持部7と、光学プローブ3を保持する第2保持部8とを備える。移動装置2においては、物体Mを保持した第1保持部7に対して、光学プローブ3を保持した第2保持部8を相対的に移動させることができる。   The moving device 2 is a stage device that can hold an object M to be measured, for example. The moving device 2 includes a first holding unit 7 that holds the object M and a second holding unit 8 that holds the optical probe 3. In the moving device 2, the second holding unit 8 holding the optical probe 3 can be moved relative to the first holding unit 7 holding the object M.

本実施形態の第1保持部7は、物体Mを保持してθZ方向に回転可能である。測定対象の物体Mは、孔部Maの内側の測定時に、例えば孔部Maの開口を+Z側に向けて第1保持部7に保持される。本実施形態において、孔部が物体を貫通している場合に、孔部の深さ方向(延在方向)は、孔部の内側に沿って孔部の一方の開口と他方の開口とを結ぶ方向とする。また、孔部Maが物体Mを貫通していない場合に、孔部の深さ方向は、孔部の内側に沿って孔部の開口と底部とを結ぶ方向とする。例えば、物体Mの孔部Maの深さ方向は、物体Mが孔部Maの開口を+Z側(上方)に向けて第1保持部7に保持されている場合に、Z軸方向とほぼ平行である。   The first holding unit 7 of the present embodiment holds the object M and can rotate in the θZ direction. The object M to be measured is held by the first holding unit 7 when the inner side of the hole Ma is measured, for example, with the opening of the hole Ma facing the + Z side. In the present embodiment, when the hole portion penetrates the object, the depth direction (extending direction) of the hole portion connects one opening of the hole portion and the other opening along the inside of the hole portion. The direction. When the hole Ma does not penetrate the object M, the depth direction of the hole is a direction connecting the opening and the bottom of the hole along the inside of the hole. For example, the depth direction of the hole Ma of the object M is substantially parallel to the Z-axis direction when the object M is held by the first holding unit 7 with the opening of the hole Ma facing the + Z side (upward). It is.

本実施形態の第2保持部8は、第1保持部7に対して+Z側(上方)に配置されている。第2保持部8は、光学プローブ3の長手方向とZ軸方向がほぼ一致するように取り付けられている。第2保持部8は、光学プローブ3を保持してX軸方向、Y軸方向、及びZ軸方向の各方向に移動可能である。孔部Maの測定時に、第2保持部8がZ軸方向に移動すると、光学プローブ3は、物体Mに形成された孔部Maの形成方向に対して進退移動する。移動装置2は、第2保持部8に保持されている光学プローブ3の少なくとも一部が第1保持部に保持されている物体Mの孔部Maに挿入されるように、第2保持部8を移動できる。   The second holding unit 8 of the present embodiment is disposed on the + Z side (upward) with respect to the first holding unit 7. The second holding portion 8 is attached so that the longitudinal direction of the optical probe 3 and the Z-axis direction substantially coincide with each other. The second holding unit 8 holds the optical probe 3 and can move in each of the X-axis direction, the Y-axis direction, and the Z-axis direction. When the second holding portion 8 moves in the Z-axis direction during measurement of the hole portion Ma, the optical probe 3 moves forward and backward with respect to the formation direction of the hole portion Ma formed in the object M. The moving device 2 includes the second holding unit 8 so that at least a part of the optical probe 3 held by the second holding unit 8 is inserted into the hole Ma of the object M held by the first holding unit. Can be moved.

移動装置2は、図2に示すように、駆動部10及び位置情報取得部11を備える。駆動部10は、電動モータ等のアクチュエータを含み、第1保持部7及び第2保持部8を駆動する。位置情報取得部11は、例えばエンコーダ等の位置計測用のセンサーを含み、光学プローブ3の位置に関する位置情報を取得する。   As shown in FIG. 2, the moving device 2 includes a drive unit 10 and a position information acquisition unit 11. The drive unit 10 includes an actuator such as an electric motor, and drives the first holding unit 7 and the second holding unit 8. The position information acquisition unit 11 includes a position measurement sensor such as an encoder, and acquires position information regarding the position of the optical probe 3.

本実施形態において、制御装置4は、形状測定装置1Aの各部を制御するものであり、移動装置2の駆動部10を制御する移動制御部6、位置情報取得部11が取得した位置情報を記憶する記憶装置9、演算装置(演算部)12を備えている。
例えば、制御装置4は、移動装置2の駆動部10を制御して、光学プローブ3と物体Mの相対位置を制御する。また、制御装置4は、光学プローブ3を制御して、物体M上の測定領域Ma(孔部の内面)を光学プローブ3に撮像させる。
In the present embodiment, the control device 4 controls each part of the shape measuring device 1 </ b> A, and stores the position information acquired by the movement control unit 6 that controls the driving unit 10 of the moving device 2 and the position information acquisition unit 11. A storage device 9 and an arithmetic device (arithmetic unit) 12.
For example, the control device 4 controls the relative position between the optical probe 3 and the object M by controlling the driving unit 10 of the moving device 2. In addition, the control device 4 controls the optical probe 3 to cause the optical probe 3 to image the measurement region Ma (the inner surface of the hole) on the object M.

また、制御装置4は、測定対象の形状情報を取得するための演算装置12を備える。演算装置12は、光学プローブ3の位置情報を移動装置2の位置情報取得部11から取得し、測定領域を撮像した画像を示すデータ(撮像画像データ)を光学プローブ3から取得する。演算装置12は、光学プローブ3の位置に応じた撮像画像データから得られる物体Mの表面の位置と光学プローブ3の位置とを対応付けることによって、測定対象の三次元的な形状に関する形状情報を演算して取得する。   Moreover, the control apparatus 4 is provided with the calculating apparatus 12 for acquiring the shape information of a measuring object. The arithmetic device 12 acquires the position information of the optical probe 3 from the position information acquisition unit 11 of the moving device 2, and acquires data (captured image data) indicating an image obtained by imaging the measurement region from the optical probe 3. The calculation device 12 calculates shape information related to the three-dimensional shape of the measurement target by associating the position of the surface of the object M obtained from the captured image data corresponding to the position of the optical probe 3 with the position of the optical probe 3. And get.

本実施形態の制御装置4は、CPU等を有するコンピュータシステムと、コンピュータシステムの外部の装置との通信を実行可能なインターフェースを含む。制御装置4は、測定結果に関する画像処理、補間処理、統計処理、表示処理等の各種処理の少なくとも1つを実行できる。   The control device 4 of the present embodiment includes an interface capable of executing communication between a computer system having a CPU and the like and a device external to the computer system. The control device 4 can execute at least one of various processes such as image processing, interpolation processing, statistical processing, and display processing related to the measurement result.

なお、制御装置4は、形状測定装置1Aの各部の制御に要する各種処理を実行するASIC等の論理回路を含んでいてもよく、コンピュータシステムを含んでいなくてもよい。制御装置4は、制御装置4へ信号を入力可能な入力装置が接続されていてもよい。この入力装置は、キーボード、マウス等の入力機器、あるいはコンピュータシステムの外部の装置からのデータを入力可能な通信装置のうちの1種又は2種以上でもよい。制御装置4は、液晶表示ディスプレイ等の表示装置を含んでいてもよいし、表示装置と接続されていてもよい。制御装置4は、形状測定装置1Aの外部の装置であってもよい。   The control device 4 may include a logic circuit such as an ASIC that executes various processes required for controlling each part of the shape measuring device 1A, and may not include a computer system. The control device 4 may be connected to an input device that can input a signal to the control device 4. This input device may be one type or two or more types of communication devices capable of inputting data from input devices such as a keyboard and a mouse, or a device external to the computer system. The control device 4 may include a display device such as a liquid crystal display, or may be connected to the display device. The control device 4 may be a device external to the shape measuring device 1A.

形状情報取得部5は、上記光学プローブ3と、制御装置4に設けられた演算装置12と、検出部(接触検出部)40とを備える。本実施形態において、光学プローブ3は、形状測定用の光学装置であって、測定対象の物体M上の測定領域Ma(本実施形態では孔部の内周面(表面))を落射照明しながら撮像する。図2に示す光学プローブ3は、光源14から出射した照明光束L1を、結像光学系19及び反射部材16を介して物体M上の測定領域に投影(照射)することで、測定領域を落射照明するものであって、照明光学系IL、結像光学系19、反射部材(先端光学部材)16、撮像部17、鏡筒25を備える。   The shape information acquisition unit 5 includes the optical probe 3, the arithmetic device 12 provided in the control device 4, and a detection unit (contact detection unit) 40. In the present embodiment, the optical probe 3 is an optical device for shape measurement, and is incident on the measurement region Ma on the object M to be measured (in this embodiment, the inner peripheral surface (front surface) of the hole) by epi-illumination. Take an image. The optical probe 3 shown in FIG. 2 projects (irradiates) the illumination light beam L1 emitted from the light source 14 onto the measurement region on the object M via the imaging optical system 19 and the reflecting member 16, thereby reflecting the measurement region. An illumination optical system IL, an imaging optical system 19, a reflecting member (tip optical member) 16, an imaging unit 17, and a lens barrel 25 are provided.

撮像部17(撮像装置)は、撮像素子18を備えている。撮像素子18は、例えばCCDセンサー又はCMOSセンサーで構成される。撮像素子18は、例えば、複数の画素のそれぞれに配置されて入射光を電力(電荷)に変換するフォトダイオードと、フォトダイオードで発生した電荷を読み出す読出回路とを含む。フォトダイオードは、例えば、撮像素子18の受光面18aに二次元的に配列される。   The imaging unit 17 (imaging device) includes an imaging element 18. The image sensor 18 is constituted by, for example, a CCD sensor or a CMOS sensor. The image sensor 18 includes, for example, a photodiode that is disposed in each of a plurality of pixels and converts incident light into electric power (charge), and a readout circuit that reads out charges generated by the photodiode. For example, the photodiodes are two-dimensionally arranged on the light receiving surface 18 a of the image sensor 18.

照明光学系ILは、物体面19a(後述)に照明光束L1照射するものであって、光源14、導光部材20を備えており、光源14から出射した照明光束L1を伝播させる伝播経路15を備えている。
本実施形態において、光源14は、レーザーダイオード(固体光源)を含み、照明光束L1としてレーザー光を射出する。光源14は、例えば発光ダイオード(LED)等の固体光源を含んでいてもよいし、高圧水銀ランプ等のランプ光源を含んでいてもよい。
The illumination optical system IL irradiates an illumination light beam L1 onto an object surface 19a (described later). The illumination optical system IL includes a light source 14 and a light guide member 20, and a propagation path 15 through which the illumination light beam L1 emitted from the light source 14 is propagated. I have.
In the present embodiment, the light source 14 includes a laser diode (solid light source), and emits laser light as the illumination light beam L1. The light source 14 may include a solid light source such as a light emitting diode (LED), or may include a lamp light source such as a high pressure mercury lamp.

導光部材20は、光源から出射した照明光束L1を結像光学系19に導くものであって、例えばハーフミラーを含み、撮像素子18と結像光学系19との間の光路に配置されている。導光部材20は、光源14から出射した照明光束L1が入射する位置に配置された面20aを有する。この面20aは、結像光学系19の光軸AX(後述)に対して傾斜している。面20aと結像光学系19の光軸AXがなす角度は、例えば45°に設定される。   The light guide member 20 guides the illumination light beam L1 emitted from the light source to the imaging optical system 19, and includes a half mirror, for example, and is disposed in the optical path between the imaging element 18 and the imaging optical system 19. Yes. The light guide member 20 has a surface 20a disposed at a position where the illumination light beam L1 emitted from the light source 14 enters. The surface 20a is inclined with respect to the optical axis AX (described later) of the imaging optical system 19. The angle formed by the surface 20a and the optical axis AX of the imaging optical system 19 is set to 45 °, for example.

光源14から出射した照明光束L1は、導光部材20の面20aに入射し、その少なくとも一部が面20aで反射して結像光学系19に入射する。導光部材20を介して結像光学系19に入射した照明光束L1は、結像光学系19の光軸AXに沿って進行する。本実施形態において、伝播経路15は、結像光学系19における照明光束L1の光路を含む。すなわち、結像光学系19の光軸AXは、伝播経路15上に設定されている。   The illumination light beam L1 emitted from the light source 14 is incident on the surface 20a of the light guide member 20, and at least part of the light is reflected by the surface 20a and is incident on the imaging optical system 19. The illumination light beam L1 incident on the imaging optical system 19 via the light guide member 20 travels along the optical axis AX of the imaging optical system 19. In the present embodiment, the propagation path 15 includes the optical path of the illumination light beam L <b> 1 in the imaging optical system 19. That is, the optical axis AX of the imaging optical system 19 is set on the propagation path 15.

結像光学系19は、撮像素子18の受光面18a(像面)と共役な物体面19aを形成する。本実施形態において、物体面19aは、光学プローブ3の進退方向(Z軸方向)にほぼ直交する平面を含む。物体面19a上の各点から出射した光束(以下、結像光束L2という)は、撮像素子18の受光面18a上の各点に収斂する。   The imaging optical system 19 forms an object surface 19a conjugate with the light receiving surface 18a (image surface) of the image sensor 18. In the present embodiment, the object plane 19a includes a plane that is substantially orthogonal to the advancing / retreating direction (Z-axis direction) of the optical probe 3. A light beam emitted from each point on the object surface 19a (hereinafter referred to as an imaging light beam L2) converges on each point on the light receiving surface 18a of the image sensor 18.

本実施形態の結像光学系19は、屈折系の光学系であり、複数の光学部材(レンズ)を含む。結像光学系19の光学部材の少なくとも1つは、軸対称な光学部材であり、ここでは、この光学部材の対称軸(中心軸)を結像光学系19の光軸AXという。なお、結像光学系19は、反射系の光学系又は反射屈折系の光学系のいずれでもよい。   The imaging optical system 19 of the present embodiment is a refractive optical system and includes a plurality of optical members (lenses). At least one of the optical members of the imaging optical system 19 is an axially symmetric optical member. Here, the symmetry axis (center axis) of the optical member is referred to as the optical axis AX of the imaging optical system 19. The imaging optical system 19 may be either a reflective optical system or a catadioptric optical system.

反射部材16は、例えば、光軸AX周りに反射面16aが形成された円錐状のプリズムミラーで形成されており、結像光学系19を通った照明光束L1が入射する位置に反射面16aが配置されている。反射面16aとしては、例えば、蒸着法などで形成された反射膜で構成される。なお、反射部材16に、結像光学系19の光路が形成されていても構わない。   The reflecting member 16 is formed of, for example, a conical prism mirror having a reflecting surface 16a formed around the optical axis AX, and the reflecting surface 16a is formed at a position where the illumination light beam L1 passing through the imaging optical system 19 is incident. Has been placed. As the reflective surface 16a, for example, a reflective film formed by a vapor deposition method or the like is used. In addition, the optical path of the imaging optical system 19 may be formed in the reflecting member 16.

上記撮像素子18、結像光学系19、反射部材16及び導光部材20は、鏡筒25に保持される。鏡筒25は、結像光学系19の光軸AXと平行な方向(Z軸方向)が長手方向であり、光軸AXと直交する方向(XY方向)が短手方向である。鏡筒25は、伝播経路15を囲むように設けられており、少なくとも伝播経路15の周囲の部分が結像光学系19の光軸AXに関して軸対称な円筒状である。   The imaging element 18, the imaging optical system 19, the reflection member 16, and the light guide member 20 are held by a lens barrel 25. In the lens barrel 25, a direction parallel to the optical axis AX (Z-axis direction) of the imaging optical system 19 is a long direction, and a direction orthogonal to the optical axis AX (XY direction) is a short direction. The lens barrel 25 is provided so as to surround the propagation path 15, and at least a portion around the propagation path 15 is a cylindrical shape that is axisymmetric with respect to the optical axis AX of the imaging optical system 19.

鏡筒25は、物体面19aを含む領域、反射部材16(反射面16a)で反射して測定領域Maに向かう照明光束L1の光路、及び物体面19a上の各点から出射して結像光学系19に向かう結像光束L2の光路に位置する範囲については、照明光束L1及び結像光束L2が通過(透過)可能な通過部25bとなっており、他の範囲については照明光束L1及び結像光束L2を遮光する遮光部25cとなり、迷光による悪影響を抑制できる構成となっている。   The lens barrel 25 emits from the region including the object surface 19a, the optical path of the illumination light beam L1 reflected by the reflecting member 16 (reflecting surface 16a) and directed to the measurement region Ma, and the respective points on the object surface 19a, and the imaging optics. The range positioned in the optical path of the imaging light beam L2 toward the system 19 is a passing portion 25b through which the illumination light beam L1 and the imaging light beam L2 can pass (transmit), and the other range has the illumination light beam L1 and the connection. The light shielding portion 25c shields the image light beam L2, and is configured to suppress adverse effects due to stray light.

検出部40は、形状情報取得部5(光学プローブ3)と測定領域Ma(物体M)との接触を検出するものであって、筒部材41、支持部材42を備えている。筒部材41は、照明光束L1を反射する材料で形成されており、光軸AX周りに形成されて筒部43と底部44とを備えている。筒部43は、鏡筒25の外周面との間に隙間が形成され、且つ測定領域Maとの間にも隙間が形成される径で形成されている。底部44は、筒部43の−Z側の端部(下端部)を閉塞するように配設されている。底部44の−Z側の面(下面)には、物体Mとの接触時の衝撃を緩和するために、ゴム等の弾性材で半球状に形成された突部45が光軸AX上に設けられている。なお、本実施形態においては、突部45は一つであるが、複数設けても構わない。また、突部45を設けずに、底部44が突部45の機能を備えていても構わない。   The detection unit 40 detects contact between the shape information acquisition unit 5 (optical probe 3) and the measurement region Ma (object M), and includes a cylindrical member 41 and a support member 42. The cylindrical member 41 is made of a material that reflects the illumination light beam L1, and is formed around the optical axis AX and includes a cylindrical portion 43 and a bottom portion 44. The cylinder portion 43 is formed with a diameter so that a gap is formed between the outer periphery of the lens barrel 25 and a gap is also formed between the cylinder portion 43 and the measurement region Ma. The bottom portion 44 is disposed so as to close the end portion (lower end portion) on the −Z side of the cylindrical portion 43. On the surface (lower surface) on the −Z side of the bottom portion 44, a protrusion 45 formed in a hemispherical shape with an elastic material such as rubber is provided on the optical axis AX in order to alleviate the impact at the time of contact with the object M. It has been. In the present embodiment, one protrusion 45 is provided, but a plurality of protrusions 45 may be provided. Further, the bottom 44 may have the function of the protrusion 45 without providing the protrusion 45.

支持部材42は、鏡筒25に対して筒部材41を同軸で、Z軸方向に移動可能に吊下して支持させるものであって、本実施形態では、コイルバネ等の弾性体により形成されている。支持部材42の長さは、鏡筒25から吊下された筒部材41が物体Mと非接触のときは、図2に示すように、筒部43が物体面19aから−Z側に離間して、測定領域Maに向かう照明光束L1を遮光しない位置(以下、非遮光位置と称する)となり、鏡筒25から吊下された筒部材41が物体Mの底部と接触したときは、図3に示すように、筒部43が照明光束L1の光路おいて物体面19aと測定領域Maとの間に挿入され、測定領域Maに向かう照明光束L1を遮光する位置(以下、遮光位置と称する)となる長さに設定される。   The support member 42 suspends and supports the tube member 41 coaxially with the lens barrel 25 so as to be movable in the Z-axis direction. In the present embodiment, the support member 42 is formed of an elastic body such as a coil spring. Yes. The length of the support member 42 is such that when the cylinder member 41 suspended from the lens barrel 25 is not in contact with the object M, the cylinder portion 43 is separated from the object plane 19a to the −Z side as shown in FIG. Thus, when the illumination light beam L1 toward the measurement region Ma is not shielded (hereinafter referred to as a non-shielding position), and the cylindrical member 41 suspended from the lens barrel 25 comes into contact with the bottom of the object M, FIG. As shown, the cylindrical portion 43 is inserted between the object surface 19a and the measurement region Ma in the optical path of the illumination light beam L1, and is a position for shielding the illumination light beam L1 toward the measurement region Ma (hereinafter referred to as a light shielding position). Is set to a length.

次に、上記構成の形状測定装置1Aにより、物体Mにおける測定領域Maの形状を測定する動作について、図4を参照して説明する。図4は、撮像素子18により撮像された撮像画像の例を示す概念図である。   Next, an operation of measuring the shape of the measurement region Ma in the object M by the shape measuring apparatus 1A having the above configuration will be described with reference to FIG. FIG. 4 is a conceptual diagram illustrating an example of a captured image captured by the image sensor 18.

まず、検出部40が非遮光位置の場合(図2参照)について説明する。
物体Mの孔部に光学プローブ3を挿入した後に、光源14から出射し導光部材20の面20aで反射した照明光束L1は、結像光学系19に入射する。結像光学系19から出射し反射部材16の反射面16aで反射した照明光束L1は、物体面19aに沿って伝播し、測定領域Maで反射散乱する。測定領域Maで反射散乱した結像光束L2は、鏡筒25の通過部25bを通って結像光学系19に入射する。結像光学系19に入射した結像光束L2は、その少なくとも一部が導光部材20(ハーフミラー)を通って撮像素子18の受光面18aに入射する。
First, the case where the detection unit 40 is in the non-light-shielding position (see FIG. 2) will be described.
After the optical probe 3 is inserted into the hole of the object M, the illumination light beam L1 emitted from the light source 14 and reflected by the surface 20a of the light guide member 20 enters the imaging optical system 19. The illumination light beam L1 emitted from the imaging optical system 19 and reflected by the reflecting surface 16a of the reflecting member 16 propagates along the object surface 19a and is reflected and scattered by the measurement region Ma. The imaging light beam L2 reflected and scattered in the measurement region Ma enters the imaging optical system 19 through the passage portion 25b of the lens barrel 25. At least a part of the imaging light beam L2 incident on the imaging optical system 19 enters the light receiving surface 18a of the image sensor 18 through the light guide member 20 (half mirror).

ここで、受光面18aと物体面19aとが光学的に共役であるので、物体面19aと物体Mの測定領域Maである表面との交線26の像は、受光面18a上でピントが合うことになる。そのため、物体面19aと物体Mの表面との交線26は、図4に示す撮像画像Imにおいて輝線27になる。輝線27上の各点は、交線26上のいずれかの点と1対1で対応し、例えば、交線26が円環状である場合に、輝線27は円環状になる。図2に示した演算装置12は、図4に示したような撮像画像Imにおける輝線27上の各点の位置情報を演算することで、各点に対応する物体M上の点の位置情報を算出する。   Here, since the light receiving surface 18a and the object surface 19a are optically conjugate, the image of the intersection line 26 between the object surface 19a and the surface that is the measurement region Ma of the object M is focused on the light receiving surface 18a. It will be. Therefore, an intersection line 26 between the object surface 19a and the surface of the object M becomes a bright line 27 in the captured image Im shown in FIG. Each point on the bright line 27 corresponds one-to-one with any point on the intersection line 26. For example, when the intersection line 26 has an annular shape, the bright line 27 has an annular shape. 2 calculates the position information of each point on the bright line 27 in the captured image Im as shown in FIG. 4, thereby obtaining the position information of the point on the object M corresponding to each point. calculate.

演算装置12は、上述のように撮像画像Imの輝線27上の各点の位置情報を算出することで、物体Mの表面のうち物体面19aと交差する部分(図2に示した交線26)の位置情報を演算する。また、演算装置12は、光学プローブ3がZ方向に位置を変えながら撮像した複数の撮像画像のそれぞれについても同様に、光学プローブ3のZ方向の位置(以下、Z位置と称する)に応じた測定領域Maにおける物体Mの表面の位置情報を算出する。演算装置12は、光学プローブ3の位置と、この位置で撮像された撮像画像に基づいて算出された物体Mの位置情報とを対応させることで、物体Mの三次元的な形状を示す形状情報を取得する。
なお、演算装置12は、形状測定装置1Aと別に配置されていても構わない。この場合に、演算装置12は形状測定装置1Aに配置されるPCなどの演算装置でも構わない。また、演算装置12は、形状装置1Aと一体で配置されていても構わない。例えば、演算装置12と光学プローブ3とが一体で配置されても構わない。
なお、演算装置12は、撮像画像Imにおける輝線27の各点の位置情報を演算することとなっているが、演算の対象となるのは撮像画像Imだけに限られない。例えば、撮像素子18で撮像され、検出される信号のうち一部を用いても構わない。この場合に、撮像素子18のうち、輝線27のみに関する情報のみを抽出し、それとは他の輝線27の周囲の情報は抽出せずに、抽出した情報のみとを使い、演算装置12は物体Mの位置情報を算出しても構わない。
The arithmetic unit 12 calculates the position information of each point on the bright line 27 of the captured image Im as described above, so that the portion of the surface of the object M that intersects the object plane 19a (intersection line 26 shown in FIG. 2). ) Position information is calculated. In addition, the arithmetic unit 12 similarly responds to the position of the optical probe 3 in the Z direction (hereinafter referred to as the Z position) for each of a plurality of captured images captured while the optical probe 3 changes the position in the Z direction. Position information of the surface of the object M in the measurement region Ma is calculated. The arithmetic unit 12 associates the position of the optical probe 3 with the position information of the object M calculated based on the captured image captured at this position, thereby indicating the shape information indicating the three-dimensional shape of the object M. To get.
The arithmetic device 12 may be arranged separately from the shape measuring device 1A. In this case, the calculation device 12 may be a calculation device such as a PC disposed in the shape measuring device 1A. Further, the arithmetic device 12 may be arranged integrally with the shape device 1A. For example, the arithmetic unit 12 and the optical probe 3 may be arranged integrally.
The calculation device 12 calculates position information of each point of the bright line 27 in the captured image Im, but the target of the calculation is not limited to the captured image Im. For example, a part of signals detected and detected by the image sensor 18 may be used. In this case, only the information related to the bright line 27 is extracted from the image sensor 18, and the information around the other bright lines 27 is not extracted, but only the extracted information is used. The position information may be calculated.

次に、検出部40が遮光位置となる場合(図3参照)について、図5に示すフローチャートを参照して説明する。上述したように、光学プローブ3を孔部に挿入し所定のZ位置にて、被検面である測定領域Maを撮像し(ステップS101)、表面位置情報を取得した(ステップS102)後に、光学プローブ3を所定量−Z側に移動させることを順次繰り返して実行するが、各撮像位置の情報(X位置、Y位置、Z位置)は、記憶装置9に記憶される。   Next, the case where the detection unit 40 is in the light shielding position (see FIG. 3) will be described with reference to the flowchart shown in FIG. As described above, the optical probe 3 is inserted into the hole, and the measurement area Ma that is the test surface is imaged at a predetermined Z position (step S101), and the surface position information is acquired (step S102). The probe 3 is sequentially and repeatedly moved to the predetermined amount −Z side, but information (X position, Y position, Z position) of each imaging position is stored in the storage device 9.

そして、光学プローブ3を−Z側に下降させた際に、検出部40が物体Mと接触すると、図3に示すように、筒部材41の下降は停止する一方で、鏡筒25は下降するため、鏡筒25に対して筒部材41が支持部材42の弾性復元力に抗して+Z側に相対移動し、筒部43が照明光束L1の光路おいて物体面19a(反射部材16)と測定領域Maとの間に挿入され、測定領域Maに向かう照明光束L1を遮光する位置となる。   When the detection unit 40 comes into contact with the object M when the optical probe 3 is lowered to the −Z side, as shown in FIG. 3, the lowering of the cylindrical member 41 is stopped while the lens barrel 25 is lowered. Therefore, the cylindrical member 41 moves relative to the + Z side against the elastic restoring force of the support member 42 with respect to the lens barrel 25, and the cylindrical portion 43 is in contact with the object surface 19a (the reflecting member 16) in the optical path of the illumination light beam L1. It is inserted between the measurement area Ma and becomes a position for shielding the illumination light beam L1 toward the measurement area Ma.

このとき、反射部材16の反射面16aで反射して測定領域Maに向かう照明光束L1は、物体面19aに沿って伝播し、筒部43の内周面で反射散乱する。筒部43の内周面で反射散乱した結像光束L2は、鏡筒25の通過部25bを通って結像光学系19に入射する。結像光学系19に入射した結像光束L2は、その少なくとも一部が導光部材20(ハーフミラー)を通って撮像素子18の受光面18aに入射する。   At this time, the illumination light beam L1 reflected by the reflecting surface 16a of the reflecting member 16 and traveling toward the measurement region Ma propagates along the object surface 19a and is reflected and scattered by the inner peripheral surface of the cylindrical portion 43. The imaging light beam L2 reflected and scattered by the inner peripheral surface of the cylindrical portion 43 enters the imaging optical system 19 through the passage portion 25b of the lens barrel 25. At least a part of the imaging light beam L2 incident on the imaging optical system 19 enters the light receiving surface 18a of the image sensor 18 through the light guide member 20 (half mirror).

この場合、物体面19aと筒部43の内周面との交線26’の像は、受光面18a上でピントが合うことになるが、撮像画像Imにおいては、筒部43の内周面の径に対応して、物体Mの表面の場合の径よりも小径の輝線27’となる。
従って、演算装置12が撮像画像Imの輝線27’上の各点の位置情報を演算して、輝線27よりも小径に変化した結果が得られると、演算装置12は筒部材41と物体Mとの接触を検出し(ステップS103)、警告信号を出力する。警告信号としては、例えば、音声を用いることができる。これにより、撮像画像を観察しなくても、筒部材41と物体Mとの接触を検出することができる。
In this case, the image of the intersection line 26 ′ between the object surface 19 a and the inner peripheral surface of the cylindrical portion 43 is in focus on the light receiving surface 18 a, but in the captured image Im, the inner peripheral surface of the cylindrical portion 43. Corresponds to the diameter of the bright line 27 ′ having a diameter smaller than that of the surface of the object M.
Accordingly, when the calculation device 12 calculates the position information of each point on the bright line 27 ′ of the captured image Im and obtains a result of changing the diameter to be smaller than the bright line 27, the calculation device 12 determines that the cylindrical member 41, the object M, and Is detected (step S103), and a warning signal is output. As the warning signal, for example, voice can be used. Thereby, the contact between the cylindrical member 41 and the object M can be detected without observing the captured image.

また、演算装置12は、筒部材41と物体Mとの接触を検出すると、記憶装置9に記憶されている各撮像位置の情報から、接触までの移動経路を求め、当該移動経路に基づいて、経路生成部として退避経路を生成し(ステップS104)、記憶装置9に記憶させる。そして、移動装置2が、記憶された退避経路に基づいて光学プローブ3を物体Mの孔部から退避させる(ステップS105)。   Further, when detecting the contact between the cylindrical member 41 and the object M, the arithmetic device 12 obtains a movement route to the contact from information on each imaging position stored in the storage device 9, and based on the movement route, A save route is generated as a route generation unit (step S104) and stored in the storage device 9. Then, the moving device 2 retracts the optical probe 3 from the hole of the object M based on the stored retract path (step S105).

以上説明したように、本実施形態では、検出部40と物体の物体Mの物体面Maとの接触を検出する検出部40を設けた。また、本実施形態においては、光学プローブ3と物体面Maとが接触するよりも前に、検出部40と物体面Maとが接触する。したがって、検出部40と物体面Maとの接触を検出することで、光学プローブ3と物体Maとが接触することを抑制することができる。したがって、光学プローブ3と物体Maとが接触することによる、光学プローブ3の破損を抑制することができる。また本実施形態では、検出部40と物体面Maとの接触を、鏡筒25に対してZ方向に移動可能に支持された筒部材41が照明光束を遮光したことを、撮像素子18の撮像結果に基づいて、検出する。なお、Z軸方向に光学プローブ3が移動する場合に、移動方向の物体Mに近い部分に検出部40の突部45を設けたので、移動する場合に検出部40の突部45が最初に物体面Maと接触する。また、本実施形態では、突部45は物体Mの物体面Maよりも弾性の弾性材で形成されているので、突部45の接触による物体Mへの損傷を抑制することができる。なお、本実施形態においては、検出部40と物体面Maとが接触することで、光学プローブの光路が変化することにより、光学プローブの撮像結果が変化する。したがって、検出部40の接触により、光学プローブの撮像結果が変化するので、検出部40と物体面Maとの接触を直接検出する必要がない。したがって、検出部40のみで物体面Maとの接触を検出する機構を設ける必要がない。したがって、本実施形態における、検出部40の接触を検出する機構のための配線を設ける必要がない。   As described above, in the present embodiment, the detection unit 40 that detects the contact between the detection unit 40 and the object surface Ma of the object M is provided. In the present embodiment, the detection unit 40 and the object surface Ma are in contact with each other before the optical probe 3 and the object surface Ma are in contact with each other. Therefore, the contact between the optical probe 3 and the object Ma can be suppressed by detecting the contact between the detection unit 40 and the object surface Ma. Therefore, damage to the optical probe 3 due to contact between the optical probe 3 and the object Ma can be suppressed. In the present embodiment, the imaging element 18 captures the fact that the cylindrical member 41 supported so as to be movable in the Z direction with respect to the lens barrel 25 shields the illumination light beam from contact between the detection unit 40 and the object plane Ma. Detect based on the results. In addition, when the optical probe 3 moves in the Z-axis direction, the protrusion 45 of the detection unit 40 is provided near the object M in the movement direction. Contact with the object surface Ma. Further, in the present embodiment, the protrusion 45 is made of an elastic material that is more elastic than the object surface Ma of the object M, so that damage to the object M due to contact of the protrusion 45 can be suppressed. In the present embodiment, when the detection unit 40 and the object plane Ma are in contact with each other, the optical path of the optical probe changes, and the imaging result of the optical probe changes. Therefore, since the imaging result of the optical probe changes due to the contact of the detection unit 40, it is not necessary to directly detect the contact between the detection unit 40 and the object surface Ma. Therefore, it is not necessary to provide a mechanism for detecting contact with the object surface Ma using only the detection unit 40. Therefore, it is not necessary to provide wiring for a mechanism for detecting contact of the detection unit 40 in this embodiment.

さらに、本実施形態では、演算装置12は光学プローブ3の移動経路を記憶することができる。したがって、物体Mの測定時の記憶された移動経路に基づいて、物体Mから光学プローブ3を退避する場合の退避経路を算出することができる。これにより、退避経路を算出することが可能である。また、例えば、測定時に光学プローブ3と物体Mとが接触したとしても、記憶された移動経路から、物体Mとの接触を抑制するような移動経路を算出することができる。また、例えば、物体Mの測定時に記憶された移動経路を、記憶する際に測定した物体Mとは異なる物体Mに用いても構わない。例えば、物体Mは量産品などの同一形状の物体Mを複数個測定する場合である。   Furthermore, in this embodiment, the arithmetic unit 12 can store the movement path of the optical probe 3. Therefore, based on the stored movement path at the time of measuring the object M, the retreat path when the optical probe 3 is retreated from the object M can be calculated. Thereby, it is possible to calculate the retreat route. For example, even if the optical probe 3 and the object M are in contact with each other during measurement, a movement path that suppresses contact with the object M can be calculated from the stored movement path. Further, for example, the movement path stored at the time of measuring the object M may be used for an object M different from the object M measured at the time of storing. For example, the object M is a case where a plurality of objects M having the same shape such as mass-produced products are measured.

なお、上記実施形態では、物体Mとの接触時に検出部40の筒部材41が照明光束L1を全周に亘って遮光する構成を例示したが、これに限定されるものではなく、例えば、図6(A)、(B)に示すように、筒部材41における筒部43の+Z側の面に、径方向に延びる溝部43aを光軸AX周りに間隔をあけて複数(図6では4つ)設ける構成とし、図6(B)に示すように、筒部材41が物体Mに接触してZ方向に相対移動した際に、溝部43aを通った照明光束L1は遮光されずに測定領域Maに到達可能で、他の照明光束L1は筒部材41で反射する構成としてもよい。   In the above-described embodiment, the configuration in which the cylindrical member 41 of the detection unit 40 shields the illumination light beam L1 over the entire circumference at the time of contact with the object M is illustrated, but the present invention is not limited to this. 6 (A) and 6 (B), a plurality of groove portions 43a extending in the radial direction on the + Z side surface of the cylindrical portion 43 of the cylindrical member 41 are spaced apart around the optical axis AX (four in FIG. 6). 6B, when the cylindrical member 41 contacts the object M and moves relatively in the Z direction, the illumination light beam L1 that has passed through the groove 43a is not shielded and is not shielded, as shown in FIG. 6B. The other illumination light beam L1 may be reflected by the cylindrical member 41.

この構成では、図6(C)に示すように、撮像画像Imにおいて、物体Mの表面に対応する輝線27と、筒部43の内周面に対応する輝線27’とは、溝部43aに応じて、光軸AX周りに交互に配置される。そのため、この構成では、互いに径の異なる輝線27、27’が同一の画像内に存在することになるため、例えば、輝線27、27’の径差が小さい場合でも、確実に画像の変化を検出して検出部40と物体Mとの接触を検出することが可能となる。   In this configuration, as shown in FIG. 6C, in the captured image Im, the bright line 27 corresponding to the surface of the object M and the bright line 27 ′ corresponding to the inner peripheral surface of the cylindrical portion 43 correspond to the groove 43a. Are alternately arranged around the optical axis AX. Therefore, in this configuration, the bright lines 27 and 27 ′ having different diameters are present in the same image. For example, even when the diameter difference between the bright lines 27 and 27 ′ is small, the change in the image is reliably detected. Thus, it is possible to detect contact between the detection unit 40 and the object M.

また、検出部40と物体Mとの接触時に、照明光束L1の遮光・非遮光によって撮像素子18の撮像画像に変化を生じさせる構成の他に、照明光束L1に対する検出部40の透過率の差によって撮像画像に変化を生じさせる構成とすることも可能である。
具体的には、図7(A)、(B)に示すように、筒部材41における筒部43を、透過率約100%で照明光束L1を透過させる透過部43bと、透過率約50%で照明光束L1を透過させる透過部43cとが光軸AX周りに、例えば90°間隔で配置される構成とする。
In addition to the configuration in which the captured image of the imaging element 18 is changed by the light shielding / non-shielding of the illumination light beam L1 at the time of contact between the detection unit 40 and the object M, the difference in transmittance of the detection unit 40 with respect to the illumination light beam L1. It is also possible to adopt a configuration that causes a change in the captured image.
Specifically, as shown in FIGS. 7A and 7B, the cylindrical portion 43 of the cylindrical member 41 has a transmission portion 43b that transmits the illumination light beam L1 at a transmittance of about 100%, and a transmittance of about 50%. The transmission part 43c that transmits the illumination light beam L1 is arranged around the optical axis AX, for example, at intervals of 90 °.

この構成では、照明光束L1は、検出部40と物体Mとの接触時及び非接触時のいずれの場合も筒部43を透過するため、物体面19aと物体Mの表面との交線26は、図7(C)に示すように、撮像画像Imにおいて連続する輝線になる。そして、図7(B)に示すように、検出部40と物体Mとが接触した場合、透過部43cを透過した照明光束L1は光量が低下するため、撮像画像Imにおいては、透過部43bに対応し大きな強度の輝線27と、透過部43cに対応し小さな強度の輝線27’とが連続したものとなる。そのため、この構成では、互いに強度の異なる輝線27、27’が同一の画像内に存在することになるため、例えば、輝線27、27’の径差が小さい場合でも、確実に画像の変化を検出して検出部40と物体Mとの接触を検出することが可能となる。   In this configuration, the illumination light beam L1 is transmitted through the cylindrical portion 43 both when the detection unit 40 and the object M are in contact with each other, and therefore, the intersection line 26 between the object surface 19a and the surface of the object M is As shown in FIG. 7C, continuous bright lines appear in the captured image Im. As shown in FIG. 7B, when the detection unit 40 and the object M are in contact with each other, the amount of the illumination light beam L1 transmitted through the transmission unit 43c is reduced. Therefore, in the captured image Im, the transmission unit 43b Corresponding high intensity bright lines 27 and low intensity bright lines 27 ′ corresponding to the transmission part 43 c are continuous. Therefore, in this configuration, the bright lines 27 and 27 ′ having different intensities exist in the same image. For example, even when the diameter difference between the bright lines 27 and 27 ′ is small, the change in the image is reliably detected. Thus, it is possible to detect contact between the detection unit 40 and the object M.

(第2実施形態)
次に、形状測定装置1Aの第2実施形態について、図8を参照して説明する。
この図において、図1乃至図7に示す第1実施形態の構成要素と同一の要素については同一符号を付し、その説明を省略する。
(Second Embodiment)
Next, a second embodiment of the shape measuring apparatus 1A will be described with reference to FIG.
In this figure, the same components as those of the first embodiment shown in FIGS. 1 to 7 are denoted by the same reference numerals, and the description thereof is omitted.

本実施形態の形状測定装置1Aにおいては、図8(A)、(B)に示すように、筒部材41における筒部43の+Z側の面に、溝部43dが設けられている。溝部43dは、+Z側に向かうに従って、光軸AX周りの幅が漸次大きくなる、正面視V字状に形成されている。より詳細には、溝部43dを形成する図中、+X側の面は光軸AX方向に延在して形成されている。また、図中、−X側の面は、光軸AXに対して傾斜して形成されている。   In the shape measuring apparatus 1A of the present embodiment, as shown in FIGS. 8A and 8B, a groove 43d is provided on the surface of the tubular member 41 on the + Z side of the tubular portion 43. The groove 43d is formed in a V-shape in a front view in which the width around the optical axis AX is gradually increased toward the + Z side. More specifically, in the drawing for forming the groove 43d, the surface on the + X side extends in the direction of the optical axis AX. In the drawing, the surface on the −X side is formed to be inclined with respect to the optical axis AX.

上記構成の形状測定装置1Aにおいては、図6(B)に示すように、筒部材41が物体Mに接触してZ方向に相対移動した際に、溝部43dを通った照明光束L1は遮光されずに測定領域Maに到達し、他の照明光束L1は筒部43で反射散乱する。そして、図8(C)に示すように、撮像画像Imにおいては、物体Mの表面に対応する輝線27と、筒部43の内周面に対応する輝線27’とが、物体Mの表面及び筒部43の内周面に応じた径で撮像される。このとき、輝線27の周長は、溝部43dと物体面19aとのZ方向の相対位置に応じて変化する。すなわち、照明光束L1は、物体面19aのZ位置における溝部43dの幅(光軸AX周り方向の長さ)に対応した光軸AX周り方向の角度で測定領域Maに到達し、撮像素子18に入射して撮像されるため、輝線27の周長(光軸AX周り方向の角度)は、溝部43dと物体面19aとのZ方向の相対位置に応じたものとなる。筒部材41が物体Mに接触していないときの溝部43dと物体面19aの相対位置、及び溝部43dの幅の変化量は既知であるため、例えば輝線27の角度を演算して求めることにより、溝部43dに対する物体面19aの相対位置が得られ、結果として、Z方向について、筒部材41が物体Mに接触した位置を検出することが可能となる。   In the shape measuring apparatus 1A having the above configuration, as shown in FIG. 6B, when the tubular member 41 contacts the object M and moves relatively in the Z direction, the illumination light beam L1 passing through the groove 43d is shielded. Without reaching the measurement area Ma, the other illumination light beam L1 is reflected and scattered by the cylindrical portion 43. As shown in FIG. 8C, in the captured image Im, the bright line 27 corresponding to the surface of the object M and the bright line 27 ′ corresponding to the inner peripheral surface of the cylindrical portion 43 are the surface of the object M and Imaging is performed with a diameter corresponding to the inner peripheral surface of the cylindrical portion 43. At this time, the peripheral length of the bright line 27 changes according to the relative position in the Z direction between the groove 43d and the object plane 19a. That is, the illumination light beam L1 reaches the measurement region Ma at an angle in the direction around the optical axis AX corresponding to the width of the groove 43d (the length in the direction around the optical axis AX) at the Z position of the object plane 19a. Since the image is incident and imaged, the peripheral length (angle in the direction around the optical axis AX) of the bright line 27 corresponds to the relative position in the Z direction between the groove 43d and the object plane 19a. Since the relative position between the groove 43d and the object surface 19a and the amount of change in the width of the groove 43d when the cylindrical member 41 is not in contact with the object M are known, for example, by calculating and calculating the angle of the bright line 27, The relative position of the object surface 19a with respect to the groove 43d is obtained, and as a result, the position where the cylindrical member 41 contacts the object M can be detected in the Z direction.

本実施形態においては、筒部材41と光学プローブ3とのZ方向の相対位置を見積もることができる。また、検出部40の接触により、物体面Maの位置を見積もることができる。特に、物体面Mの底面までの距離を見積もることができる。
また、本実施形態では、筒部材41と物体Mとが非接触であった位置から、接触を検出した位置までの支持部材42(図2参照)の変形量と、当該支持部材42のバネ定数とに基づいて、例えば、応力算出部としての演算装置12が、支持部材42の弾性復元力として光学プローブ3及び筒部材41に加わる荷重(応力)を求めることも可能になる。
In the present embodiment, the relative position in the Z direction between the tubular member 41 and the optical probe 3 can be estimated. Further, the position of the object plane Ma can be estimated by the contact of the detection unit 40. In particular, the distance to the bottom surface of the object surface M can be estimated.
In the present embodiment, the deformation amount of the support member 42 (see FIG. 2) from the position where the cylindrical member 41 and the object M are not in contact to the position where contact is detected, and the spring constant of the support member 42. Based on the above, for example, the arithmetic device 12 as the stress calculation unit can also determine the load (stress) applied to the optical probe 3 and the cylindrical member 41 as the elastic restoring force of the support member 42.

(第3実施形態)
次に、形状測定装置1Aの第3実施形態について、図9を参照して説明する。
この図において、図1乃至図7に示す第1実施形態の構成要素と同一の要素については同一符号を付し、その説明を省略する。
上記の実施形態では、物体Mにおける孔部の底部に検出部40が接触する場合について説明したが、本実施形態では、孔部の側面に検出部40が接触する場合について説明する。
(Third embodiment)
Next, a third embodiment of the shape measuring apparatus 1A will be described with reference to FIG.
In this figure, the same components as those of the first embodiment shown in FIGS. 1 to 7 are denoted by the same reference numerals, and the description thereof is omitted.
In the above embodiment, the case where the detection unit 40 contacts the bottom of the hole in the object M has been described. In the present embodiment, the case where the detection unit 40 contacts the side surface of the hole will be described.

本実施形態における筒部43には、図9(A)に示すように、物体面19aを含む位置に突出する突部43e、43fが光軸AX周りに、例えば90°の位置関係で設けられている。   As shown in FIG. 9A, the cylindrical portion 43 in the present embodiment is provided with protrusions 43e and 43f that protrude to a position including the object surface 19a around the optical axis AX, for example, in a positional relationship of 90 °. ing.

本実施形態の形状測定装置1Aでは、図9(A)に示すように、筒部43が物体Mの側壁に非接触であれば、突部43e、43fに遮光されずに測定領域Maに照射された照明光束L1は、図9(C)に示すように、撮像画像Imにおいて、突部43e、43f以外の範囲に亘る輝線27となる。また、突部43e、43fで照明光束L1が散乱反射した範囲については、筒部43の内周面の径に応じた輝線27aとなる。一方、図9(B)に示すように、光軸AXと物体Mの孔部の軸線とが偏心しており、物体Mの側壁(測定領域Ma)と筒部43の外周面とが接触する場合には、物体Mの側壁と筒部43(突部43e、43f)との距離が近くなるため、撮像画像Imにおいては突部43e、43fで照明光束L1が散乱反射した範囲については、外径側に移動した輝線27’となる。   In the shape measuring apparatus 1A of the present embodiment, as shown in FIG. 9A, if the cylindrical portion 43 is not in contact with the side wall of the object M, the projections 43e and 43f are not shielded from light and irradiate the measurement region Ma. As shown in FIG. 9C, the illuminated light beam L1 becomes a bright line 27 over a range other than the protrusions 43e and 43f in the captured image Im. Further, the range in which the illumination light beam L1 is scattered and reflected by the protrusions 43e and 43f is the bright line 27a corresponding to the diameter of the inner peripheral surface of the cylindrical portion 43. On the other hand, as shown in FIG. 9B, the optical axis AX and the axis of the hole of the object M are decentered, and the side wall (measurement region Ma) of the object M and the outer peripheral surface of the cylindrical portion 43 are in contact with each other. Since the distance between the side wall of the object M and the cylindrical portion 43 (protrusions 43e and 43f) is short, the outer diameter of the range in which the illumination light beam L1 is scattered and reflected by the protrusions 43e and 43f in the captured image Im. The bright line 27 'has moved to the side.

従って、本実施形態では、突部43e、43fで照明光束L1が散乱反射した範囲について、輝線27aから輝線27’に径(位置)が変化したことを検出することにより、物体Mの側壁に検出部40が接触したことを検出することが可能となる。従って、本実施形態においては、物体Mにおける孔部の底部だけでなく、側面の接触を検出することが可能となる。
従って、本実施形態では、物体Mにおける孔部の底部がある孔部であるが物体Mにおける孔部の底部がない貫通孔でも構わない。
Therefore, in the present embodiment, the detection is performed on the side wall of the object M by detecting that the diameter (position) has changed from the bright line 27a to the bright line 27 ′ in the range in which the illumination light beam L1 is scattered and reflected by the protrusions 43e and 43f. It is possible to detect that the unit 40 has come into contact. Therefore, in the present embodiment, it is possible to detect not only the bottom of the hole in the object M but also the contact of the side surface.
Therefore, in the present embodiment, a hole having a bottom of the hole in the object M may be a through hole without a bottom of the hole in the object M.

(第4実施形態)
次に、形状測定装置1Aの第4実施形態について、図10を参照して説明する。
この図において、図1乃至図7に示す第1実施形態の構成要素と同一の要素については同一符号を付し、その説明を省略する。
上記の実施形態では、物体Mにおける孔部の底部に検出部40が接触する場合について説明したが、本実施形態では、鏡筒25が接触する場合について説明する。
(Fourth embodiment)
Next, a fourth embodiment of the shape measuring apparatus 1A will be described with reference to FIG.
In this figure, the same components as those of the first embodiment shown in FIGS. 1 to 7 are denoted by the same reference numerals, and the description thereof is omitted.
In the above embodiment, the case where the detection unit 40 contacts the bottom of the hole in the object M has been described. In the present embodiment, the case where the lens barrel 25 contacts will be described.

本実施形態では、鏡筒25は、鏡筒本体25Aと、支持部材42を介して鏡筒本体25AにZ方向に相対移動自在に吊設された検出部25Bとから構成されている。検出部25Bの+Z側の面には結像光学系19と対向させて反射部材16が設けられている。また、検出部25Bの−Z側の面には突部45が設けられている。   In the present embodiment, the lens barrel 25 includes a lens barrel body 25A and a detection unit 25B that is suspended from the lens barrel body 25A via the support member 42 so as to be relatively movable in the Z direction. A reflection member 16 is provided on the surface on the + Z side of the detection unit 25B so as to face the imaging optical system 19. Further, a protrusion 45 is provided on the surface on the −Z side of the detection unit 25B.

鏡筒本体25Aには、検出部25Bよりも外周側に光軸AX周りに筒部43が設けられている。筒部43の先端部の位置は、検出部25Bが物体Mと非接触で鏡筒本体25Aから吊下されたときに、物体面19aよりも微少量+Z側に離間する位置に設定されている。
他の構成は、上記第1実施形態と同様である。
The lens barrel main body 25A is provided with a tube portion 43 around the optical axis AX on the outer peripheral side of the detection portion 25B. The position of the distal end portion of the cylindrical portion 43 is set to a position that is separated slightly from the object plane 19a toward the + Z side when the detecting portion 25B is suspended from the lens barrel main body 25A without contact with the object M. .
Other configurations are the same as those of the first embodiment.

上記構成の形状測定装置1Aでは、検出部25Bが物体Mと非接触であれば、照明光束L1は筒部43に遮光されることなく測定領域Maに照射され、図4に示したように、撮像画像Imにおいて、測定領域Maの形状及び径に応じた輝線27となる。一方、図10(B)に示すように、検出部25Bが物体Mと接触すると鏡筒本体25Aに接近する方向に相対移動し、筒部43が測定領域Maに向かう照明光束L1の光路上に位置する。これにより、照明光束L1は筒部43の内周面で散乱反射し、図4に示したように、撮像画像Imにおいては、筒部43の内周面の径に対応して、物体Mの表面の場合の径よりも小径の輝線27’となる。
このように、本実施形態においても、上記第1実施形態と同様の作用・効果を得ることができる。
In the shape measuring apparatus 1A having the above configuration, if the detection unit 25B is not in contact with the object M, the illumination light beam L1 is irradiated to the measurement region Ma without being shielded by the cylindrical portion 43, and as shown in FIG. In the picked-up image Im, it becomes the bright line 27 according to the shape and diameter of the measurement region Ma. On the other hand, as shown in FIG. 10B, when the detection unit 25B comes in contact with the object M, the detection unit 25B moves relative to the lens barrel body 25A, and the tube unit 43 is on the optical path of the illumination light beam L1 toward the measurement region Ma. To position. Thereby, the illumination light beam L1 is scattered and reflected by the inner peripheral surface of the cylindrical portion 43, and as shown in FIG. 4, in the captured image Im, the diameter of the inner peripheral surface of the cylindrical portion 43 corresponds to the diameter of the object M. The bright line 27 ′ has a diameter smaller than that of the surface.
Thus, also in this embodiment, the same operation and effect as the first embodiment can be obtained.

次に、上述した形状測定装置を備えた構造物製造システムについて、図11を参照して説明する。
図11は、構造物製造システム200のブロック構成図である。本実施形態の構造物製造システム200は、上記の実施形態において説明したような形状測定装置201と、設計装置202と、成形装置203と、制御装置(検査装置)204と、リペア装置205とを備える。制御装置204は、座標記憶部210及び検査部211を備える。
Next, a structure manufacturing system including the above-described shape measuring apparatus will be described with reference to FIG.
FIG. 11 is a block configuration diagram of the structure manufacturing system 200. The structure manufacturing system 200 of this embodiment includes a shape measuring device 201, a design device 202, a forming device 203, a control device (inspection device) 204, and a repair device 205 as described in the above embodiment. Prepare. The control device 204 includes a coordinate storage unit 210 and an inspection unit 211.

設計装置202は、構造物の形状に関する設計情報を作製し、作成した設計情報を成形装置203に送信する。また、設計装置202は、作成した設計情報を制御装置204の座標記憶部210に記憶させる。設計情報は、構造物の各位置の座標を示す情報を含む。   The design device 202 creates design information related to the shape of the structure, and transmits the created design information to the molding device 203. In addition, the design apparatus 202 stores the created design information in the coordinate storage unit 210 of the control apparatus 204. The design information includes information indicating the coordinates of each position of the structure.

成形装置203は、設計装置202から入力された設計情報に基づいて、上記の構造物を作製する。成形装置203の成形は、例えば鋳造、鍛造、切削等が含まれる。形状測定装置201は、作製された構造物(測定対象物)の座標を測定し、測定した座標を示す情報(形状情報)を制御装置204へ送信する。   The molding apparatus 203 produces the above structure based on the design information input from the design apparatus 202. The molding of the molding apparatus 203 includes, for example, casting, forging, cutting, and the like. The shape measuring device 201 measures the coordinates of the manufactured structure (measurement object) and transmits information (shape information) indicating the measured coordinates to the control device 204.

制御装置204の座標記憶部210は、設計情報を記憶する。制御装置204の検査部211は、座標記憶部210から設計情報を読み出す。検査部211は、形状測定装置201から受信した座標を示す情報(形状情報)と、座標記憶部210から読み出した設計情報とを比較する。検査部211は、比較結果に基づき、構造物が設計情報通りに成形されたか否かを判定する。換言すれば、検査部211は、作成された構造物が良品であるか否かを判定する。検査部211は、構造物が設計情報通りに成形されていない場合に、構造物が修復可能であるか否か判定する。検査部211は、構造物が修復できる場合、比較結果に基づいて不良部位と修復量を算出し、リペア装置205に不良部位を示す情報と修復量を示す情報とを送信する。   The coordinate storage unit 210 of the control device 204 stores design information. The inspection unit 211 of the control device 204 reads design information from the coordinate storage unit 210. The inspection unit 211 compares information (shape information) indicating coordinates received from the shape measuring apparatus 201 with design information read from the coordinate storage unit 210. The inspection unit 211 determines whether or not the structure has been molded according to the design information based on the comparison result. In other words, the inspection unit 211 determines whether or not the created structure is a non-defective product. The inspection unit 211 determines whether or not the structure can be repaired when the structure is not molded according to the design information. When the structure can be repaired, the inspection unit 211 calculates a defective portion and a repair amount based on the comparison result, and transmits information indicating the defective portion and information indicating the repair amount to the repair device 205.

リペア装置205は、制御装置204から受信した不良部位を示す情報と修復量を示す情報とに基づき、構造物の不良部位を加工する。   The repair device 205 processes the defective portion of the structure based on the information indicating the defective portion received from the control device 204 and the information indicating the repair amount.

図12は、構造物製造システム200による処理の流れを示したフローチャートである。構造物製造システム200は、まず、設計装置202が構造物の形状に関する設計情報を作製する(ステップS101)。次に、成形装置202は、設計情報に基づいて上記構造物を作製する(ステップS102)。次に、形状測定装置201は、作製された上記構造物の形状を測定する(ステップS103)。次に、制御装置204の検査部211は、形状測定装置201で得られた形状情報と上記の設計情報とを比較することにより、構造物が誠設計情報通りに作成されたか否か検査する(ステップS104)。   FIG. 12 is a flowchart showing the flow of processing by the structure manufacturing system 200. In the structure manufacturing system 200, first, the design device 202 creates design information related to the shape of the structure (step S101). Next, the molding apparatus 202 produces the structure based on the design information (step S102). Next, the shape measuring apparatus 201 measures the shape of the manufactured structure (step S103). Next, the inspection unit 211 of the control device 204 compares the shape information obtained by the shape measuring device 201 with the design information described above to inspect whether or not the structure is created according to the integrity design information ( Step S104).

次に、制御装置204の検査部211は、作成された構造物が良品であるか否かを判定する(ステップS105)。構造物製造システム200は、作成された構造物が良品であると検査部211が判定した場合(ステップS105 YES)、その処理を終了する。また、検査部211は、作成された構造物が良品でないと判定した場合(ステップS105 NO)、作成された構造物が修復できるか否か判定する(ステップS106)。   Next, the inspection unit 211 of the control device 204 determines whether or not the created structure is a good product (step S105). When the inspection unit 211 determines that the created structure is a non-defective product (YES in step S105), the structure manufacturing system 200 ends the process. If the inspection unit 211 determines that the created structure is not a non-defective product (NO in step S105), the inspection unit 211 determines whether the created structure can be repaired (step S106).

構造物製造システム200は、作成された構造物が修復できると検査部211が判定した場合(ステップS106 YES)、リペア装置205が構造物の再加工を実施し(ステップS107)、ステップS103の処理に戻る。構造物製造システム200は、作成された構造物が修復できないと検査部211が判定した場合(ステップS106 No)、その処理を終了する。以上で、構造物製造システム200は、図12に示すフローチャートの処理を終了する。   In the structure manufacturing system 200, when the inspection unit 211 determines that the created structure can be repaired (YES in step S106), the repair device 205 performs reworking of the structure (step S107), and processing in step S103 Return to. When the inspection unit 211 determines that the created structure cannot be repaired (No in step S106), the structure manufacturing system 200 ends the process. As described above, the structure manufacturing system 200 ends the processing of the flowchart shown in FIG.

本実施形態の構造物製造システム200は、上記の実施形態における形状測定装置が構造物の座標を正確に測定することができるので、作成された構造物が良品であるか否か判定することができる。また、構造物製造システム200は、構造物が良品でない場合、構造物の再加工を実施し、修復することができる。   The structure manufacturing system 200 of the present embodiment can determine whether or not the created structure is a non-defective product because the shape measuring apparatus in the above embodiment can accurately measure the coordinates of the structure. it can. In addition, the structure manufacturing system 200 can repair the structure by reworking the structure when the structure is not a good product.

なお、本実施形態におけるリペア装置205が実行するリペア工程は、成形装置203が成形工程を再実行する工程に置き換えられてもよい。その際には、制御装置204の検査部211が修復できると判定した場合、成形装置203は、成形工程(鍛造、切削等)を再実行する。具体的には、例えば、成形装置203は、構造物において本来切削されるべき箇所であって切削されていない箇所を切削する。これにより、構造物製造システム200は、構造物を正確に作成することができる。   Note that the repair process executed by the repair device 205 in the present embodiment may be replaced with a process in which the molding device 203 re-executes the molding process. In that case, when it determines with the test | inspection part 211 of the control apparatus 204 being able to repair, the shaping | molding apparatus 203 re-executes a shaping | molding process (forging, cutting, etc.). Specifically, for example, the molding apparatus 203 cuts a portion that should be originally cut but not cut in the structure. Thereby, the structure manufacturing system 200 can create a structure correctly.

以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。   As described above, the preferred embodiments according to the present invention have been described with reference to the accompanying drawings, but the present invention is not limited to the examples. Various shapes, combinations, and the like of the constituent members shown in the above-described examples are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.

例えば、形状測定装置1Aは、孔部Maだけに限られず、溝(凹部)の内面(測定領域)を測定することも可能である。形状測定装置1Aは、所定の方向に延在する溝が形成された物体に対して、溝の内面の測定を行う場合に、溝の延在方向に光学プローブ3を移動させることもできる。溝の延在方向は、例えばXY面に平行な方向でもよいし、XY面に交差する方向でもよい。また、上記の実施形態に係る形状測定装置は、例えば、段差の崖部分を測ることも可能である。また、形状測定装置1Aによる測定方法は、光切断法に限定されず、例えば共焦点法又はSFF法であってもよい。   For example, the shape measuring apparatus 1A is not limited to the hole portion Ma, and can also measure the inner surface (measurement region) of the groove (concave portion). The shape measuring apparatus 1A can also move the optical probe 3 in the extending direction of the groove when measuring the inner surface of the groove with respect to the object in which the groove extending in a predetermined direction is formed. The extending direction of the grooves may be, for example, a direction parallel to the XY plane or a direction intersecting the XY plane. Moreover, the shape measuring apparatus according to the above-described embodiment can measure, for example, a cliff portion of a step. Moreover, the measuring method by the shape measuring apparatus 1A is not limited to the light cutting method, and may be, for example, a confocal method or an SFF method.

また、上記実施形態では、検出部40の筒部43が照明光束L1を反射、あるいは所定の透過率で透過させる構成としたが、この構成の他に、例えば照明光束L1を吸収する構成としてもよい。この構成では、筒部43に入射した照明光束L1が出射せず、撮像素子18によって撮像されなくなることから、画像の変化を検出して、検出部40と物体Mとの接触を検出することが可能になる。   Moreover, in the said embodiment, although the cylinder part 43 of the detection part 40 was set as the structure which reflects the illumination light beam L1 or permeate | transmits with a predetermined | prescribed transmittance | permeability, for example, as a structure which absorbs the illumination light beam L1, for example Good. In this configuration, the illumination light beam L1 incident on the cylindrical portion 43 is not emitted and is no longer picked up by the image pickup device 18, so that it is possible to detect a change in the image and detect contact between the detection portion 40 and the object M. It becomes possible.

さらに、上記実施形態では、筒部材41が物体Mと接触した際に、筒部材41がZ軸方向あるいはXY平面に沿って相対移動する場合について説明したが、これ以外3にも、例えば筒部材41がZ軸に対して傾いた場合についても物体Mとの接触を検出可能である。
具体的には、筒部材41がZ軸に対して傾くと、光軸AXを挟んで傾斜方向の一方では照明光束L1の進行方向を変化させ、傾斜方向の他方では照明光束L1の進行方向を変化させないため、撮像画像Imにおいては、光軸AXを挟んで一方側と他方側とで異なる径の輝線になるため、筒部材41と物体Mとの接触を検出できる。
Furthermore, in the above embodiment, the case where the cylindrical member 41 relatively moves along the Z-axis direction or the XY plane when the cylindrical member 41 contacts the object M has been described. The contact with the object M can be detected even when 41 is inclined with respect to the Z axis.
Specifically, when the cylindrical member 41 is tilted with respect to the Z axis, the traveling direction of the illumination light beam L1 is changed on one side of the tilt direction across the optical axis AX, and the traveling direction of the illumination light beam L1 is changed on the other side of the tilt direction. Since it is not changed, in the captured image Im, since the bright lines have different diameters on one side and the other side across the optical axis AX, contact between the cylindrical member 41 and the object M can be detected.

また、上記実施形態では、反射部材16に導入されて反射した照明光束L1が測定領域Maで反射散乱し、測定領域Maで反射散乱した結像光束L2が結像光学系19に入射した後に撮像素子18に入射する構成について説明したが、これに限定されるものではなく、例えば、物体Mの孔部の直径が大きく測定領域Maで反射散乱した結像光束L2が結像光学系19に入射しない可能性もあるが、このような場合には、測定領域Maで反射散乱した結像光束L2を反射部材16が反射し、結像光学系19及び導光部材20を介して撮像素子18に入射させる(導入する)ことができる。そのため、物体Mの孔部の直径が大きい場合であっても、物体Mにおける測定領域Maの形状を円滑に測定することが可能となる。   In the above embodiment, the illumination light beam L1 introduced and reflected by the reflecting member 16 is reflected and scattered in the measurement region Ma, and the imaging light beam L2 reflected and scattered in the measurement region Ma is incident on the imaging optical system 19 and then imaged. Although the structure that enters the element 18 has been described, the present invention is not limited to this. For example, the imaging light beam L2 that has a large hole diameter of the object M and is reflected and scattered by the measurement region Ma enters the imaging optical system 19. In such a case, the imaging light beam L2 reflected and scattered in the measurement region Ma is reflected by the reflecting member 16, and is reflected by the imaging element 18 via the imaging optical system 19 and the light guide member 20. It can be incident (introduced). Therefore, even if the diameter of the hole of the object M is large, the shape of the measurement region Ma in the object M can be measured smoothly.

また、上記実施形態では、照明光束L1の光路(光源14から出射し導光部材20、結像光学系19、反射部材16を介して測定領域Maに向かう照明光束L1の光路)及び結像光束L2の光路(測定領域Maで反射散乱し結像光学系19及び導光部材20を介して撮像素子18に向かう結像光束L2の光路、あるいは測定領域Maで反射散乱し反射部材16、結像光学系19及び導光部材20を介して撮像素子18に向かう結像光束L2の光路)のうち、反射部材16を介して測定領域Maに向かう照明光束L1の光路に検出部40が挿入される構成を例示したが、これに限定されるものではなく、上述した光路であれば、例えば、測定領域Maで反射散乱し結像光学系19に向かう結像光束L2の光路等に検出部40が挿入される構成であってもよい。   In the above embodiment, the optical path of the illumination light beam L1 (the optical path of the illumination light beam L1 emitted from the light source 14 and directed to the measurement region Ma through the light guide member 20, the imaging optical system 19, and the reflection member 16) and the imaging light beam The optical path of L2 (reflected and scattered in the measurement area Ma and reflected and scattered in the optical path of the imaging light beam L2 directed to the image sensor 18 through the imaging optical system 19 and the light guide member 20, or reflected and scattered in the measurement area Ma, the reflecting member 16 and the imaging The detection unit 40 is inserted into the optical path of the illumination light beam L1 toward the measurement region Ma via the reflection member 16 in the optical path of the imaging light beam L2 toward the image sensor 18 via the optical system 19 and the light guide member 20. Although the configuration is exemplified, the present invention is not limited to this, and if the optical path is as described above, for example, the detection unit 40 is reflected in the optical path of the imaging light beam L2 that is reflected and scattered in the measurement region Ma and travels toward the imaging optical system 19. In the inserted configuration It may be.

また、上記実施形態では、物体面19aが平面状である構成を例示したが、これに限定されるものではなく、例えば物体面が円錐面状であってもよく、このような円錐面上の各点から出射した光束を、平面状の像面上のほぼ1点に収斂させるように、物体面19aから撮像素子18に向かう結像光束L2の進行方向を変化させる先端光学部材を備える構成としてもよい。なお、先端光学部材が結合光学系に属する場合には、先端光学部材は、当該結合光学系を構成する光学部材のうち、最も物体面に近く配置されたものとなる。また、先端光学部材が照明光学系に属する場合には、先端光学部材は、当該照明光学系を構成する光学部材のうち、最も物体面に近く配置されたものとなる。   Moreover, in the said embodiment, although the object surface 19a illustrated the structure which is planar shape, it is not limited to this, For example, an object surface may be conical surface shape, on such a conical surface As a configuration including a tip optical member that changes the traveling direction of the imaging light beam L2 from the object surface 19a toward the image sensor 18 so that the light beam emitted from each point is converged to almost one point on the planar image surface. Also good. When the tip optical member belongs to the coupling optical system, the tip optical member is arranged closest to the object plane among the optical members constituting the coupling optical system. Further, when the tip optical member belongs to the illumination optical system, the tip optical member is disposed closest to the object plane among the optical members constituting the illumination optical system.

なお、上述の実施形態における、形状測定装置1Aは光学プローブ3を画像により物体Mの物体面を測定する方式でも構わない。例えば、米国特許公開番号5469254号でも構わない。
なお、上述の実施形態における、光学プローブ3は円環状に投影光を作成し、物体面Maを測定したが、光学プローブ3を回転させ、光学プローブ3の周囲の物体面Maを測定する方式でも構わない。例えば、日本特許公開平成11-281582号でも構わない。
なお、上述の実施形態における、光学プローブ3は干渉により、光学プローブ3の周囲の物体面Maを測定する方式でも構わない。例えば、日本特許公開2008-309652号でも構わない。
なお、上述の各実施形態の要件は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。また、法令で許容される限りにおいて、上述の各実施形態及び変形例で引用した形状測定装置等に関する全ての公開公報及び米国特許の開示を援用して本文の記載の一部とする。
In the above-described embodiment, the shape measuring apparatus 1A may use a method of measuring the object plane of the object M by using the optical probe 3 with an image. For example, US Patent Publication No. 5469254 may be used.
In the above-described embodiment, the optical probe 3 generates projection light in an annular shape and measures the object plane Ma. However, the optical probe 3 is rotated and the object plane Ma around the optical probe 3 is measured. I do not care. For example, Japanese Patent Publication No. Hei 11-281582 may be used.
In the above-described embodiment, the optical probe 3 may be a method of measuring the object surface Ma around the optical probe 3 by interference. For example, Japanese Patent Publication No. 2008-309652 may be used.
Note that the requirements of the above-described embodiments can be combined as appropriate. Some components may not be used. In addition, as long as it is permitted by law, the disclosure of all published publications and US patents related to the shape measuring devices and the like cited in the above embodiments and modifications are incorporated herein by reference.

1A…形状測定装置、 2…移動装置、 5…形状情報取得部(形状取得部)、 9…記憶装置、 12…演算装置(演算部)、 16…反射部材(先端光学部材)、 12…演算装置(経路生成部)、 17…撮像部、 18…撮像素子、 19…結像光学系、 25…鏡筒、 25B、40…検出部(接触検出部)、 42…支持部材(接続部、弾性体)、 203…成形装置、 204…制御装置、 IL…照明光学系   DESCRIPTION OF SYMBOLS 1A ... Shape measuring device, 2 ... Moving device, 5 ... Shape information acquisition part (shape acquisition part), 9 ... Memory | storage device, 12 ... Calculation apparatus (calculation part), 16 ... Reflective member (tip optical member), 12 ... Calculation Device (path generation unit), 17 ... imaging unit, 18 ... imaging element, 19 ... imaging optical system, 25 ... barrel, 25B, 40 ... detection unit (contact detection unit), 42 ... support member (connection unit, elasticity) Body), 203 ... molding device, 204 ... control device, IL ... illumination optical system

Claims (13)

孔の表面の形状を測定するための形状測定装置であって、
前記孔の表面に光を照射し、前記孔の表面で反射する光を検出する撮像素子を含む形状取得部と、
前記形状取得部で検出する信号を用い、前記孔の表面の形状を算出する演算部と、
前記孔の表面との接触に伴い、前記形状取得部の光路に挿入するように配置される接触検出部とを備える形状測定装置。
A shape measuring device for measuring the shape of the surface of a hole,
A shape acquisition unit including an image sensor that irradiates light on the surface of the hole and detects light reflected on the surface of the hole;
An arithmetic unit that calculates the shape of the surface of the hole using a signal detected by the shape acquisition unit;
A shape measuring apparatus comprising: a contact detection unit arranged to be inserted into an optical path of the shape acquisition unit in accordance with contact with a surface of the hole.
前記接触に伴い、前記接触検出部は、前記形状取得部と前記孔の表面との間の光路に配置される請求項1に記載の形状測定装置。   The shape measurement apparatus according to claim 1, wherein the contact detection unit is disposed in an optical path between the shape acquisition unit and the surface of the hole along with the contact. 前記形状取得部は、
前記撮像素子の撮像面に前記孔の表面で反射する光を導入する光学部材を有する光学系と、
前記光学部材を収容する鏡筒と、をさらに備え、
前記鏡筒と前記接触検出部との間の相対位置の違いに応じて、前記形状取得部と前記孔の表面との間の光路に前記接触検出部が挿入される距離が変化する請求項2に記載の形状測定装置。
The shape acquisition unit
An optical system having an optical member for introducing light reflected by the surface of the hole into the imaging surface of the imaging element;
A lens barrel that houses the optical member;
The distance at which the contact detection unit is inserted in an optical path between the shape acquisition unit and the surface of the hole changes according to a difference in relative position between the lens barrel and the contact detection unit. The shape measuring device described in 1.
前記接触検出部が挿入される距離を用いて、前記孔の表面との接触に伴う前記接触検出部に作用する力を算出する応力算出部を備える請求項3に記載の形状測定装置。   The shape measuring apparatus according to claim 3, further comprising a stress calculating unit that calculates a force acting on the contact detecting unit due to contact with the surface of the hole, using a distance at which the contact detecting unit is inserted. 前記光学系のうち、前記撮像素子に導入する光路に沿った、前記孔の表面に前記光を入射させる先端光学部材と前記孔の表面との間の光路に、前記接触に伴い前記接触検出部が配置される請求項4に記載の形状測定装置。   In the optical system, along the optical path to be introduced into the image sensor, the contact detection unit is associated with the contact with the optical path between the tip optical member that makes the light incident on the surface of the hole and the surface of the hole. The shape measuring apparatus according to claim 4, wherein 前記形状取得部は、前記孔の表面に照射する照明光学系をさらに備える請求項5に記載の形状測定装置。   The shape measurement apparatus according to claim 5, wherein the shape acquisition unit further includes an illumination optical system that irradiates the surface of the hole. 前記先端光学部材は、前記孔の表面に照射される光を導入するとともに、前記孔の表面で反射する光を前記撮像素子に導入する請求項6に記載の形状測定装置。   The shape measuring apparatus according to claim 6, wherein the tip optical member introduces light irradiated to the surface of the hole and introduces light reflected by the surface of the hole into the imaging element. 前記接触検出部は、前記孔の表面に照射する光を反射する反射部を含み、
前記形状取得部と前記撮像素子との間に前記反射部が挿入され、前記反射部からの反射光を前記撮像素子で撮像する請求項1〜7のいずれか一項に記載の形状測定装置。
The contact detection unit includes a reflection unit that reflects light applied to the surface of the hole,
The shape measurement apparatus according to claim 1, wherein the reflection unit is inserted between the shape acquisition unit and the image sensor, and the reflected light from the reflection unit is imaged by the image sensor.
前記接触検出部は、円周方向に前記孔の表面に照射する光の透過率が異なる請求項1〜8のいずれか一項に記載の形状測定装置。   The shape measuring device according to any one of claims 1 to 8, wherein the contact detection unit has different transmittances of light applied to the surface of the hole in a circumferential direction. 前記接触検出部は、前記挿入される距離に応じて前記孔の表面に照射する光の透過率が異なる請求項1〜9のいずれか一項に記載の形状測定装置。   The shape measuring device according to any one of claims 1 to 9, wherein the contact detection unit has a different transmittance of light applied to the surface of the hole according to the inserted distance. 前記形状取得部と前記接触検出部とを移動させる移動装置と、
前記接触検出部と前記孔の表面との接触を検出するまでの、前記形状取得部と前記接触検出部との移動経路を記憶する記憶装置とを備える、請求項1〜10のいずれか一項に記載の形状測定装置。
A moving device for moving the shape acquisition unit and the contact detection unit;
11. A storage device that stores a movement path between the shape acquisition unit and the contact detection unit until contact between the contact detection unit and the surface of the hole is detected. The shape measuring device described in 1.
構造物の形状に関する設計情報に基づいて前記構造物を成形する成形装置と、
前記成形装置によって成形された前記構造物の形状を測定する請求項1〜11のいずれか一項に記載の形状測定装置と、
前記形状測定装置によって測定された前記構造物の形状を示す形状情報と前記設計情報とを比較する制御装置と、を備える構造物製造システム。
A molding apparatus for molding the structure based on design information relating to the shape of the structure;
The shape measuring device according to any one of claims 1 to 11, which measures the shape of the structure formed by the forming device,
A structure manufacturing system comprising: a control device that compares shape information indicating the shape of the structure measured by the shape measuring device with the design information.
構造物の形状に関する設計情報に基づいて、前記構造物を成形することと、
前記成形された前記構造物の形状を請求項1〜11のいずれか一項に記載の形状測定装置によって測定することと、
前記形状測定装置によって測定された前記構造物の形状を示す形状情報と前記設計情報とを比較することと、を含む構造物製造方法。
Molding the structure based on design information regarding the shape of the structure;
Measuring the shape of the molded structure by the shape measuring device according to any one of claims 1 to 11,
A structure manufacturing method comprising: comparing shape information indicating the shape of the structure measured by the shape measuring apparatus with the design information.
JP2013002081A 2013-01-09 2013-01-09 Shape measuring device, structure manufacturing system, and structure manufacturing method Active JP6028574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013002081A JP6028574B2 (en) 2013-01-09 2013-01-09 Shape measuring device, structure manufacturing system, and structure manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013002081A JP6028574B2 (en) 2013-01-09 2013-01-09 Shape measuring device, structure manufacturing system, and structure manufacturing method

Publications (2)

Publication Number Publication Date
JP2014134437A JP2014134437A (en) 2014-07-24
JP6028574B2 true JP6028574B2 (en) 2016-11-16

Family

ID=51412831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013002081A Active JP6028574B2 (en) 2013-01-09 2013-01-09 Shape measuring device, structure manufacturing system, and structure manufacturing method

Country Status (1)

Country Link
JP (1) JP6028574B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113544B2 (en) * 1987-03-25 1995-12-06 株式会社ニコン Movement control device for coordinate measuring machine
JP2573170Y2 (en) * 1992-11-20 1998-05-28 株式会社ニコン Measuring machine spindle protection device
US5895927A (en) * 1995-06-30 1999-04-20 The United States Of America As Represented By The Secretary Of The Air Force Electro-optic, noncontact, interior cross-sectional profiler
JP3591080B2 (en) * 1995-09-20 2004-11-17 株式会社デンソー Cylinder inner surface observation device
JP3831561B2 (en) * 1999-11-22 2006-10-11 株式会社ミツトヨ Anti-collision device for measuring machine
JP4091851B2 (en) * 2003-01-29 2008-05-28 株式会社ミツトヨ Collision detection device for contact type measuring machine
JP5309542B2 (en) * 2007-12-05 2013-10-09 株式会社ニコン Measuring apparatus and method
JP5278878B2 (en) * 2009-03-23 2013-09-04 国立大学法人 宮崎大学 Pipe inner surface shape measuring device
JP2012093235A (en) * 2010-10-27 2012-05-17 Nikon Corp Three-dimensional shape measurement device, three-dimensional shape measurement method, structure manufacturing method, and structure manufacturing system

Also Published As

Publication number Publication date
JP2014134437A (en) 2014-07-24

Similar Documents

Publication Publication Date Title
JP5829381B2 (en) Method and apparatus for measuring relative position of specular reflection surface
JP5884309B2 (en) Measuring device, shape measuring device, shape measuring method, and structure manufacturing method
JP6382303B2 (en) Surface roughness measuring device
US8767218B2 (en) Optical apparatus for non-contact measurement or testing of a body surface
CN105277568A (en) Measuring device for acquiring surface data and/or interfaces of a workpiece to be processed by a laser processing device
EP2789968A1 (en) Shape-measuring device
JP2010515070A (en) Position detection system for non-contact interferometer type detection of target position and scanning system equipped with the position detection system
US9205576B2 (en) Image forming optical system, imaging apparatus, profile measuring apparatus, structure manufacturing system and structure manufacturing method
JP2016118541A (en) Bore imaging system
JP2014115144A (en) Shape measurement apparatus, optical device, method of manufacturing shape measurement apparatus, structure manufacturing system, and structure manufacturing method
JP5982789B2 (en) Shape measuring device, structure manufacturing system, structure manufacturing method
JP6028574B2 (en) Shape measuring device, structure manufacturing system, and structure manufacturing method
JP2016038204A (en) Internal shape examining sensor unit, and internal shape examining device
JP2005201703A (en) Interference measuring method and system
JP5358898B2 (en) Optical surface shape measuring method and apparatus, and recording medium
JP2013015490A (en) Measuring apparatus
KR101602436B1 (en) Improved 3-D measurement using fiber optic devices
JP2012173125A (en) Shape measuring apparatus and shape measuring method
JP4683270B2 (en) Lens meter
JP5356187B2 (en) Method and apparatus for measuring lens ball height
JP2002221409A (en) Method, apparatus and recording medium for measuring shape of optical surface
JP2009250676A (en) Distance measuring apparatus
JP6674990B2 (en) Probe element and coordinate measuring machine for measuring at least one measurement object
JP2015219175A (en) Shape measurement device, probe, structure manufacturing system, and manufacturing method of structure
JP6180300B2 (en) Floodlight device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151117

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161003

R150 Certificate of patent or registration of utility model

Ref document number: 6028574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250