JPH0618223A - Optical measuring method of remote object - Google Patents

Optical measuring method of remote object

Info

Publication number
JPH0618223A
JPH0618223A JP4800392A JP4800392A JPH0618223A JP H0618223 A JPH0618223 A JP H0618223A JP 4800392 A JP4800392 A JP 4800392A JP 4800392 A JP4800392 A JP 4800392A JP H0618223 A JPH0618223 A JP H0618223A
Authority
JP
Japan
Prior art keywords
center
gravity
measured
light
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4800392A
Other languages
Japanese (ja)
Inventor
Taichi Tsujii
太一 辻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INTER DETSUKU KK
Mutual Corp
Original Assignee
INTER DETSUKU KK
Mutual Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INTER DETSUKU KK, Mutual Corp filed Critical INTER DETSUKU KK
Priority to JP4800392A priority Critical patent/JPH0618223A/en
Publication of JPH0618223A publication Critical patent/JPH0618223A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To inclination, irregularities, and the like of an object by determining the center of gravity of imaging light point on an imaging surface and measuring positional shift of the center of gravity. CONSTITUTION:An object W is placed at a horizontal reference position and light is projected thereon from a light projector 2. A camera 3 picks up an image of the object W and retrieves the center of gravity G on an imaging surface thus determining a reference position. When the object moves to a position Wa inclining by an angle theta, the surface T irradiated with the light projector 2 moves to Ta and the center of gravity G of the imaging surface S moves to C. Assuming the moving distance of the center of gravity as (c), elevating distance (h) of measuring point is measured. Assuming the central position of lens is A, and the positions corresponding to the center of gravity G on the irradiated surfaces T and Ta are F and D, (c) can be determined through measurement because the length m:k is known. Since <delta <beta can be calculated, each dimension of DELTAABF can be calculated. Furthermore, since <alpha is known, one side BF and one angle <ABF of DELTADBF can be calculated and, thereby, the sides DF, DB and the height (h) can be calculated. The measurement is repeated while moving the object Wa thus discriminating inclination or irregularities and determining the degree of irregularities.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は遠隔物体をカメラにより
撮影し、該物体表面の凹凸、厚み、位置、傾斜或いは振
動等を測定する光学的測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical measuring method for photographing a remote object with a camera and measuring unevenness, thickness, position, inclination or vibration of the surface of the object.

【0002】[0002]

【従来の技術】上記遠隔の測定対象物の凹凸の微小寸法
を非接触で確実に測定する方法としては、非接触針によ
る電価測定の方法が広く知られている。その他超音波で
のトツプラー効果による測定方法もある。あるいは光に
よる測定方法も一部においては試みられている。
2. Description of the Related Art As a method for surely measuring the minute dimension of the unevenness of the remote measuring object in a non-contact manner, a method of measuring an electric value with a non-contact needle is widely known. There is also a measurement method using the Toppler effect with ultrasonic waves. Alternatively, some methods of measuring with light have been attempted.

【0003】[0003]

【発明が解決しようとする課題】しかし前記第1の非接
触針式電価測定方式は、測定精度は高い特徴はあるがコ
ストが高く一般的ではない。また第2のトツプラー効果
による方式は精度が悪く、かつコストが高い等の問題が
ある。また回転数の測定には、一般にストロボランプ等
が使用されるが、屋外での使用及び低速の測定は困難で
あり、振動数の測定には、非接触式として反射光を利用
する方式もあるが、測定する場所が限られており、且つ
微振動の測定には不適当である等の問題がある。
However, the first non-contact needle type electric value measuring method is not general because it has a high measuring accuracy but is high in cost. The second Toppler effect method has problems such as poor accuracy and high cost. A strobe lamp or the like is generally used to measure the number of revolutions, but it is difficult to use it outdoors or to measure at a low speed, and there is a non-contact method that uses reflected light to measure the frequency. However, there are problems that the place to measure is limited and that it is not suitable for the measurement of minute vibrations.

【0004】本発明は上記の点に鑑みてなされたもの
で、測定すべき対象物から発せられる光をCCDカメ
ラ、好ましくはPSD(ポジシヨンセンシングデバイ
ス)カメラにより撮像し、撮像画面の撮像光点の重心の
位置ずれから該対象物の凹凸、傾斜、厚み、位置等の静
的状態、及び振動回転数等の動的状態を測定する新規を
測定方法を提供することを目的とする。
The present invention has been made in view of the above points, and the light emitted from an object to be measured is imaged by a CCD camera, preferably a PSD (position sensing device) camera, and an imaged light spot on an image pickup screen. An object of the present invention is to provide a novel measuring method for measuring the static state of the target object such as unevenness, inclination, thickness, position and the like, and dynamic state such as the number of vibrations and rotations from the displacement of the center of gravity of the object.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の第1の発明の遠隔物体の光学的測定方法は、投光器に
より測定対象物を照射しこれをカメラで撮影し、撮像光
点の重心を求め、予め撮像面に設定した基準位置と重心
との離間距離から測定対象物の凹凸、傾斜、厚み、位置
等の測定対象物の静的状態、及び振動(振幅及び周波
数)回転数等の測定対象物の動的状態を測定するように
したものである。
The optical measuring method for a remote object according to the first aspect of the present invention for achieving the above object is to illuminate an object to be measured with a projector, photograph the object, and measure the center of gravity of the imaged light spot. From the distance between the reference position and the center of gravity set in advance on the imaging surface, the static state of the measurement object such as unevenness, inclination, thickness and position of the measurement object, and the vibration (amplitude and frequency) rotation speed etc. The dynamic state of the measuring object is measured.

【0006】また第2の発明は、上記測定対象面に対し
て斜め方向から光線を照射し、該面に対し略々直角方向
から撮像するようにしたものであり、第3の発明は、こ
れとは逆に測定対象面に対して略々直角方向から光線を
照射して、照射光線を中心としてXY軸上に±等距離に
2以上箇所の斜め方向から撮像するようにしたものであ
る。
A second aspect of the invention is to irradiate the surface to be measured with a light beam from an oblique direction and to capture an image from a direction substantially perpendicular to the surface. On the contrary, a light beam is irradiated from a direction substantially perpendicular to the surface to be measured, and images are taken from two or more diagonal positions at ± equal distances on the XY axis with the irradiation light beam as the center.

【0007】また第4の発明は、光源は1点を中心とし
て前後左右対象型のレーザ光線を使用したものである。
In a fourth aspect of the invention, the light source uses a front-back, left-right symmetrical laser beam with one point as the center.

【0008】また第5の発明は、振動数測定は移動する
測定対象点の凹凸高さ変動の周期性の測定値から算出す
るようにしたものである。
In a fifth aspect of the invention, the frequency measurement is calculated from the measurement value of the periodicity of the uneven height variation of the moving measurement target point.

【0009】さらに第6の発明は測定対象物には発光体
を備え、これをカメラで撮影し、撮像光の点重心を求
め、予め撮像面に設定した基準位置と重心との離間距離
から測定対象物の振動、回転等の位置変動を測定するよ
うにしたものである。
Further, in a sixth aspect of the present invention, an object to be measured is provided with a light-emitting body, the light-emitting body is photographed by a camera, a point center of gravity of imaged light is obtained, and measurement is performed from a distance between a reference position and a center of gravity set in advance on an image pickup surface. The position variation of the object such as vibration and rotation is measured.

【0010】なお第7の発明は、上記第1及び第6の発
明において、カメラには撮像面の光量変化を電気量変化
に変換する手段を有し、変換電気量のX軸及びY軸に於
ける最大値を示す位置を計測し、重心点を求めるように
したものである。
According to a seventh aspect of the invention, in the first and sixth aspects of the invention, the camera has means for converting a change in the light quantity of the image pickup surface into a change in the electric quantity, and the converted electric quantity is converted into X-axis and Y-axis. The position of the maximum value is measured to find the center of gravity.

【0011】第8の発明は、測定対象物の上下左右の対
象面から同時に対象物までの距離を測定し、対象物の位
置変動、厚み、凹凸及び振動を測定するようにしたもの
である。
An eighth aspect of the invention is to measure the distances from the upper, lower, left, and right object surfaces of the object to be measured to the object at the same time, and measure the positional variation, thickness, unevenness, and vibration of the object.

【0012】第9の発明は、測定対象物の軸線上の2定
点上の光の撮像光点重心を測定してその位置ずれから軸
の“ねじれ”又は伝達動力を測定しようとするものであ
る。
A ninth aspect of the present invention is intended to measure the center of gravity of an image pickup light point of light on two fixed points on the axis of an object to be measured and measure the "twist" of the shaft or the transmitted power from the positional deviation. .

【0013】[0013]

【作用】測定対象物の凹凸、傾斜、振動等の測定は、撮
像光点の重心位置を求め、対象物の移動による撮像面の
重心の移動を計測し、これに基づいて算出する。
The measurement of unevenness, inclination, vibration and the like of the object to be measured is performed by obtaining the position of the center of gravity of the imaged light spot, measuring the movement of the center of gravity of the image pickup surface due to the movement of the object, and calculating based on this.

【0014】[0014]

【実施例】図1、図2は本発明の第1実施例を示す。本
発明方法を実施する測定装置1は、投光器2とカメラ3
とを備え、カメラ3はCCDカメラまたは前記PSDカ
メラで、撮像面における撮像光点の重心を求める計測手
段4を備えたカメラを用いる。投光器2は、レーザ光
線、LED、その他ヘリユーム・ネオン等の発光体を備
える。レーザ光線は点光線でもよいが、1点を中心とし
て前後左右対象型の平行光線が好ましい。
1 and 2 show a first embodiment of the present invention. A measuring device 1 for carrying out the method of the present invention comprises a projector 2 and a camera 3.
The camera 3 is a CCD camera or the above-mentioned PSD camera, and uses a camera equipped with a measuring unit 4 for obtaining the center of gravity of the imaged light spot on the imaged surface. The projector 2 is provided with a laser beam, an LED, and other light emitters such as helium neon. The laser beam may be a point beam, but is preferably a front-back and left-right symmetrical type parallel beam centered on one point.

【0015】本測定装置1による測定対象物の凹凸、傾
斜等の測定に当たっては、レーザ光線等を測定対象物W
に照射し、これをカメラ3で撮影し、撮像光点の重心を
求め、予め撮像面に設定した基準位置と重心との離間距
離を計測するもので、先ず撮像光点の重心の求め方につ
いて説明する。
When measuring the unevenness and inclination of the object to be measured by the measuring device 1, a laser beam or the like is used to measure the object W.
The center of gravity of the imaged light spot is obtained by measuring the distance between the reference position and the center of gravity set in advance on the image pickup surface. First, the method of obtaining the center of gravity of the imaged light spot is described. explain.

【0016】図3はCCDカメラによる撮像光点の重心
を求める要領を示すもので、上記CCDカメラは、撮像
板として半導体基板上に多数の転送電極(画素)を縦横
に配列してなるものである。このCCDカメラにおける
走査線は水平にスキャニングした後上方から順次下方に
移動すると仮定し、受光面5即ち画素上に形成された光
点群を仮に円形とする。この受光面5に対し最初に接す
る走査線6aにおける映像積分波形長さは0であり、順
次下方に移行するに従い長くなり、中心を通る走査線6
bにおいて最大となり、その後は順次減少し、走査線6
cにおいて0となる。従って重心Gの位置は映像波形が
最大の走査線6b上にあることは明らかであり、この走
査線を探索して基準線Xからの距離をyとして記憶す
る。
FIG. 3 shows a procedure for obtaining the center of gravity of an imaged light spot by a CCD camera. The CCD camera is an image pickup plate in which a large number of transfer electrodes (pixels) are vertically and horizontally arranged on a semiconductor substrate. is there. It is assumed that the scanning lines in this CCD camera are horizontally scanned and then sequentially moved downward from the upper side, and the light spots formed on the light receiving surface 5, that is, the pixels are assumed to be circular. The image-integrated waveform length on the scanning line 6a that first contacts the light-receiving surface 5 is 0, and becomes longer as it moves downward, and the scanning line 6 passing through the center.
It becomes the maximum in b, then decreases gradually, and the scan line 6
It becomes 0 in c. Therefore, it is clear that the position of the center of gravity G is on the scanning line 6b where the video waveform is the maximum, and this scanning line is searched and the distance from the reference line X is stored as y.

【0017】又重心Gの横方向の位置は、前述の従方向
と同様の方法で行う。又別法として上記最長の映像波形
を形成する走査線6bにおいて映像信号を受信する最初
と最後の画素6dとbe間の時間を2分することによっ
ても求められる。縦軸Yからの距離をxとして記憶す
る。即ち重心Gの位置はXY座標におけるxy値として
記憶する。
The position of the center of gravity G in the lateral direction is determined by the same method as in the sub-direction. Alternatively, it can be obtained by dividing the time between the first and last pixels 6d and be receiving the video signal in the scanning line 6b forming the longest video waveform into two. The distance from the vertical axis Y is stored as x. That is, the position of the center of gravity G is stored as an xy value in XY coordinates.

【0018】この場合、通常のCCDカメラでは、上記
x、y値の計算に際しては、受光画素の受光量(電圧)
を該画素の縦列横列毎に集積して行う必要があり、手数
を要し時間的、コスト的及び精度的に不便である。これ
に対し前記PSDカメラによるときは、各画素の受光量
を縦列横列毎に直ちにアナログ化して記憶する故便利で
ある。特に光源として中心部の光量が大で前後左右対象
型のレーザ光線には好ましい。従って本発明において
は、このPSDカメラを使用することが好ましいが、必
ずしもこれに限ることはなく、従来のCCDカメラに依
って撮像してもよい。
In this case, in the ordinary CCD camera, when calculating the above x and y values, the light receiving amount (voltage) of the light receiving pixel.
Need to be integrated for each column and row of the pixel, which is troublesome and inconvenient in terms of time, cost and accuracy. On the other hand, when using the PSD camera, it is convenient because the amount of light received by each pixel is immediately converted into an analog signal for each column and row and stored. In particular, it is preferable for a front-and-back, left-right symmetrical laser beam having a large light amount in the central portion as a light source. Therefore, in the present invention, it is preferable to use this PSD camera, but the present invention is not limited to this, and a conventional CCD camera may be used for imaging.

【0019】次に、本発明の遠隔物体の傾斜、凹凸の測
定方法の具体例について、図1及び図2について説明す
る。この実施例は投光器2を測定対象物(以下単に対象
物という)Wに対し斜め上方に、また撮影用カメラ3は
測定対象面に対し直角に上方にそれぞれ配置した例を示
す。なお、投光器2の光源としてレーザ光線で測定対象
面Wに対して照射するものとする。図中、Lはレンズ、
Sは撮像面を示す。
Next, a concrete example of the method for measuring the inclination and unevenness of a remote object according to the present invention will be described with reference to FIGS. This embodiment shows an example in which the light projector 2 is arranged obliquely above a measurement object (hereinafter simply referred to as an object) W, and the photographing camera 3 is arranged above the measurement object surface at a right angle. The light source of the light projector 2 irradiates the measurement target surface W with a laser beam. In the figure, L is a lens,
S indicates an image pickup surface.

【0020】先ず、対象物Wを水平の基準位置に置く
(この位置の対象物を基準対象物と言う)。そして投光
器2からの投光をカメラ3の垂直下方に投光し、カメラ
3において撮像し、撮像面Sに前記要領により重心Gを
検索し、この位置を基準値とする。ついで対象物が角度
θだけ傾斜したWaの位置に移動したとする(この位置
の対象物を測定対象物という)。これにより投光器2か
らの照射面TがTaに移動し、これに伴い撮像面Sの重
心位置GからCに移動する。この重心の移動距離をcと
し、以下照射面即ち測定点の上昇距離hを測定する。そ
の測定要領は次の通りである。
First, the object W is placed at a horizontal reference position (the object at this position is referred to as a reference object). Then, the light emitted from the light projector 2 is emitted vertically downward of the camera 3, and an image is picked up by the camera 3, the center of gravity G is searched for on the image pickup surface S according to the above procedure, and this position is set as a reference value. Next, it is assumed that the object moves to a position Wa that is inclined by the angle θ (the object at this position is referred to as a measurement object). As a result, the irradiation surface T from the light projector 2 moves to Ta, and accordingly, the gravity center position G of the imaging surface S moves to C. The moving distance of the center of gravity is defined as c, and the rising distance h of the irradiation surface, that is, the measurement point is measured. The measurement procedure is as follows.

【0021】図2において、△AGCと△ABFとは相
似である。但しAはレンズの中心位置、F、Dは照射面
T及びTaにおける重心Gに対向する位置とする。また
長さm:kは既知数であり、cは測定から判明する。△
AGCにおいてc、kが既知数であることから、∠δ、
∠βは計算できる。これから△ABFの各寸法が計算で
きる。また、∠αも既知角である。従って△DBFにお
いて、一辺BF及び∠ABFが計算から判明する故、各
辺DF、DBが計算できる。これからDH即ち高さhが
計算できる。この測定要領を測定対象物Waを移動しつ
ゝ繰り返し行うことにより該対象物Waの傾斜角度或い
は凹凸であるかを判別すると共に、またその凹凸の高さ
等も測定できる。
In FIG. 2, ΔAGC and ΔABF are similar. However, A is the center position of the lens, and F and D are positions facing the center of gravity G on the irradiation surfaces T and Ta. The length m: k is a known number, and c is known from the measurement. △
Since c and k are known numbers in AGC, ∠δ,
∠β can be calculated. From this, each dimension of ΔABF can be calculated. Also, ∠α is a known angle. Therefore, in ΔDBF, since one side BF and ∠ABF are known from the calculation, each side DF and DB can be calculated. From this, DH, or height h, can be calculated. By repeating this measurement procedure while moving the object Wa to be measured, it is possible to determine whether the inclination angle or the unevenness of the object Wa and also to measure the height of the unevenness.

【0022】次に図4及び図5は、上記測定装置1によ
る他の測定要領を示す。即ち、投光器2は基準対象物W
に対し垂直に上方に位置し、カメラ3は所定角度αaに
位置させた例を示す。この場合においても前例と同様に
先ず、対象物Wを水平の基準位置に置き、投光器2から
の投光をカメラ3により撮像し、撮像面の光点群の重心
を求める。この位置をKとする。なおJは対象物Wの照
射面における重心位置Kに対する位置を示す。次に対象
物Wを角度θだけ傾斜した測定対象物Waの位置に移行
(傾斜)することにより照射位置JはOに移動し、これ
により撮像面S上の重心位置はMに移動する。この重心
位置の移動距離をkとする。図5において、△AKMと
△AJPとは相似三角形であり、nは既知知値である。
従って直角三角形ANOにおいて、一辺ANの長さnと
∠NAO(αa−δa)が判明しているから線分kの長
さ、従って高さhが計算できる。この高さ変動は対象物
が傾斜しているか、凹凸であるかは、前例と同様に測定
対象物Waを移動しつゝ測定を繰り返せば容易に測定で
きる。
Next, FIG. 4 and FIG. 5 show other measuring procedures by the measuring device 1. That is, the projector 2 is the reference object W
An example in which the camera 3 is positioned vertically upward with respect to and the camera 3 is positioned at a predetermined angle αa is shown. Also in this case, similarly to the previous example, first, the object W is placed at the horizontal reference position, the light projected from the light projector 2 is imaged by the camera 3, and the center of gravity of the light spot group on the imaging surface is obtained. This position is designated as K. Note that J indicates the position of the object W with respect to the center of gravity K on the irradiation surface. Next, the irradiation position J moves to O by moving (tilting) the object W to the position of the measurement object Wa that is inclined by the angle θ, and the center of gravity position on the imaging surface S moves to M. The moving distance of this position of the center of gravity is k. In FIG. 5, ΔAKM and ΔAJP are similar triangles, and n is a known value.
Therefore, in the right triangle ANO, since the length n of one side AN and ∠NAO (αa−δa) are known, the length of the line segment k, that is, the height h can be calculated. This height variation can be easily measured by moving the measurement object Wa and repeating the measurement as in the previous example, whether the object is inclined or uneven.

【0023】なお、測定対象物の表面に凹凸がある場
合、凹部の深さ測定に1個の測定装置では死角を生じ誤
差を生ずる場合がある。これの解決手段としては複数の
カメラを投光器2を中心として配置することが好まし
い。図6はその1例を示し、測定装置1aは、測定対象
面に対し直角に照射する投光器2と照射光線を中心とし
てXY軸上に均等距離に配置された4個のカメラ3a、
3b、3c、3dから構成したものである。この構造に
よるときは、同時に4方面から測定する故、測定に誤差
を生ずることは防止される。
When the surface of the object to be measured has irregularities, a single measuring device may cause a blind spot in measuring the depth of the concave portion, resulting in an error. As a means for solving this, it is preferable to arrange a plurality of cameras around the projector 2. FIG. 6 shows an example thereof, in which the measuring device 1a includes a projector 2 which irradiates a surface to be measured at right angles and four cameras 3a which are arranged at equal distances on the XY axes around the irradiation light beam.
3b, 3c, 3d. With this structure, since measurement is performed from four directions at the same time, it is possible to prevent an error in measurement.

【0024】なお前記第1実施例の場合も同様である
が、この測定高さの変動が一定周期の場合にはピツチの
測定として利用し、対象物が回転体の場合は高さの変動
の周期性を測定することにより振動数(振れ)としてこ
れを計測する。
The same applies to the case of the first embodiment, but when this measurement height variation has a constant cycle, it is used as a pitch measurement, and when the object is a rotating body, the height variation This is measured as the frequency (vibration) by measuring the periodicity.

【0025】次に上記本発明による測定装置を利用し
て、実際の測定要領を図7以下の実施例について説明す
る。図7は振動又は回転する一端固定又は両端軸を有す
る丸棒Wbの振動数測要領を示す。測定装置1は、前述
の如く、投光器2から回転する測定対象物Wbを照射し
カメラ3により照射面を撮像する。この場合にはカメラ
3は回転軸線に直角に位置させることが好ましい。なお
測定に当たつては、予め振れのない標準丸棒を測定し、
これを基準とする。そして測定に当たっては、前述の如
く振れによる投射光点の移動に基づく撮像面の光点重心
位置の移動距離から、振れの高さを計測する。又図示を
省略したが、カメラ3、投光器2はこれを組として丸棒
Wの軸線に沿って移動することにより、丸棒全体につい
て測定することがてきる。
Next, an actual measuring procedure using the above-described measuring apparatus according to the present invention will be described with reference to the embodiments shown in FIG. FIG. 7 shows a frequency measuring procedure of a round bar Wb having one end fixed or both end shafts that vibrate or rotate. As described above, the measuring device 1 irradiates the rotating measurement target Wb from the light projector 2 and images the irradiation surface with the camera 3. In this case, the camera 3 is preferably positioned at right angles to the axis of rotation. For the measurement, measure the standard round bar without shaking beforehand,
Based on this. Then, in the measurement, the height of the shake is measured from the moving distance of the position of the center of gravity of the light spot on the imaging surface based on the movement of the projected light spot due to the shake as described above. Although not shown, the camera 3 and the light projector 2 as a set can be moved along the axis of the round bar W to measure the entire round bar.

【0026】次に図8は測定対象物Wcの凹凸の計測要
領を示す。この場合も同様にカメラ3を対象物Wcの移
動軸線を含む水平面に対し直角とし、投光器2を傾斜さ
せて配置し、対象物Wcを移動しつゝ測定する。これに
より各部の凹凸の高さを前記要領で測定することができ
る。なお、図例はカメラ、投光器の1組のみ示したが、
これを複数組設けることにより、同時に多数の面の測定
ができる。また図においてX軸方向の測定が終わればY
軸方向の測定を行うことにより、全面の凹凸を測定する
ことができる。この場合、投光器2の投光軸は上記水平
面に対し直角とし、この光軸を中心として前後左右、即
ちX軸、Y軸上に±等距離に4箇所の斜め方向にカメラ
を配置し撮像するときは、測定に死角を生ぜず、都合が
良い。
Next, FIG. 8 shows a measuring procedure of the unevenness of the measuring object Wc. In this case as well, the camera 3 is similarly placed at a right angle to the horizontal plane including the movement axis of the object Wc, the projector 2 is arranged so as to be inclined, and the object Wc is moved and measured. As a result, the height of the unevenness of each part can be measured in the same manner as described above. In the figure, only one set of camera and floodlight is shown.
By providing a plurality of sets, it is possible to measure many surfaces at the same time. Also, if the measurement in the X-axis direction is completed in the figure, Y
By performing the measurement in the axial direction, the unevenness on the entire surface can be measured. In this case, the light projecting axis of the projector 2 is at right angles to the horizontal plane, and the cameras are arranged in four diagonal directions at ± equal distances on the front, rear, left, and right, that is, on the X axis and the Y axis with respect to this optical axis, and images are taken. In this case, there is no blind spot in the measurement, which is convenient.

【0027】次に図9は帯状物体の厚みの測定要領を示
す。この場合には測定対象物Wdを挟んで上下に測定装
置1、1を配置する。2a、2bは投光器、3a、3b
はカメラを示す。この場合の上下のカメラは上記対象物
Wdに対し、直角に配置することが好ましい。この測定
方法によるときは、対象物Wdの送り出しが上下に蛇行
しても上下の測定値のプラス値とマイナス値とを相殺す
ることにより正確に連続して測定することができる。従
って対象物が波板の場合ても、確実にその肉圧を測定す
ることがてきる。なお、対象物の幅が広いときは測定装
置を複数組設ければよい。この場合、対象物の位置変
動、凹凸、振動等も同時に測定することが可能である。
Next, FIG. 9 shows a procedure for measuring the thickness of the belt-like object. In this case, the measuring devices 1 and 1 are arranged above and below the object Wd to be measured. 2a and 2b are projectors, 3a and 3b
Indicates a camera. In this case, the upper and lower cameras are preferably arranged at right angles to the object Wd. According to this measuring method, even if the sending out of the object Wd meanders up and down, it is possible to perform accurate and continuous measurement by canceling the plus and minus values of the upper and lower measured values. Therefore, even when the object is a corrugated plate, it is possible to reliably measure the meat pressure. When the width of the object is wide, a plurality of sets of measuring devices may be provided. In this case, it is possible to measure the position variation, unevenness, vibration, etc. of the object at the same time.

【0028】次に図10はPDSカメラに光源を組み込
んだ測定装置1bを示す。BSはハーフミラー、Fはフ
イルタ、Sは撮像面、Lはレンズ、LPは光源である。
図例は、測定対象物Weとして例えばミラーであり、そ
の取付けの垂直度を測定する例を示す。この測定装置に
よるときは、ミラーWeが垂直状に設定されているとき
は、ミラーWeから反射された光の撮像面における光点
の重心は撮像面Sの中心に位置するも、ミラーが傾いて
いるときは、反射光は撮像面Sの中心から移動する。従
ってその移動量から傾斜角度を計測することができる。
Next, FIG. 10 shows a measuring device 1b in which a light source is incorporated in a PDS camera. BS is a half mirror, F is a filter, S is an image pickup surface, L is a lens, and LP is a light source.
The illustrated example shows an example in which the measurement target We is a mirror and the verticality of its attachment is measured. According to this measuring device, when the mirror We is set to be vertical, the center of gravity of the light spot on the image pickup surface of the light reflected from the mirror We is located at the center of the image pickup surface S, but the mirror tilts. When it is present, the reflected light moves from the center of the image pickup surface S. Therefore, the tilt angle can be measured from the movement amount.

【0029】次に図11は、本発明により一般のカメラ
のレンズ群LRの良否を測定する測定装置に本発明の装
置を適用したもので、このレンズ測定装置1bは1個の
投光器2と2個のカメラ3f、3gとからなる。レンズ
群LRは、ハーフミラーBSとレンズL1、L2、L3
との組合せよりなる。このレンズ郡LRに対し、フイル
ム設置位置と、上部の画像覗き窓とにそれぞれPSDカ
メラ3f、3gを対設し、レンズ群LRの前方に投光器
2を配置し両カメラ3f、3gの撮像面の光点重心の位
置ずれを測定し、若し位置ずれを生ずるときは、レンズ
L1、L2、L3を調整するようにするものである。
Next, FIG. 11 shows an application of the device of the present invention to a measuring device for measuring the quality of the lens group LR of a general camera according to the present invention. This lens measuring device 1b includes one projector 2 and one projector 2. It consists of individual cameras 3f and 3g. The lens group LR includes a half mirror BS and lenses L1, L2, L3.
Combining with and. With respect to this lens group LR, PSD cameras 3f and 3g are respectively installed at a film installation position and an image viewing window on the upper side, and a projector 2 is arranged in front of the lens group LR so that the image pickup surfaces of both cameras 3f and 3g. The positional deviation of the center of gravity of the light spot is measured, and when the positional deviation occurs, the lenses L1, L2 and L3 are adjusted.

【0030】次に図12は回転体の振れの測定要領を示
す。回転円盤Weとして自動車のホイールの振れを本発
明の測定装置1により測定する例を示すもので、投光器
2からの光をホイールWeに当て、ホイールWeの振れ
に基づくホイールWeからの反射光を撮像し、カメラ3
における撮像面上の光点重心位置の振れを前記要領で測
定するようにしたものである。これは自動車に限らず回
転軸に付けられた円盤の軸に対する垂直性の測定の全て
に適応する。
Next, FIG. 12 shows the procedure for measuring the shake of the rotating body. An example of measuring the shake of a wheel of an automobile as the rotating disk We by the measuring device 1 of the present invention is shown. Light from the projector 2 is applied to the wheel We and the reflected light from the wheel We based on the shake of the wheel We is imaged. And camera 3
The shake of the position of the center of gravity of the light spot on the image pickup surface is measured in the above manner. This applies not only to automobiles, but to all measurements of perpendicularity to the axis of a disk attached to the axis of rotation.

【0031】次に図13は、前記各実施例とは異なり、
振れを測定すべき対象物例えば建造物に投光器2aを取
付け、その振れを測定するようにした例を示す。即ち本
実施例の測定装置1dは、対象物としての橋梁Wfに取
付けた投光器2aとこれより離間して設けられるカメラ
3とからなる。投光器2aから発しられる投光をカメラ
3の撮像面において光点の重心を求め、投光器2の振れ
を橋梁Wfの振れ(振動と共に捩じれ等を含む)として
測定するようにしたものである。この場合の投光器2a
は前記各説明の対象物における投射光点と考えればよ
く、その作用は前記各例と同様であり、説明を省略す
る。更に投光器のかわりにミラー等反射体を取り付け、
他から投光してその反射光を測定してもよい。なお移動
物体に投光器を取付ける場合は、瞬時に移動速度を測定
することも可能である。(図16)
Next, FIG. 13 is different from each of the above-mentioned embodiments.
An example is shown in which the projector 2a is attached to an object whose shake is to be measured, for example, a building, and the shake is measured. That is, the measuring device 1d of the present embodiment is composed of the projector 2a attached to the bridge Wf as an object and the camera 3 provided apart from this. The light emitted from the light projector 2a is obtained by determining the center of gravity of the light spot on the image pickup surface of the camera 3, and the shake of the light projector 2 is measured as the shake of the bridge Wf (including twist and the like together with vibration). Projector 2a in this case
Can be considered as a projection light point on the object described above, and the action thereof is the same as in each of the examples described above, and a description thereof will be omitted. Furthermore, instead of a floodlight, attach a reflector such as a mirror,
You may project from another and measure the reflected light. When a light projector is attached to a moving object, it is possible to measure the moving speed instantly. (Figure 16)

【0032】次に図14は測定対象物自体が発光体(又
は発光部)てあり、その発光部の位置の良否を測定する
例を示す。即ち本測定装置1eは、カメラ3と共に対象
物Wgの発光部LSとからなる。図例は対象物としてエ
ンジンプラグを示し、そのスパーク発生位置を測定する
ようにしたもので、その測定要領は前記図13と同一で
あり、説明を省略する。
Next, FIG. 14 shows an example in which the measuring object itself is a light emitting body (or a light emitting portion), and the quality of the position of the light emitting portion is measured. That is, the measurement device 1e includes the camera 3 and the light emitting unit LS of the object Wg. In the illustrated example, an engine plug is shown as an object, and the spark generation position thereof is measured. The measuring procedure is the same as that in FIG. 13, and the description thereof will be omitted.

【0033】次に図15は測定対象が軸(又は棒)であ
り、その一端に回転荷重がかかった場合の軸の“ねじ
れ”の測定要領を示す。軸線上にAB2ケの測点を設
け、2ケの測定装置で同時に光点重心位置を測定し、そ
の“ずれ”からねじれを計算するもので軸の強度が既知
の場合は負荷荷重も算出出来る。
Next, FIG. 15 shows a measuring procedure of the "twist" of the shaft when the object to be measured is the shaft (or the rod) and a rotational load is applied to one end thereof. Two measuring points AB are set on the axis, the center of gravity of the light spot is measured simultaneously by two measuring devices, and the twist is calculated from the "deviation". If the strength of the shaft is known, the load can also be calculated. .

【0034】[0034]

【発明の効果】以上の如く本発明は、投光器とカメラと
を備え、投光器からの投光により対象物を照射し、これ
をカメラにより撮像し、撮像面における撮像光点の重心
を求め、予め撮像面に設定した重心の基準位置と移動位
置との移動距離から測定対象物の表面状態を測定するよ
うにしたから、対象物に対し非接触式でその凹凸、傾
斜、厚み、位置等の静的状態の測定のみでなく、振動数
及びその振幅並びに回転数等の動的状態に対しても効果
的に測定することが出来、しかも測定は迅速且つ正確に
行うことができる。
As described above, the present invention is provided with a light projector and a camera, illuminates an object by light projection from the light projector, images the object with the camera, obtains the center of gravity of the imaging light point on the imaging surface, and previously Since the surface condition of the measuring object is measured from the moving distance between the reference position and the moving position of the center of gravity set on the image pickup surface, the unevenness, inclination, thickness, position, etc. of the object can be measured in a non-contact manner with respect to the object. It is possible to effectively measure not only the dynamic state but also the dynamic state such as the vibration frequency, its amplitude, and the rotation speed, and the measurement can be performed quickly and accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を適用する測定装置による第1の測
定要領の説明図である
FIG. 1 is an explanatory diagram of a first measuring procedure by a measuring apparatus to which the method of the present invention is applied.

【図2】図1における計算要領説明図である。FIG. 2 is an explanatory diagram of a calculation procedure in FIG.

【図3】上記測定装置による第2の測定要領説明図であ
る。
FIG. 3 is an explanatory diagram of a second measurement procedure by the measurement device.

【図4】図3における計算要領説明図である。FIG. 4 is an explanatory diagram of a calculation procedure in FIG.

【図5】撮像面における光点重心の求め方説明図であ
る。
FIG. 5 is an explanatory diagram of how to obtain a center of gravity of a light spot on an imaging surface.

【図6】複数のカメラを備えた測定装置による第3の測
定要領説明図である。
FIG. 6 is an explanatory diagram of a third measuring procedure by the measuring device including a plurality of cameras.

【図7】本発明の測定装置による回転体の振動測定要領
説明図である。
FIG. 7 is an explanatory diagram of a vibration measurement procedure of a rotating body by the measuring device of the present invention.

【図8】本発明の測定装置による対象物の表面状態測定
要領説明図である。
FIG. 8 is an explanatory diagram of a method for measuring the surface state of an object by the measuring device of the present invention.

【図9】本発明の測定装置による板状部材の厚さ測定要
領説明図である。
FIG. 9 is an explanatory view of the procedure for measuring the thickness of the plate-shaped member by the measuring device of the present invention.

【図10】本発明の測定装置によるミラーの取付け状態
の検査要領説明図である。
FIG. 10 is an explanatory diagram of an inspection procedure of a mounting state of a mirror by the measuring device of the present invention.

【図11】本発明の測定装置によるレンズ群の光軸測定
要領説明図である。
FIG. 11 is an explanatory diagram of an optical axis measurement procedure of a lens group by the measuring device of the present invention.

【図12】本発明の測定装置による回転板の振れの測定
要領説明図である。
FIG. 12 is an explanatory view of a procedure for measuring the shake of the rotating plate by the measuring device of the present invention.

【図13】本発明の測定装置による構造物の振れの測定
要領説明図である。
FIG. 13 is an explanatory view of a procedure for measuring shake of a structure by the measuring apparatus of the present invention.

【図14】本発明の測定装置による発光部の位置ずれ測
定要領説明図である。
FIG. 14 is an explanatory view of the procedure for measuring the positional deviation of the light emitting unit by the measuring device of the present invention.

【図15】本発明の測定装置による回転体又は構造物の
ねじれ又は負荷荷重の測定要領説明図である。
FIG. 15 is a diagram for explaining the procedure for measuring the twist or the applied load of the rotating body or the structure by the measuring device of the present invention.

【図16】本発明の測定位置による移動物体の速度測定
要領説明図である。
FIG. 16 is a diagram for explaining the speed measurement procedure of a moving object according to the measurement position of the present invention.

【符号の説明】[Explanation of symbols]

1 測定装置 1a 測定装置 1b 測定装置 1c 測定装置 1d 測定装置 1e 測定装置 2 投光器 3 カメラ G 光点重心基準位置 S 撮像面 W 基準対象物 Wa 測定対象物 1 Measuring Device 1a Measuring Device 1b Measuring Device 1c Measuring Device 1d Measuring Device 1e Measuring Device 2 Projector 3 Camera G Light Point Center of Gravity Reference Position S Imaging Surface W Reference Target Wa Measurement Target

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 投光器により測定対象物を照射しこれを
カメラで撮影し、撮像光点の重心を求め、予め撮像面に
設定した基準位置と重心との離間距離から測定対象物の
凹凸、傾斜、厚み、位置(定位置からの距離)等の測定
対象物の静的状態、及び振動(振幅及び周波数)回転等
の測定対象物の動的状態を測定することを特徴とする遠
隔物体の光学的測定方法。
1. An object to be measured is illuminated by a light projector, and this is photographed by a camera to obtain the center of gravity of an imaged light spot, and the unevenness and inclination of the object to be measured are determined from the distance between the reference position and the center of gravity set in advance on the imaging surface. Optics of remote objects characterized by measuring the static state of the measuring object such as thickness, thickness and position (distance from a fixed position) and the dynamic state of the measuring object such as vibration (amplitude and frequency) rotation. Measurement method.
【請求項2】 測定対象面に対して斜め方向から光線を
照射し、該面に対し略々直角方向から撮像することを特
徴とする請求項1記載の遠隔物体の光学的測定方法。
2. The optical measuring method for a remote object according to claim 1, wherein the surface to be measured is irradiated with a light beam from an oblique direction and the image is picked up from a direction substantially perpendicular to the surface.
【請求項3】 測定対象面に対して略々直角方向から光
線を照射して、照射光線を中心としてXY軸上に±等距
離に2以上箇所の斜め方向から撮像することを特徴とす
る請求項1記載の遠隔物体の光学的測定方法。
3. A light beam is radiated from a direction substantially perpendicular to a surface to be measured, and images are taken from two or more diagonal positions at ± equal distances on the XY axis with the light beam as a center. Item 2. The optical measurement method for a remote object according to Item 1.
【請求項4】 光源は1点を中心として前後左右対象型
のレーザ光線を使用したことを特徴とする請求項1記載
の遠隔物体の光学的測定方法。
4. The optical measuring method for a remote object according to claim 1, wherein the light source uses a front-back and left-right symmetrical laser beam centering on one point.
【請求項5】振動数測定は変動する対象物表面の(定位
置における)高さ変動に基づく撮像面の撮像光点重心の
位置変動の周期性の測定値から算出することを特徴とす
る請求項1記載の遠隔物体の光学的測定方法。
5. The frequency measurement is calculated from a measured value of the periodicity of the position variation of the center of gravity of the imaged light point of the image pickup surface based on the height variation (at a fixed position) of the fluctuating object surface. Item 2. The optical measurement method for a remote object according to Item 1.
【請求項6】 測定対象物には発光体を備え、これをカ
メラで撮影し、撮像面における光点重心位置を求め、予
め撮像面に設定した基準位置と重心の離間距離から測定
対象物の振動、回転延び等の位置変動及び速度を測定す
ることを特徴とする遠隔物体の光学的測定方法。
6. An object to be measured is provided with a light-emitting body, which is photographed by a camera to obtain the position of the center of gravity of the light spot on the image pickup surface, and the object to be measured is calculated from the distance between the reference position and the center of gravity set in advance on the image pickup surface. An optical measuring method for a remote object, which is characterized by measuring a position variation such as vibration, rotational extension and the like and a velocity.
【請求項7】 カメラには撮像面の光量変化を電気量変
化に変換する手段を有し、変換電気量のX軸及びY軸に
於ける最大値を示す位置を計測し、重心点を求めること
を特徴とする請求項1又は6記載の遠隔物体の光学的測
定方法。
7. The camera has means for converting a change in light quantity on the imaging surface into a change in electric quantity, and the position showing the maximum value of the converted electric quantity on the X-axis and the Y-axis is measured to obtain a center of gravity. The optical measuring method for a remote object according to claim 1 or 6, characterized in that:
【請求項8】 測定対象物を挟んで両側からの対象物ま
での距離の変動に対して、両側の撮像光点重心の位置変
動を同時に測定することから(計算して)(挟まれた)
対象物の厚みを測定することを特徴とする遠隔物体の光
学的測定方法。
8. The position variation of the center of gravity of the imaging light points on both sides is simultaneously measured with respect to the variation of the distance from the both sides of the measurement object to the subject (calculated) (sandwiched).
An optical measuring method for a remote object, which comprises measuring the thickness of an object.
【請求項9】 測定対象物の軸線上の2定発光点の撮像
光点重心の位置ずれから軸の“ねじれ”又は伝達動力
(負荷荷重)を測定することを特徴とする遠隔物体の光
学的測定方法。
9. An optical system for a remote object, characterized in that the axial "twist" or transmitted power (load) is measured from the displacement of the center of gravity of the imaged light points of two constant emission points on the axis of the object to be measured. Measuring method.
JP4800392A 1992-02-04 1992-02-04 Optical measuring method of remote object Pending JPH0618223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4800392A JPH0618223A (en) 1992-02-04 1992-02-04 Optical measuring method of remote object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4800392A JPH0618223A (en) 1992-02-04 1992-02-04 Optical measuring method of remote object

Publications (1)

Publication Number Publication Date
JPH0618223A true JPH0618223A (en) 1994-01-25

Family

ID=12791136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4800392A Pending JPH0618223A (en) 1992-02-04 1992-02-04 Optical measuring method of remote object

Country Status (1)

Country Link
JP (1) JPH0618223A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0868805A (en) * 1994-08-30 1996-03-12 Murata Mfg Co Ltd Ion beam machining apparatus
KR100437259B1 (en) * 2002-01-19 2004-06-23 한국표준과학연구원 A Vibration Measuring Device Of A Large Structure And Measuring Method Thereof
JP2006010693A (en) * 2004-06-22 2006-01-12 Polytec Gmbh Apparatus for optically measuring object, and method for measuring using the same
JP2011053157A (en) * 2009-09-03 2011-03-17 Saga Univ Strain measuring method, strain measuring device, and program
JP2011075478A (en) * 2009-10-01 2011-04-14 Kobe Steel Ltd Accumulator belt-like body vibration measuring device
JP2013016055A (en) * 2011-07-05 2013-01-24 Japan Atomic Energy Agency Facility demolition support method and device
WO2020157973A1 (en) * 2019-02-01 2020-08-06 日本電気株式会社 Image processing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0868805A (en) * 1994-08-30 1996-03-12 Murata Mfg Co Ltd Ion beam machining apparatus
KR100437259B1 (en) * 2002-01-19 2004-06-23 한국표준과학연구원 A Vibration Measuring Device Of A Large Structure And Measuring Method Thereof
JP2006010693A (en) * 2004-06-22 2006-01-12 Polytec Gmbh Apparatus for optically measuring object, and method for measuring using the same
JP2011053157A (en) * 2009-09-03 2011-03-17 Saga Univ Strain measuring method, strain measuring device, and program
JP2011075478A (en) * 2009-10-01 2011-04-14 Kobe Steel Ltd Accumulator belt-like body vibration measuring device
JP2013016055A (en) * 2011-07-05 2013-01-24 Japan Atomic Energy Agency Facility demolition support method and device
WO2020157973A1 (en) * 2019-02-01 2020-08-06 日本電気株式会社 Image processing device
JPWO2020157973A1 (en) * 2019-02-01 2021-11-25 日本電気株式会社 Image processing device

Similar Documents

Publication Publication Date Title
US5309222A (en) Surface undulation inspection apparatus
US6862097B2 (en) Three-dimensional shape measuring method, and three-dimensional shape measuring apparatus
US5694214A (en) Surface inspection method and apparatus
JP2963890B2 (en) Wafer optical shape measuring instrument
JP2006514739A5 (en)
JP2006514739A (en) Dental laser digitizer system
JP4706356B2 (en) Screw shape measuring device
JP2000230807A (en) Method for distance measurement using parallel light and its instrument
JPH0618223A (en) Optical measuring method of remote object
KR20010113515A (en) Device for detecting tilt angle of optical axis and image measuring apparatus equipped therewith
JP3340296B2 (en) Distortion inspection method and distortion inspection device
JP2002257511A (en) Three dimensional measuring device
JP2883236B2 (en) Three-dimensional shape measurement device for structures around railway tracks
JP2524816Y2 (en) Inner diameter measurement sensor
JP3065367B2 (en) Shape measurement device for structures around railway tracks
JP2737271B2 (en) Surface three-dimensional shape measuring method and device
JPH0843044A (en) Measuring apparatus for three dimensional coordinate
JPS6217606A (en) Underwater measuring device
JP3575576B2 (en) Surface condition inspection apparatus and inspection method
JPH0613461Y2 (en) Light distribution measuring device
JP4188558B2 (en) Laser scanning method and system
JPS62170809A (en) Measuring instrument for road surface
JP3027674B2 (en) Laser emission angle detection method
JPH11337335A (en) Position measuring system for structure under construction
JPH06103166B2 (en) Actual size measurement method in visual device