JPH06103166B2 - Actual size measurement method in visual device - Google Patents
Actual size measurement method in visual deviceInfo
- Publication number
- JPH06103166B2 JPH06103166B2 JP6819688A JP6819688A JPH06103166B2 JP H06103166 B2 JPH06103166 B2 JP H06103166B2 JP 6819688 A JP6819688 A JP 6819688A JP 6819688 A JP6819688 A JP 6819688A JP H06103166 B2 JPH06103166 B2 JP H06103166B2
- Authority
- JP
- Japan
- Prior art keywords
- image
- optical axis
- subject
- visual device
- projector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、被写体上のモニタ対象物をモニタする視覚点
検装置における実寸法算出方法に関する。The present invention relates to a method for calculating actual dimensions in a visual inspection device that monitors a monitored object on a subject.
従来は第6図に示す様にテレビカメラ(1)を用いる視覚
点検装置において、被写体(3)上のサビ、キズ等のモニ
タ対象物(14)の実寸法を求めるには、物差し等の長さ既
知の物体(15)をモニタ対象物(14)と同時に撮像し、モニ
タ上での長さ既知の物体の像(17)とモニタ対象物の像(1
6)との大きさを比較することにより行うか、あるいはテ
レビカメラのレンズの焦点距離が既知の場合には、テレ
ビカメラ1からモニタ対象物3までの距離を超音波測距
器等により計ることによりレンズの視野角とその計測し
た距離とにより、モニタ画面に写る視野が計算されるた
め、モニタ画面上でのモニタ対象物の像が占める割合に
より、同モニタ対象物の実寸法を換算算出している。Conventionally, as shown in FIG. 6, in a visual inspection device using a TV camera (1), the length of a ruler or the like can be used to obtain the actual size of the monitored object (14) such as rust and scratches on the subject (3). A known object (15) is imaged at the same time as the monitored object (14), and an image of the object of known length (17) and an image of the monitored object (1
6) or by measuring the distance from the TV camera 1 to the monitored object 3 with an ultrasonic range finder, etc. if the focal length of the TV camera lens is known. The field of view on the monitor screen is calculated from the lens viewing angle and the measured distance, so the actual size of the monitor object is converted and calculated according to the ratio of the image of the monitor object on the monitor screen. ing.
上記従来の方法は次のような問題点があった。 The above conventional method has the following problems.
(1)光学系の歪み(撮像レンズ、撮像管、ブラウン管の
歪み)の影響を受けるため、特に画面の周辺部において
は換算誤差が大きくなる。(1) Since it is affected by the distortion of the optical system (distortion of the image pickup lens, the image pickup tube, and the cathode ray tube), the conversion error becomes large especially in the peripheral portion of the screen.
(2)被写体がテレビカメラに対し傾斜している場合に
は、モニタ画面上では、その傾斜角分縮んで写るため、
本来の寸法がわからない。(2) If the subject is tilted with respect to the TV camera, the tilt angle will be reduced on the monitor screen.
I do not know the original dimensions.
(3)距離計測による方法では、距離の測定精度、レンズ
の視野角の精度に寸法換算精度が依存するが、テレビカ
メラのレンズにズームレンズを使用する場合、そのズー
ム比率がわからない場合には、換算不能であり、またズ
ーム比率が計測できたとしても、その精度は良くないた
め寸法換算精度は落ちる。(3) In the method based on the distance measurement, the dimension conversion accuracy depends on the distance measurement accuracy and the viewing angle accuracy of the lens, but when using a zoom lens for the lens of the TV camera, if the zoom ratio is unknown, Even if the conversion is impossible and the zoom ratio can be measured, the accuracy is not good and the dimensional conversion accuracy is reduced.
(4)距離計測による方法では、テレビカメラと被写体と
の距離及びレンズのズーム比率が時々刻々と変化する場
合(移動式の点検装置ではこの場合が多い)、点検後VT
Rの画像から寸法換算する場合に、その距離のデータ及
びズーム比率に関するデータが画像上に何もないため寸
法換算不能である。(4) With the method based on distance measurement, if the distance between the TV camera and the subject and the zoom ratio of the lens change momentarily (this is often the case with mobile inspection devices), the VT after inspection
When the size is converted from the R image, the size data cannot be converted because there is no data on the distance and data on the zoom ratio on the image.
(5)長さ既知の物体を撮像できない場合(実際の点検装
置ではこの場合が多い)、実寸の換算が行えない。(5) If an object of known length cannot be imaged (this is often the case with actual inspection equipment), the actual size cannot be converted.
本発明は上記問題点を解決するため、視覚装置の光軸と
平行でかつ所定の間隔を有する光軸を具えた投光器でビ
ームを投光し、その投光点および被写体を上記視覚装置
で同時に撮像するとともに、上記視覚装置の光軸に直交
する平面上に、同光軸との交点を原点として描かれ、か
つ上記視覚装置と同一または同一特性の視覚装置により
予め撮像された座標線図の像を上記投光点および被写体
の像に重畳し、上記座標線図の像における上記投光点お
よび被写体の像の相互関係から同被写体の寸法を求める
視覚装置における実寸法計測方法を提案するものであ
る。In order to solve the above-mentioned problems, the present invention projects a beam with a projector having an optical axis that is parallel to the optical axis of the visual device and has a predetermined interval, and the projection point and the subject are simultaneously displayed by the visual device. Along with capturing an image, on a plane orthogonal to the optical axis of the visual device, an intersection point with the optical axis is drawn as an origin, and a coordinate diagram previously imaged by the visual device having the same or the same characteristics as the visual device To propose an actual size measuring method in a visual device in which an image is superimposed on the image of the light projecting point and the object and the size of the object is obtained from the mutual relationship between the image of the light projecting point and the image of the object in the image of the coordinate diagram. Is.
上記手段により撮像された投光点像およびモニタ対象物
の像はテレビカメラと被写体との距離又はレンズのズー
ム比が変化するにつれ変るが、投光ビームは同カメラの
光学系の光軸からの実距離及び大きさは一定(既知)で
ある。従ってこれらを前記座標線図の尺度で読みとるこ
とにより、換算率が求まり、下記の(1)式又は(2)式の換
算率を掛ければ、光学歪み補正がなされた実寸法が換算
算出される。The projection point image and the image of the monitor target imaged by the above means change as the distance between the television camera and the subject or the zoom ratio of the lens changes, but the projection beam is emitted from the optical axis of the optical system of the camera. The actual distance and size are constant (known). Therefore, by reading these on the scale of the coordinate diagram, the conversion rate is obtained, and by multiplying by the conversion rate of the following formula (1) or (2), the actual dimensions corrected for optical distortion are converted and calculated. .
R/NR(投光ビームが平行でない場合) ……(1) D/ND(投光ビームが平行な場合) ……(2) ここでR:前記光学系と投光器の光軸間距離 D:投光器の平行ビームの径 NR:投光点像の座標原点からの距離 ND:投光点像の径 又、モニタ対象物が前記光軸に対して傾斜している場合
は、投光点像の短径(NS)、長径(Nl)、短径方向
の角度(α)、及び投光点像の座標原点からの距離(N
R)を計り、前記と同様(1)式又は(3)式の換算率が求ま
る。R / N R (when the projected beam is not parallel) …… (1) D / N D (when the projected beam is parallel) …… (2) where R: Distance between the optical axis of the optical system and the projector D: diameter N R parallel beam projector: distance N D from the coordinate origin of the projected light spot image: diameter of the projected light spot image also if the monitored object is inclined with respect to the optical axis, projection minor diameter of the light spot image (N S), the major axis (N l), the angle of the minor axis (alpha), and the distance from the coordinate origin of the projected light spot image (N
R ) is measured and the conversion rate of the equation (1) or the equation (3) is obtained in the same manner as described above.
R/NS(投光ビームが平行な場合) ……(3) 一方、モニタ対象物の傾斜角θに応じてモニタ対象物の
像は変化している。又その変化率は表示スクリーン上の
方向によって変るので、(4)式の関係式で示される予め
求められた方向補正係数Kψを更に掛けて実寸法が換算
算出される。R / N S (when the projected beams are parallel) (3) On the other hand, the image of the monitored object changes according to the tilt angle θ of the monitored object. Since the rate of change varies depending on the direction on the display screen, the actual dimension is converted and calculated by further multiplying the direction correction coefficient Kψ obtained in advance by the relational expression (4).
Kψ=Fθψ(Nl/NS、α) ……(4) このようにして光学系による歪補正はもとより、ズーム
比が変ったり、相対移動するモニタ対象物に対しても、
モニタを効果的に行うことが可能となる。Kψ = F θψ (N 1 / N S , α) (4) In this way, not only the distortion correction by the optical system but also the monitor target that changes the zoom ratio or moves relatively,
It becomes possible to monitor effectively.
本発明の一実施例を第1図ないし第5図により説明す
る。An embodiment of the present invention will be described with reference to FIGS.
第1図にて、投光器2はその光軸mがテレビカメラ1の
光軸lと距離Rだけ離れて常に配設されて視覚装置が構
成される。或る距離離れた位置に光軸lと直行した平面
3を配する。この平面3上に第2図(a)にその一部を示
すような、上記光軸lとの交点を原点5とする直交座標
の格子線が画かれる。In FIG. 1, the light projector 2 is always arranged such that its optical axis m is away from the optical axis 1 of the television camera 1 by a distance R to form a visual device. A plane 3 orthogonal to the optical axis 1 is arranged at a position separated by a certain distance. On this plane 3, a grid line of orthogonal coordinates having an origin 5 at the intersection with the optical axis 1 is drawn, a part of which is shown in FIG. 2 (a).
(1)この直交座標線図を本モニター用のテレビカメラ1
又はそれと同一特性のテレビカメラで撮像すると表示ス
クリーン4(第1図(b))上に、第2図(b)にその一部を
誇張して示したような座標線図が得られる。像の歪みは
テレビカメラ1の光学系の歪み(撮像レンズ、撮像管、
ブラウン管の歪みが大きい)によるものである。この座
標線図像を第3図(a)に示すように透明なスクリーン12
上に消えないように転写して後、前記表示スクリーン4
上に同座標線図像と一致するようにセットする。この転
写された座標線図像が以後の計測の規準尺度となる。(1) This Cartesian coordinate diagram is the TV camera 1 for this monitor
Alternatively, when the image is picked up by a television camera having the same characteristic as that, a coordinate diagram as shown in an exaggerated part in FIG. 2 (b) is obtained on the display screen 4 (FIG. 1 (b)). Image distortion is distortion of the optical system of the TV camera 1 (imaging lens, image pickup tube,
The distortion of the cathode ray tube is large). As shown in Fig. 3 (a), this coordinate image is displayed on a transparent screen 12
After transferring so as not to disappear on the display screen 4,
Set it so that it matches the same coordinate diagram. This transferred coordinate diagram serves as a reference scale for the subsequent measurement.
(2)第1図にて、前記平面3がモニタ用の被写体で、そ
の1部がモニタ対象物14とする。投光器2より広がり角
βの小さい又は広がり角β=0で口径Dを有するビーム
を投光して、テレビカメラ1で撮像すると、同図(b)に
符号6′で示すような像が上記表示スクリーン4上にえ
られ、これが第3図(b)に示すように透明スクリーン12
を介して見られる。以後この像を表示スクリーン4上の
像と略記する。(2) In FIG. 1, it is assumed that the plane 3 is a monitor subject, and a part thereof is a monitor target 14. When a beam having a divergence angle β smaller than that of the projector 2 or a divergence angle β = 0 and having a diameter D is projected and imaged by the television camera 1, an image as indicated by reference numeral 6 ′ in FIG. It is placed on the screen 4, which is a transparent screen 12 as shown in Fig. 3 (b).
Seen through. Hereinafter, this image is abbreviated as an image on the display screen 4.
(3)第1図及び第3図にて同表示スクリーン4上のモニ
タ対象物14の像14′の横寸法を前記座標線図の目盛すな
わち前記規準尺目盛で読むとXSが得られる。又、投光
点像6′の原点5からの横位置を読むとNRがえられ
る。従ってモニタ対象物の像XSに対応する実寸法X
は、距離Rが既知の実寸法であるから換算率は(1)式で
求まる。よって実寸法は(5)式で与えられる。(3) X S is obtained by reading a scale i.e. the reference scale graduation lateral dimensions of the coordinate diagram of the image 14 'of FIG. 1 and 3 the display screen 4 on the monitored object at 14. Further, N R will be obtained by reading the horizontal position from the origin 5 projecting point image 6 '. Therefore, the actual dimension X corresponding to the image X S of the monitored object is
Since the distance R is a known actual dimension, the conversion rate can be calculated by the equation (1). Therefore, the actual size is given by equation (5).
X=XS・R/NR ……(5) 又、ビームの径Dを有する平行ビームの投光器2を用い
る場合は、上記と同様にして投光点像の径をNDとすれ
ば、(6)式で与えられる。X = X S · R / N R (5) Further, when the parallel beam projector 2 having the beam diameter D is used, if the diameter of the projected point image is N D in the same manner as above, It is given by equation (6).
X=XS・D/ND ……(6) (4)また例えば、第4図(a)に示すように被写体面3がテ
レビカメラ1の光軸lに対して傾斜角θで傾斜している
場合は、表示スクリーン4上に得られる像は、同図(b)
に示すようになる。すなわち、モニタ対象物14aは、1
4′aに、投光点6aは6′aに写され、投光点像6′a
は楕円形となる。よって投光点像6′aの短形NSと長
径Nl、及び短径方向のX軸とのなす角α(図示例では
90゜)が求まる。X = X S · D / N D (6) (4) Further, for example, as shown in FIG. 4 (a), the subject plane 3 is inclined at an inclination angle θ with respect to the optical axis 1 of the television camera 1. Image, the image obtained on the display screen 4 is
As shown in. That is, the monitored object 14a is 1
The projection point 6a is imaged at 4'a and the projection point image 6'a is projected at 6'a.
Becomes oval. Therefore, the angle α (in the example shown in the figure) formed by the short shape N S of the projection point image 6 ′ a and the long diameter N l and the X axis in the short diameter direction.
90 °) can be obtained.
さらに、モニタ対象物の像14a′の寸法、例えば横寸法
XSが求まるので、その実寸法は前(3)項と同様に(1)式
より次の(7)式で与えられる。Furthermore, the dimensions of the image 14a 'of the monitoring target object, for example, since the transverse dimension X S is determined, the actual size is given in the previous (3) similar to the term (1) the following equation (7) from the equation.
X′=XS・R/NR ……(7) 又、平行ビームの投光器2を用いる場合は(2)式より次
の(8)式で与えられる。X ′ = X S · R / N R (7) Further, when the parallel beam projector 2 is used, it is given by the following equation (8) from the equation (2).
X′=XS・D/NS ……(8) 上記で得られた実寸法は計測寸法の方向角ψ(X軸に対
する)に応じてモニタ対象物14aの寸法X(この場合、
ψ=0゜)より短縮又は膨張している。従って、予め上
記傾斜角θを変えて、上記、Nl/NSとαを読みとり、
モニタ像14′aのX軸からの角度ψ方向の補正係数、す
なわち(4)式のKψを求めておけば、容易にψ方向の補
正された実寸法Xが(9)式で与えられる。X ′ = X S · D / N S (8) The actual size obtained above is the size X (in this case, the size X) of the monitored object 14a according to the direction angle ψ (with respect to the X axis) of the measured size.
ψ = 0 °) shorter or expanded. Therefore, the inclination angle θ is changed in advance, the above N 1 / N S and α are read,
If the correction coefficient in the direction of the angle ψ from the X axis of the monitor image 14′a, that is, Kψ in the equation (4) is obtained, the corrected actual dimension X in the ψ direction can be easily given by the equation (9).
X=X′・Kψ =X′・Fθψ(Nl/NS、α) ……(9) このようにして、被写体3とテレビカメラ1との距離が
時々刻々変化する場合、あるいはレンズのズーム比が変
る場合においても、投光器2の光軸mとテレビカメラの
光軸lとの距離R又は同投光器2のビーム平行式の場合
はビームの口径も既知で一定であるため以上の方法によ
り光学系の歪みの影響を受けずにモニタ対象物の実寸法
を容易に求めることができる。X = X ′ · Kψ = X ′ · F θψ (N 1 / N S , α) (9) In this way, when the distance between the subject 3 and the television camera 1 changes momentarily, or the lens Even when the zoom ratio changes, the distance R between the optical axis m of the projector 2 and the optical axis 1 of the television camera or the beam parallel type of the projector 2 has a known and constant beam diameter. The actual size of the monitored object can be easily obtained without being affected by the distortion of the optical system.
上記の方法は、投光ビームが表示スクリーン4上で明瞭
に判定できることを前提としている(特にビームの外径
Dを規準として換算算出する方法では重要である)。第
5図(a)に投光器(2)の構成例として、アパーチャ(9)に
より、光ビームの辺縁を明瞭化する方法を示す。レーザ
ー光発振器等の光源(7)とレンズ系(8)、(8′)と同レン
ズ間に配されたアパーチャ(9)とにより構成され、レン
ズ系(8)、(8′)により、レーザー光を所定の径に拡大
し、かつ平行光とする。アパーチャ(9)は出射光の強度
分布が第5図(b)の実線で示す様にパターンの辺縁部で
の強度の立ち上がりを良くするためのものである(第5
図(b)の破線はアパーチャ(9)がない場合の強度分布を示
している)。これにより、表示スクリーン4上における
投光点像の寸法の計測を容易化かつ高精度化できる。The above method is premised on that the projected beam can be clearly judged on the display screen 4 (especially important in the method of calculating the conversion by using the outer diameter D of the beam as a standard). FIG. 5 (a) shows, as an example of the structure of the projector (2), a method of clarifying the edge of the light beam by the aperture (9). It consists of a light source (7) such as a laser oscillator, lens systems (8) and (8 '), and an aperture (9) arranged between the lenses. The light is expanded to a predetermined diameter and becomes parallel light. The aperture (9) is provided so that the intensity distribution of the emitted light improves the rising of the intensity at the edge of the pattern as shown by the solid line in FIG.
The broken line in Figure (b) shows the intensity distribution without the aperture (9)). As a result, the measurement of the size of the projected point image on the display screen 4 can be facilitated and made highly accurate.
なお光源(7)として、光ファイバーを使用して、レーザ
ー光を導いても同様に実現できることは明らかであり、
この場合には投光器(2)の先端部分が小形・軽量化でき
る。It should be noted that it is clear that the same can be achieved by using an optical fiber as the light source (7) and guiding laser light.
In this case, the tip of the projector (2) can be made smaller and lighter.
被写体上に既知寸法の物体がなく、かつ被写体とテレビ
カメラとの距離及び撮像レンズのズーム比が不明であっ
ても、又被写体の傾斜があっても被写体上のモニタ対象
物の実寸法算出が、光学系の歪みの影響を受けずに実施
できる。Even if there is no object of known size on the subject, the distance between the subject and the TV camera and the zoom ratio of the imaging lens are unknown, and the subject is tilted, the actual size of the monitor target on the subject can be calculated. It can be implemented without being affected by the distortion of the optical system.
また点検した画像上に、モニタ対象物の像と共に投光器
のビームの像が撮像されているため、画像をVTRに録画
しておけば、点検終了後においても実寸法が換算算出で
きるメリットがある。Also, since the image of the beam of the projector is captured together with the image of the monitored object on the inspected image, recording the image in the VTR has the advantage that the actual dimensions can be converted and calculated even after the inspection is completed.
第1図は本発明の一実施例の構成図、第2図は光学系歪
の補正方法説明図、第3図は表示スクリーン上における
寸法読取り方法の説明図、第4図は同実施例(被写体が
傾斜している場合)の説明図、第5図は第1図の投光器
の構成例、第6図は従来方法の一実施例の構成図。 図中、 1……テレビカメラ、2……投光器、 3……平面、4……表示スクリーン、 5……原点、6a……投光点、 6′、6′a……投光点像、 7……光源、8、8′……レンズ系、 9……アパーチャ、 12……透明スクリーン 14、14a……モニタ対象物 14′、14′a……モニタ対象物の像 15……既知の物体、15′……既知の物体の像 l……テレビカメラの光軸、 m……投光器の光軸FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is an explanatory view of a method for correcting optical system distortion, FIG. 3 is an explanatory view of a dimension reading method on a display screen, and FIG. 5 is an explanatory view of a case where the subject is tilted), FIG. 5 is a structural example of the projector of FIG. 1, and FIG. 6 is a structural diagram of an embodiment of a conventional method. In the figure, 1 ... TV camera, 2 ... Projector, 3 ... Plane, 4 ... Display screen, 5 ... Origin, 6a ... Projection point, 6 ', 6'a ... Projection point image, 7 ... Light source, 8, 8 '... Lens system, 9 ... Aperture, 12 ... Transparent screen 14, 14a ... Monitor target 14', 14'a ... Monitor target image 15 ... Known Object, 15 '... Image of known object l ... Optical axis of TV camera, m ... Optical axis of projector
───────────────────────────────────────────────────── フロントページの続き (72)発明者 和田 宏一 広島県広島市西区観音新町4丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 真鍋 幸男 広島県広島市西区観音新町4丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 宮地 誠 広島県広島市西区観音新町4丁目6番22号 三菱重工業株式会社広島製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koichi Wada 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries, Ltd. Hiroshima Research Laboratory (72) Inventor Yukio Manabe 4-chome, Kannon Shinmachi, Nishi-ku, Hiroshima Prefecture 6-22 No. 22 Hiroshima Institute of Mitsubishi Heavy Industries, Ltd. (72) Makoto Miyaji 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries Ltd. Hiroshima Works
Claims (1)
有する光軸を具えた投光器でビームを投光し、その投光
点および被写体を上記視覚装置で同時に撮像するととも
に、上記視覚装置の光軸に直交する平面上に、同光軸と
の交点を原点として描かれ、かつ上記視覚装置と同一ま
たは同一特性の視覚装置により予め撮像された座標線図
の像を上記投光点および被写体の像に重畳し、上記座標
線図の像における上記投光点および被写体の像の相互関
係から同被写体の寸法を求めることを特徴とする視覚装
置における実寸法計測方法。1. A beam is projected by a projector having an optical axis parallel to the optical axis of the visual device and having a predetermined interval, and the projected point and an object are simultaneously imaged by the visual device and the visual On the plane orthogonal to the optical axis of the device, an image of a coordinate diagram drawn with a point of intersection with the optical axis as an origin and having the same or the same characteristics as the visual device in advance is used as the projection point. And an actual size measuring method in a visual device, wherein the size of the subject is obtained by superimposing on the image of the subject and determining the size of the subject from the mutual relationship between the light projection point and the image of the subject in the image of the coordinate diagram.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6819688A JPH06103166B2 (en) | 1988-03-24 | 1988-03-24 | Actual size measurement method in visual device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6819688A JPH06103166B2 (en) | 1988-03-24 | 1988-03-24 | Actual size measurement method in visual device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01242905A JPH01242905A (en) | 1989-09-27 |
JPH06103166B2 true JPH06103166B2 (en) | 1994-12-14 |
Family
ID=13366795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6819688A Expired - Fee Related JPH06103166B2 (en) | 1988-03-24 | 1988-03-24 | Actual size measurement method in visual device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06103166B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07324913A (en) * | 1994-05-31 | 1995-12-12 | Hoei:Kk | Measuring method of dimension |
JP2001280960A (en) * | 2000-03-29 | 2001-10-10 | Nkk Corp | Telemetering method and instrument |
JP6316240B2 (en) * | 2015-06-09 | 2018-04-25 | 日本電信電話株式会社 | Measuring apparatus and measuring method |
-
1988
- 1988-03-24 JP JP6819688A patent/JPH06103166B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH01242905A (en) | 1989-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6862097B2 (en) | Three-dimensional shape measuring method, and three-dimensional shape measuring apparatus | |
US5909285A (en) | Three dimensional inspection system | |
US6377701B1 (en) | Calibration method and device, device for generating calibration data and a method thereof, and information providing medium | |
JPS60185108A (en) | Method and device for measuring body in noncontacting manner | |
JPH11260873A (en) | Optical shape measuring equipment for wafer | |
US6304680B1 (en) | High resolution, high accuracy process monitoring system | |
JP2623367B2 (en) | Calibration method of three-dimensional shape measuring device | |
JP2883236B2 (en) | Three-dimensional shape measurement device for structures around railway tracks | |
JPH06103166B2 (en) | Actual size measurement method in visual device | |
GB2064102A (en) | Improvements in electro- optical dimension measurement | |
JP2007093369A (en) | Displacement measuring apparatus and shape inspection apparatus using the same | |
CN113847872B (en) | Discrete single-point displacement static monitoring device and method based on laser ranging | |
JP3065367B2 (en) | Shape measurement device for structures around railway tracks | |
CN110702378B (en) | Optical axis pointing detection device and detection method | |
JPH0618223A (en) | Optical measuring method of remote object | |
US5317374A (en) | Method and apparatus for measuring a distance to an object from dual two dimensional images thereof | |
JPH034858B2 (en) | ||
JPS60144606A (en) | Position measuring device | |
JPH10185520A (en) | Method for detecting center of laser beam receiving point | |
JPH0914914A (en) | Laser light projection method and apparatus therefor in device measuring for moving value by laser speckle pattern | |
JP3369235B2 (en) | Calibration method for measuring distortion in three-dimensional measurement | |
CN118274741A (en) | Laser measurement method, system, device and storage medium | |
JPS6131906A (en) | Three-dimensional measuring instrument | |
JPH09329417A (en) | Light projector-receiver inter-calibration method for three-dimensional measurement | |
JP2001264031A (en) | Shape-measuring method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |