JPH034858B2 - - Google Patents

Info

Publication number
JPH034858B2
JPH034858B2 JP23274685A JP23274685A JPH034858B2 JP H034858 B2 JPH034858 B2 JP H034858B2 JP 23274685 A JP23274685 A JP 23274685A JP 23274685 A JP23274685 A JP 23274685A JP H034858 B2 JPH034858 B2 JP H034858B2
Authority
JP
Japan
Prior art keywords
light source
lens system
image
measured
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23274685A
Other languages
Japanese (ja)
Other versions
JPS6291833A (en
Inventor
Manabu Yasukawa
Koji Iche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP60232746A priority Critical patent/JPS6291833A/en
Publication of JPS6291833A publication Critical patent/JPS6291833A/en
Publication of JPH034858B2 publication Critical patent/JPH034858B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光源等の配光分布をリアルタイムで
測定することができる光源の2次元配光分布測定
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a two-dimensional light distribution measuring device for a light source, which can measure the light distribution of a light source, etc. in real time.

(従来の技術) 光源の配光特性は、その光源を選択するための
重要な基準となるから、光源の製造者は仕様書等
に光源の配向特性を記載する場合が多い。
(Prior Art) Since the light distribution characteristics of a light source are important criteria for selecting the light source, manufacturers of light sources often describe the orientation characteristics of the light source in specifications and the like.

しかしながら、この配光特性の測定はかなりの
作業であつた。
However, measuring this light distribution characteristic required considerable work.

第4図を参照して、従来の配光分布測定の測定
例を簡単に説明する。
An example of conventional light distribution measurement will be briefly described with reference to FIG.

従来の配光分布測定は、第4図に示すように、
被測定光源1より充分離れた位置に光電子増倍
管,フオドダイオード等の光検出器2を配置す
る。
Conventional light distribution measurement, as shown in Figure 4,
A photodetector 2 such as a photomultiplier tube or a photodiode is placed at a position sufficiently distant from the light source 1 to be measured.

そして、光検出器2自体を被測定光源1に対し
て同心円上を移動させることによつて各位置にお
いて測定し、光源の配光分布を1次元的,離散的
な測定を行つている。
Then, by moving the photodetector 2 itself on a concentric circle with respect to the light source 1 to be measured, measurements are taken at each position, and the light distribution of the light source is measured one-dimensionally and discretely.

なお、前記光源1をその光軸回りに90゜回転さ
せて、同様な測定を行うことにより、配光立体を
推定することができる。
Note that by rotating the light source 1 by 90 degrees around its optical axis and performing similar measurements, the three-dimensional light distribution can be estimated.

(発明が解決しようとする問題点) 前述した測定方法により、精度の高い測定デー
タを得るためには、精度にみあつた測定回数が必
要となる。
(Problems to be Solved by the Invention) In order to obtain highly accurate measurement data using the measurement method described above, it is necessary to measure the number of times to meet the accuracy.

また、被測定光源より光検出器が充分離れてい
る必要があるため広いスペースが必要となる。
Furthermore, since the photodetector needs to be sufficiently far away from the light source to be measured, a large space is required.

さらに、被測定光源以外の光を遮断するために
測定室を設けなければならないという問題があ
る。その上、再現性ということを考えた場合に、
誤差が出やすいという欠点がある。また前述した
測定方法の基本はあくまでも1次元的であり、2
次元的なデータを得るためには前記1次元的な測
定を複数回行う必要がある。
Furthermore, there is a problem in that a measurement chamber must be provided to block light other than the light source to be measured. Moreover, when considering reproducibility,
It has the disadvantage of being prone to errors. Furthermore, the basics of the measurement method mentioned above are only one-dimensional, and two-dimensional.
In order to obtain dimensional data, it is necessary to perform the one-dimensional measurement multiple times.

いずれにしても、前記方法は1箇所ごとに測定
を行うために配光分布を測定する場合に、非常に
多くの時間を必要とする。
In any case, the method described above requires a very large amount of time when measuring the light distribution because the measurement is performed at each location.

さらに重要なことは、各点を同時に測定できな
いので、被測定光源から出射される光束が不安定
であつた場合には事実上測定不能となる。
More importantly, since each point cannot be measured simultaneously, if the luminous flux emitted from the light source to be measured is unstable, measurement becomes virtually impossible.

特開昭59−120932号公報に示されている放射角
度分布測定装置の発明は、放射角度分布の同時測
定を提案している。
The invention of a radiation angle distribution measuring device disclosed in Japanese Patent Application Laid-Open No. 59-120932 proposes simultaneous measurement of radiation angle distribution.

そして、この発明は、対物レンズの前側焦点面
に被測定光源を置き、対物レンズ通過後の光束を
平行光束として画像検出素子に入射するようにし
てある。
In the present invention, the light source to be measured is placed on the front focal plane of the objective lens, and the light beam after passing through the objective lens is made into a parallel light beam and is incident on the image detection element.

この装置により時間ずれに原因する問題は解決
される。しかし、この装置は、被測定光源が面発
光タイプでないレーザダイオード等発光面積が極
めて小さいものにのみ適用可能である。
This device solves the problems caused by time lag. However, this device is applicable only to a light source to be measured that has an extremely small light emitting area, such as a laser diode that is not a surface emitting type.

発光面積が大きな光源の場合には、対物レンズ
通過後の光束は色々な角度成分のものが混じるこ
ととなる。
In the case of a light source with a large light emitting area, the light beam after passing through the objective lens will contain various angular components.

なおこの光学系では、対物レンズと被測定光源
との位置関係が変化した場合には、対物レンズ通
過後の光路が変化し、画像検出素子上の照度分布
が変化するので、被測定光源が光軸方向および光
軸に垂直な面内で常に一定の位置になるよう調整
を行うための補助的手段として、可動あるいは光
路切換可能な集光レンズが用いられている。 い
ずれにしても対物レンズと被測定光源との位置関
係が正しく保たれない場合とか、保たれ難い光源
においては、良い測定結果が得られない。
In addition, in this optical system, if the positional relationship between the objective lens and the light source to be measured changes, the optical path after passing through the objective lens changes, and the illuminance distribution on the image detection element changes, so the light source to be measured changes. A movable or optical path switchable condensing lens is used as an auxiliary means for adjusting the position to always be constant in the axial direction and in a plane perpendicular to the optical axis. In any case, if the positional relationship between the objective lens and the light source to be measured is not maintained correctly, or if the light source is difficult to maintain, good measurement results cannot be obtained.

本発明の第1の目的は、前記従来方法の問題点
をすべて解決することができる光源等の配光分布
をリアルタイムで測定することができる光源の2
次元配光分布測定装置を提供することにある。
A first object of the present invention is to provide a light source that can measure the light distribution of a light source in real time, which can solve all the problems of the conventional method.
An object of the present invention is to provide a dimensional light distribution measuring device.

本発明の第2の目的は前記測定データにさらに
画像処理を施して、より定量的に特性を評価する
ことができるデータを得ることができる光源の2
次元配光分布測定装置を提供することにある。
A second object of the present invention is to further perform image processing on the measurement data to obtain data that can be used to more quantitatively evaluate the characteristics of a light source.
An object of the present invention is to provide a dimensional light distribution measuring device.

(問題点を解決するための手段) 前記第1の目的を達成するために、本発明によ
る光源の2次元配光分布測定装置は、被測定光源
が前側焦点位置付近に配置されるコリメータレン
ズ系と、前記コリメータレンズ系の後側焦点面上
に生じた前記被測定光源の強度分布像を再結像さ
せるリレーレンズ系と、前記再結像された像を撮
像するテレビジヨン撮像装置と、前記テレビジヨ
ン撮像装置の出力を出力する出力装置から構成さ
れている。
(Means for Solving the Problems) In order to achieve the first object, the two-dimensional light distribution measuring device for a light source according to the present invention includes a collimator lens system in which the light source to be measured is arranged near the front focal position. a relay lens system that re-images the intensity distribution image of the light source to be measured generated on the rear focal plane of the collimator lens system; a television imaging device that captures the re-imaged image; It consists of an output device that outputs the output of the television imaging device.

前記第2の目的を達成するために、本発明によ
る光源の2次元配光分布測定装置は、被測定光源
が前側焦点位置付近に配置されるコリメータレン
ズ系と、前記コリメータレンズ系の後側焦点面上
に生じた前記被測定光源の強度分布像を再結像さ
せるリレーレンズ系と、前記再結像された像を撮
像するテレビジヨン撮像装置と、前記テレビジヨ
ン撮像装置の出力を他の画像に変換する画像処理
装置と、前記画像処理装置の出力を出力する出力
装置から構成されている。
In order to achieve the second object, the two-dimensional light distribution measuring device for a light source according to the present invention includes a collimator lens system in which the light source to be measured is arranged near the front focal position, and a rear focal point of the collimator lens system. a relay lens system that re-images the intensity distribution image of the light source to be measured generated on the surface; a television imaging device that captures the re-imaged image; and a television imaging device that captures the output of the television imaging device into another image. The image processing apparatus is comprised of an image processing device that converts the image into an image, and an output device that outputs the output of the image processing device.

(実施例) 以下、図面等を参照して本発明をさらに詳しく
説明する。
(Example) Hereinafter, the present invention will be described in more detail with reference to the drawings and the like.

第1図は本発明による前記第1の2次元配光分
布測定装置の実施例を示す配置図である。
FIG. 1 is a layout diagram showing an embodiment of the first two-dimensional light distribution measuring device according to the present invention.

コリメータレンズ系の3の前側焦点付近に置か
れた発光点から出射光の内、光軸に対して平行な
光束はコリメータレンズ系3により光軸上の後側
焦点位置に像を結ぶ。
Of the light emitted from the light emitting point placed near the front focal point of the collimator lens system 3, a beam parallel to the optical axis is focused by the collimator lens system 3 on the rear focal point position on the optical axis.

また、発光点よりある角度をもつて出射した平
行光束はコリメータレンズ系3によつて後側焦点
面上の被測定光源4より出射された角度に対応す
る位置に、その出射方向の強度に比例した二次元
的強度分布を示す空中像5を形成する。
In addition, the collimated light flux emitted from the light emitting point at a certain angle is moved by the collimator lens system 3 to a position on the back focal plane corresponding to the angle emitted from the light source 4 to be measured, in proportion to the intensity in the emitted direction. An aerial image 5 showing a two-dimensional intensity distribution is formed.

本発明ではコリメータレンズ系3の後側焦点面
に前記光の分布を形成するために、前記コリメー
タレンズ系3の前側焦点付近に被測定光源4を配
置する。
In the present invention, the light source 4 to be measured is arranged near the front focal point of the collimator lens system 3 in order to form the distribution of the light on the rear focal plane of the collimator lens system 3.

このコリメータレンズ系3の後側焦点面上に生
じた2次元的強度分布を示す空中像5は、被測定
光源4が半導体レーザあるいは、光フアイバ出射
端である場合には、各々の光源の構造に由来する
発光パターンの横モードに対応した強度分布を示
しており、一般にフアーフイールドパターンと呼
ばれるものである。
When the light source 4 to be measured is a semiconductor laser or the output end of an optical fiber, the aerial image 5 showing the two-dimensional intensity distribution generated on the rear focal plane of the collimator lens system 3 is based on the structure of each light source. It shows an intensity distribution corresponding to the transverse mode of the light emission pattern originating from , and is generally called a far-field pattern.

この2次元的強度分布を示す対空中像5をテレ
ビジヨン撮像装置6の撮像面7の有効サイズに再
結像させるためにリレーレンズ系8を設ける。
A relay lens system 8 is provided to refocus the aerial image 5 showing this two-dimensional intensity distribution onto the effective size of the imaging surface 7 of the television imaging device 6.

テレビジヨン撮像装置6より得られる映像信号
をテレビジヨンモニタ9に導けばテレビジヨンモ
ニタ9上には前記2次元的強度分布を示す空中像
5に比例した被測定光源2の二次元配光分布画像
を観察することができる。
When the video signal obtained from the television imaging device 6 is guided to the television monitor 9, a two-dimensional light distribution image of the light source 2 to be measured proportional to the aerial image 5 showing the two-dimensional intensity distribution is displayed on the television monitor 9. can be observed.

前述した実施例において、コリメータレンズ系
3は光線の入射角θとその像高hとの間に正確に
次の関係が成立することが好ましい。
In the embodiment described above, it is preferable that the collimator lens system 3 has the following relationship between the incident angle θ of the light beam and its image height h.

h=f・θ ……(1) そのためにはf・θレンズを用いることが好ま
しい。
h=f·θ...(1) For that purpose, it is preferable to use an f·θ lens.

しかし、現実のコリメータレンズ系3は必ずし
も前記(1)の条件を満足するものではない。
However, the actual collimator lens system 3 does not necessarily satisfy the above condition (1).

本発明の第2の構成によれば、通常のコリメー
タレンズ系3を用いても前記歪等の問題を解決す
ることができる。
According to the second configuration of the present invention, the problems such as the distortion can be solved even if the normal collimator lens system 3 is used.

第2図は第2の構成の実施例を示す配置図であ
る。光源4,コリメータレンズ系3,空中像5,
リレーレンズ系8,テレビジヨン撮像装置6の配
置および機能は先に第1図を参照して説明した実
施例と異ならない。
FIG. 2 is a layout diagram showing an embodiment of the second configuration. light source 4, collimator lens system 3, aerial image 5,
The arrangement and function of the relay lens system 8 and the television imaging device 6 are the same as in the embodiment previously described with reference to FIG.

前述したようにコリメータレンズ系3は前記(1)
式を満足せず、リレーレンズ系8も歪曲収差を持
ちえるものである。
As mentioned above, the collimator lens system 3 has the above-mentioned (1)
The relay lens system 8 does not satisfy the formula and can also have distortion.

しかし、これ等は個別には既知であり、総合し
て光学系の歪として定量化することができる。
However, these are known individually and can be collectively quantified as distortion of the optical system.

さらに全体の系を考えると撮像系の走査歪等も
考えられるが、これも既知である。
Furthermore, when considering the entire system, scanning distortion of the imaging system may also be considered, but this is also known.

したがつて、この量を画像に対応させて、記憶
装置10に予め記憶させておく。
Therefore, this amount is stored in advance in the storage device 10 in correspondence with the image.

画像処理装置11は前記記憶装置10の内容を
参照して、映像信号の処理を行い全系の位置の歪
を総て除去したデータを得ることができる。
The image processing device 11 can refer to the contents of the storage device 10, process the video signal, and obtain data from which all positional distortions of the entire system have been removed.

前記全系の歪を総て除去したデータをデイジタ
ル変換して、出力デイジタル記憶装置に入力して
おけば、このデータを読み出すことにより、光源
の2次元配光分布測定データが得られる。
By digitally converting the data from which all distortions of the entire system have been removed and inputting it into the output digital storage device, two-dimensional light distribution measurement data of the light source can be obtained by reading out this data.

また前述した実施例と同様にテレビジヨンモニ
タ9に表示を行うことができる。
Further, the information can be displayed on the television monitor 9 similarly to the embodiment described above.

この実施例装置では、さらに前記歪補正の行わ
れたデータに対して、さらに画像処理を行い、第
2図のモニタ9に示されているように等輝度線曲
線に変換したり、第3図に示したように3次元立
体斜視図表現データに変換することができる。
In this example device, the data subjected to the distortion correction is further subjected to image processing to convert it into an isoluminance line curve as shown on the monitor 9 in FIG. It can be converted into three-dimensional perspective view representation data as shown in FIG.

以上詳しく説明した実施例について、本発明の
範囲内で種々の変形を施すことができる。
Various modifications can be made to the embodiments described in detail above within the scope of the present invention.

前記画像処理は選択的に可能であり歪の補正を
しないで等輝度表示や、立体表示にすることも可
能である。
The image processing described above can be performed selectively, and it is also possible to perform equal brightness display or stereoscopic display without correcting distortion.

また前記被測定光源の光軸は必ずしも光学系の
光軸に一致させられていなくても良い。
Furthermore, the optical axis of the light source to be measured does not necessarily have to coincide with the optical axis of the optical system.

その傾きを記録しておけば、光学系の光軸に一
致させておいたときには得られないデータを得る
ことができる。
By recording the inclination, it is possible to obtain data that cannot be obtained if the inclination is aligned with the optical axis of the optical system.

(発明の効果) 以上詳しく説明したように本発明による光源の
2次元配光分布測定装置は、被測定光源が前側焦
点位置付近に配置されるコリメータレンズ系と、
前記コリメータレンズ系の後側焦点面上に生じた
前記被測定光源の強度分布像を再結像させるリレ
ーレンズ系と、前記再結像された像を撮像するテ
レビジヨン撮像装置と、前記テレビジヨン撮像装
置の出力を出力する出力装置から構成されてい
る。
(Effects of the Invention) As described above in detail, the two-dimensional light distribution measuring device for a light source according to the present invention includes a collimator lens system in which the light source to be measured is arranged near the front focal position;
a relay lens system that re-images the intensity distribution image of the light source to be measured generated on the rear focal plane of the collimator lens system; a television imaging device that captures the re-imaged image; It consists of an output device that outputs the output of the imaging device.

したがつて、光源の2次元配光分布をリアルタ
イムで測定することができる。
Therefore, the two-dimensional light distribution of the light source can be measured in real time.

リアルタイムで測定できるため、従来の方法で
は測定できなかつた光源の強度に揺らぎのあるも
のの2次元配光分布も容易に測定できる。
Since it can be measured in real time, it is also possible to easily measure the two-dimensional light distribution of light sources with fluctuations in intensity, which could not be measured using conventional methods.

またどのような揺らぎがあるか、モニタで観察
できる。
What kind of fluctuations there are can also be observed on the monitor.

さらに重要なことは、本発明の光学系において
は、コリメータレンズ系の歪曲収差以外の収差が
完全に補正されておれば、被測定光源がコリメー
タレンズ系の前側焦点から、光軸方向あるいは光
軸に垂直な方向にずれていても被測定光源から光
軸に対してθなる角度で出射した光束は、すべて
常にコリメータレンズ系の焦点面上で像高y=
f・tanθの位置の一点に集束することである。そ
のため幾何学的には被測定光源が、コリメータレ
ンズ系の前側焦点からはずれた位置に置かれたと
しても、測定結果には何等の影響も現れない。
More importantly, in the optical system of the present invention, if aberrations other than distortion of the collimator lens system are completely corrected, the light source to be measured can be moved from the front focal point of the collimator lens system in the optical axis direction or Even if the light beam is shifted in the direction perpendicular to
It is to focus on one point at the position of f·tanθ. Therefore, geometrically, even if the light source to be measured is placed at a position away from the front focus of the collimator lens system, there will be no effect on the measurement results.

また光学系を小さくまとめることができるか
ら、被測定光源と光学系を簡単なフードで覆うこ
とにより、外部の光の影響を避けることができ
る。
Furthermore, since the optical system can be made small, the influence of external light can be avoided by covering the light source to be measured and the optical system with a simple hood.

そのため従来方法のように、暗室を利用すると
いうような配慮は全く不要となる。
Therefore, there is no need to consider the use of a darkroom as in the conventional method.

なお、被測定光源4を正確にコリメータレンズ
系3の前側焦点位置に置けば、コリメータレンズ
系3がフーリエ変換光学系の働きをすることにな
り、その後側焦点位置に生ずる空中像5は被測定
光源4のフーリエ回折像となるので、光軸の発光
分布特性の解析ができる。
Note that if the light source 4 to be measured is placed accurately at the front focal position of the collimator lens system 3, the collimator lens system 3 will function as a Fourier transform optical system, and the aerial image 5 generated at the rear focal position will be located at the front focal position of the collimator lens system 3. Since it is a Fourier diffraction image of the light source 4, the emission distribution characteristics of the optical axis can be analyzed.

次に本発明の第2の構成は前記構成に加えて、
前記テレビジヨン撮像装置の出力を他の画像に変
換する画像処理装置を備えている。
Next, the second configuration of the present invention includes, in addition to the above configuration,
The image processing apparatus includes an image processing apparatus that converts the output of the television imaging apparatus into another image.

したがつて、テレビジヨン撮像装置の出力を処
理して、より直感的に理解しやすい等輝度表示と
か立体視表示が可能となる。
Therefore, by processing the output of the television imaging device, it becomes possible to display equal brightness or stereoscopic display, which is easier to understand intuitively.

次に全系の歪が既知であるから、そのデータを
参照して画像処理を行うことができる。
Next, since the distortion of the entire system is known, image processing can be performed with reference to that data.

その結果高価なf・θレンズを使用する必要が
なくなる。
As a result, there is no need to use expensive f/theta lenses.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による2次元配光分布測定装置
の第1の構成の実施例を説明するための配置図で
ある。第2図は本発明による2次元配光分布測定
装置の第2の構成の実施例を説明するための配置
図である。第3図は前記第2の構成の実施例装置
で画像処理された出力の表示例を示すグラフであ
る。第4図は従来の配光分布測定法を示す配置図
である。 3…コリメータレンズ系、4…被測定光源、5
…空中像、6…テレビジヨン撮像装置、8…リレ
ーレンズ系、9…テレビジヨンモニタ、10…記
憶装置、11…画像処理装置、12…出力データ
記憶装置。
FIG. 1 is a layout diagram for explaining an embodiment of a first configuration of a two-dimensional light distribution measuring device according to the present invention. FIG. 2 is a layout diagram for explaining an embodiment of the second configuration of the two-dimensional light distribution measuring device according to the present invention. FIG. 3 is a graph showing a display example of an output image processed by the embodiment apparatus having the second configuration. FIG. 4 is a layout diagram showing a conventional light distribution measuring method. 3... Collimator lens system, 4... Light source to be measured, 5
... Aerial image, 6... Television imaging device, 8... Relay lens system, 9... Television monitor, 10... Storage device, 11... Image processing device, 12... Output data storage device.

Claims (1)

【特許請求の範囲】 1 被測定光源が前側焦点位置付近に配置される
コリメータレンズ系と、前記コリメータレンズ系
の後側焦点面上に生じた前記被測定光源の強度分
布像を再結像させるリレーレンズ系と、前記再結
像された像を撮像するテレビジヨン撮像装置と、
前記テレビジヨン撮像装置の出力を出力する出力
装置から構成した光源の2次元配光分布測定装
置。 2 前記出力装置はテレビジヨンモニタである特
許請求の範囲第1項記載の光源の2次元配光分布
測定装置。 3 前記被測定光源は、レーザダイオード、光フ
アイバの光出射端等である特許請求の範囲第1項
記載の光源の2次元配光分布測定装置。 4 被測定光源が前側焦点位置付近に配置される
コリメータレンズ系と、前記コリメータレンズ系
の後側焦点面上に生じた前記被測定光源の強度分
布像を再結像させるリレーレンズ系と、前記再結
像された像を撮像するテレビジヨン撮像装置と、
前記テレビジヨン撮像装置の出力を他の画像に変
換する画像処理装置と、前記画像処理装置の出力
を出力する出力装置から構成した光源の2次元配
光分布測定装置。 5 前記画像処理装置は光学系の歪補正を行う処
理を含む装置である特許請求の範囲第4項記載の
光源の2次元配光分布測定装置。 6 前記画像処理装置は前記テレビジヨン撮像装
置の出力を等輝度線画像データに変換する画像処
理装置である特許請求の範囲第4項記載の光源の
2次元配光分布測定装置。 7 前記画像処理装置は、前記テレビジヨン撮像
装置の出力を斜視立体図に変換する画像処理装置
である特許請求の範囲第4項記載の光源の2次元
配光分布測定装置。
[Scope of Claims] 1. A collimator lens system in which the light source to be measured is arranged near the front focal position, and re-imaging the intensity distribution image of the light source to be measured generated on the back focal plane of the collimator lens system. a relay lens system, a television imaging device that captures the re-imaged image;
A two-dimensional light distribution measuring device for a light source, comprising an output device that outputs the output of the television imaging device. 2. The two-dimensional light distribution measuring device of a light source according to claim 1, wherein the output device is a television monitor. 3. The two-dimensional light distribution measuring device for a light source according to claim 1, wherein the light source to be measured is a laser diode, a light emitting end of an optical fiber, or the like. 4 a collimator lens system in which the light source to be measured is arranged near the front focal position; a relay lens system that re-images the intensity distribution image of the light source to be measured generated on the rear focal plane of the collimator lens system; a television imaging device that captures the re-imaged image;
A two-dimensional light distribution measuring device for a light source, comprising an image processing device that converts the output of the television imaging device into another image, and an output device that outputs the output of the image processing device. 5. The two-dimensional light distribution measuring device of a light source according to claim 4, wherein the image processing device is a device that includes processing for correcting distortion of an optical system. 6. The two-dimensional light distribution measuring device of a light source according to claim 4, wherein the image processing device is an image processing device that converts the output of the television imaging device into isobright line image data. 7. The two-dimensional light distribution measuring device for a light source according to claim 4, wherein the image processing device is an image processing device that converts the output of the television imaging device into a perspective stereoscopic view.
JP60232746A 1985-10-18 1985-10-18 Measuring instrument for two-dimensional light distribution of light source Granted JPS6291833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60232746A JPS6291833A (en) 1985-10-18 1985-10-18 Measuring instrument for two-dimensional light distribution of light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60232746A JPS6291833A (en) 1985-10-18 1985-10-18 Measuring instrument for two-dimensional light distribution of light source

Publications (2)

Publication Number Publication Date
JPS6291833A JPS6291833A (en) 1987-04-27
JPH034858B2 true JPH034858B2 (en) 1991-01-24

Family

ID=16944110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60232746A Granted JPS6291833A (en) 1985-10-18 1985-10-18 Measuring instrument for two-dimensional light distribution of light source

Country Status (1)

Country Link
JP (1) JPS6291833A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105453A1 (en) * 2016-12-06 2018-06-14 パナソニックIpマネジメント株式会社 Alignment method
JP2020071414A (en) * 2018-11-01 2020-05-07 駿河精機株式会社 Measuring device for collimation adjustment and method for adjusting collimation optical system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2769405B2 (en) * 1992-04-10 1998-06-25 浜松ホトニクス株式会社 2D light distribution measurement device for liquid crystal display panel
JP4061822B2 (en) * 2000-06-26 2008-03-19 松下電工株式会社 Infrared module characteristics measurement method
JP4765588B2 (en) * 2005-11-30 2011-09-07 ソニー株式会社 FFP measuring apparatus and FFP measuring method
JP5247892B2 (en) * 2011-03-07 2013-07-24 パイオニア株式会社 Emission status measurement device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59120932A (en) * 1982-12-28 1984-07-12 Nec Corp Measuring device of distribution of radiation angle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59120932A (en) * 1982-12-28 1984-07-12 Nec Corp Measuring device of distribution of radiation angle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105453A1 (en) * 2016-12-06 2018-06-14 パナソニックIpマネジメント株式会社 Alignment method
CN110036321A (en) * 2016-12-06 2019-07-19 松下知识产权经营株式会社 Core regulating method
JPWO2018105453A1 (en) * 2016-12-06 2019-10-24 パナソニックIpマネジメント株式会社 Alignment method
JP2020071414A (en) * 2018-11-01 2020-05-07 駿河精機株式会社 Measuring device for collimation adjustment and method for adjusting collimation optical system

Also Published As

Publication number Publication date
JPS6291833A (en) 1987-04-27

Similar Documents

Publication Publication Date Title
US7787132B2 (en) Method and arrangement for a rapid and robust chromatic confocal 3D measurement technique
US11187654B2 (en) Imaging reflectometer
JP2002517742A (en) Method and apparatus for obtaining photoelectric of a shape by axial illumination
JP2623367B2 (en) Calibration method of three-dimensional shape measuring device
US5255069A (en) Electro-optical interferometric microdensitometer system
US11150078B1 (en) High sensitivity image-based reflectometry
US11156566B2 (en) High sensitivity image-based reflectometry
JPH034858B2 (en)
JP4148592B2 (en) Birefringence measuring method and birefringence measuring apparatus
JP2001166202A (en) Focus detection method and focus detector
CN111664805A (en) Super spectral line scanning 3D measuring device and measuring method
US4758731A (en) Method and arrangement for aligning, examining and/or measuring two-dimensional objects
JP2005106831A (en) Light beam diagnostic device and method therefor
CN113330299B (en) Imaging reflectometer
CN210070874U (en) Super spectral line scanning 3D measuring device
CN210346907U (en) Light beam measuring device
TWI835976B (en) Imaging reflectometer
US4533828A (en) Arrangement for increasing the dynamic range of optical inspection devices to accommodate varying surface reflectivity characteristics
JP2675051B2 (en) Optical non-contact position measuring device
JPH0789058B2 (en) Distance measuring device
JPS62176359A (en) Film image reader
JPH0412212A (en) Comb-shaped light projector and surface shape measuring instrument using the same
JPH0789057B2 (en) Distance measuring device
CN113465739A (en) Image slicer detection device and method
JPH0444940B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term