JPS60110139A - Logic integrated circuit - Google Patents

Logic integrated circuit

Info

Publication number
JPS60110139A
JPS60110139A JP21902283A JP21902283A JPS60110139A JP S60110139 A JPS60110139 A JP S60110139A JP 21902283 A JP21902283 A JP 21902283A JP 21902283 A JP21902283 A JP 21902283A JP S60110139 A JPS60110139 A JP S60110139A
Authority
JP
Japan
Prior art keywords
current
wirings
power supply
external output
zigzag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21902283A
Other languages
Japanese (ja)
Inventor
Soichi Ito
伊藤 荘一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP21902283A priority Critical patent/JPS60110139A/en
Publication of JPS60110139A publication Critical patent/JPS60110139A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11898Input and output buffer/driver structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

PURPOSE:To obtain a logic integrated circuit capable of using for a large load by forming power supply wirings to an external output buffer circuit in a zigzag shape. CONSTITUTION:Power supply wirings 9 to an external output buffer are formed in a zigzag shape. The schematic effective direction of a path of a current I flowed to the zigzag wirings 9 becomes as shown by arrow with double lines, the direction of an induced current i' induced in wirings 8' when the zigzag current I varies at timing is different at every part in response to the zigzag direction of the current I, only a vector component directed downward of the drawing contributes to the current I', but a vector component of lateral direction of the drawing becomes eddy current loss in the wirings 8 and is erased. Accordingly, the current i' generated in the wirings 8 becomes smaller than the conventional one, the induced voltage becomes low, and a logic erroneous operation hardly occurs.

Description

【発明の詳細な説明】 本発明は論理集積回路に係シ、特に多数の夕)部出力パ
ッフ7回路を有する論理集積回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a logic integrated circuit, and more particularly to a logic integrated circuit having a large number of output puff circuits.

論理集積回路の大規模化に伴い、外部出力2771回路
がlチップに多数搭載され、回路動作上のあるタイミン
グではそれらのうちの何個かが同時に動作する為にそれ
らバッフ7回路にパワーを供給している共通電源パスラ
インに大きな電流時間変化(以下、di/dtと略記す
る)が生じ、この為に電源パスラインと相互インダクタ
ンスで給金する一他の配線に誘導ノイズが生じて論理誤
動作を招くという問題が生じ杓<なってきている。
As the scale of logic integrated circuits increases, a large number of 2771 external output circuits are mounted on a single chip, and at certain timings in circuit operation, some of them operate simultaneously, so power is supplied to these 7 buffer circuits. A large current-time change (hereinafter abbreviated as di/dt) occurs in the common power supply path line, which causes induced noise in the power supply path line and other wiring that supplies power through mutual inductance, resulting in logic malfunctions. The problem of inviting people has arisen and is becoming increasingly important.

従来では、このために1、回路測定時及び使用時に於て
外部出力2771回路の動作のタイミングが一致しない
様に、測定プログラムや回路構成上の工夫をして対処し
てきたが、特に大きな負荷を駆動する場合には、駆動イ
ンピーダンスを小さくすりため、多数の外部出力バック
・1を複数個パラレルに接続して使用する場合があシ、
この時にはタイミング上この多数のバッファの全てを同
時に動作させる必要があるので、前記した論理誤動作が
生じない程度K、パラレル接続される外部出力バック1
数を制限せざるを得す、従って負荷の大きさをある程度
以下におさえなければならないと−う欠点があった。
Conventionally, this has been dealt with by devising the measurement program and circuit configuration so that the timing of the operation of the external output 2771 circuit does not match during circuit measurement and use. When driving, it is sometimes necessary to connect multiple external output backs 1 in parallel to reduce the drive impedance.
At this time, it is necessary to operate all of these large number of buffers at the same time due to timing, so the external output back 1 which is connected in parallel is
There was a drawback that the number had to be limited and therefore the size of the load had to be kept below a certain level.

本発明の目的は、前記欠点が改善され、大きな負荷でも
使用することのできる論理集積回路を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a logic integrated circuit in which the above-mentioned drawbacks are improved and which can be used even under heavy loads.

本発明は、内部論理回路及び外部出力2771回路への
電力供給配線が互いに分離されている論理集積回路にお
いて、前記外部出力2771回路への電力供給配線が蛇
行形状であることを特徴とする論理集積回路にある。
The present invention provides a logic integrated circuit in which power supply wiring to an internal logic circuit and an external output 2771 circuit are separated from each other, wherein the power supply wiring to the external output 2771 circuit has a meandering shape. It's in the circuit.

次に図面を参照しながら本発明の詳細な説明する。Next, the present invention will be described in detail with reference to the drawings.

第1図は従来の論理集積回路の外部出力バラ71への電
力供給配線を示す平面図である。同図において、チップ
1の主面に、電力供給用パッド2と、出力端子のパッド
3,4と、外部出力バッフ1回路ブ回路ブロックとが設
けられている。この出力端子のパッド3には、外部出力
バッフ1回路ブロック5が、同じくパッド4には回路ブ
ロック6が対応し、第1回では省略されているが、これ
らのベアが数個ないし士数個くp返く配置されている。
FIG. 1 is a plan view showing power supply wiring to an external output rose 71 of a conventional logic integrated circuit. In the figure, a power supply pad 2, output terminal pads 3 and 4, and an external output buffer 1 circuit block are provided on the main surface of a chip 1. The pad 3 of this output terminal corresponds to the external output buffer 1 circuit block 5, and the pad 4 corresponds to the circuit block 6.Although it is omitted in the first part, there are several to several of these bears. They are arranged repeatedly.

一方電力供給線7は、前記外部出力バク71回路に15
を力を供給する紅組を示し、電力供給用パッド2に接続
しているとともに、第1図では省略され°Cいるが、外
部出力バッフ1回路5.6とさらK<J)返し配置され
てiる同回路とに接続している。又電力供給線8は、前
記電力供給配線7に長い距離に渡って平行して布設され
ているところの電力供給配線7とは別系列の配線を表わ
し、チップlに搭載されている回路の一部分を構成する
接続線であって1例えば信号線であっても良いし、定電
圧供給線或いは電力供給線であっても良い。
On the other hand, the power supply line 7 is connected to the external output back 71 circuit.
It is connected to the power supply pad 2, and although it is omitted in Fig. 1, the external output buffer 1 circuit 5.6 is connected to the power supply pad 2. It is connected to the same circuit. Further, the power supply line 8 represents a line different from the power supply line 7 which is laid parallel to the power supply line 7 over a long distance, and is a part of the circuit mounted on the chip l. For example, one of the connection lines constituting the circuit may be a signal line, a constant voltage supply line, or a power supply line.

さて、第1図に於て、電力供給配線7の同図では省略さ
れている上方部の外部出力バック1回路の1つが、出力
レベルに於て例えばロウ(Low)からハイ(High
)K変化したとすると、同出力に接続されたチップ外部
の終端インピrダンスによって電圧変化に対応する電流
変化が生じる。同電流Iは、第1図で記す二重線矢印に
流れるものとすると、電磁気宇でよく知られている原理
によって、磁束φが同電流Iの垂直の面内に発生し、こ
の電流工が時間と共に増加すると磁束φも増加し。
Now, in FIG. 1, one of the external output back 1 circuits in the upper part of the power supply wiring 7, which is omitted in the figure, changes the output level from, for example, low to high.
)K changes, a current change corresponding to the voltage change occurs due to the termination impedance r outside the chip connected to the same output. Assuming that the current I flows in the direction of the double-lined arrow shown in Figure 1, a magnetic flux φ is generated in a plane perpendicular to the current I, and this current flow is caused by a well-known principle in electromagnetism. As it increases with time, the magnetic flux φ also increases.

この為に配線8には、磁束φの増加をうち消す方。For this reason, wiring 8 is provided with a wire that cancels out the increase in magnetic flux φ.

向、すなわち−重線矢印の方向に誘導電流iが生じる。An induced current i is generated in the direction, that is, in the direction of the - double line arrow.

この誘導電流iは、配線8に接続しているlインピーダ
ンスによって電圧変化となって表われ。
This induced current i appears as a voltage change due to the l impedance connected to the wiring 8.

これがチップ1の内部の論理レベルを変化量せて。This changes the internal logic level of chip 1.

論理誤動作を招くことがある。特に、外部出方バッフ1
回路が多数同時に動作すると、第1図の電流Iの時間変
化はそれだけ大きくなシ、配線8の系に誘起される電圧
変化もそれだけ大きくなって論理誤動作はなおいっそう
生じ易くなる。特に。
This may lead to logical malfunctions. In particular, external exit buff 1
When a large number of circuits operate simultaneously, the time change in the current I shown in FIG. 1 becomes larger, and the voltage change induced in the wiring system 8 also becomes larger, making logic malfunctions even more likely to occur. especially.

近年の論理集積回路の大規模化がり多ピン化によって、
外部出力バッ71回路数が増加し、複数個の外部出力バ
ラ71が同じ論理変化を同時に行う確率が増加している
為、前述の論理誤動作が生じ、易い。
In recent years, as logic integrated circuits have become larger and have more pins,
As the number of external output buffer circuits 71 increases, the probability that a plurality of external output buffers 71 make the same logic change at the same time increases, so the above-mentioned logic malfunction is likely to occur.

ts2図はかかる論理誤動作の発生を緩和する目的でな
された本発明の実施例の平面図である。第2図に於て、
第1図と同じ部分は同符号で示されておシ、説明を省略
する。
Figure ts2 is a plan view of an embodiment of the present invention designed to alleviate the occurrence of such logical malfunctions. In Figure 2,
The same parts as in FIG. 1 are designated by the same reference numerals, and their explanation will be omitted.

さて1本発明の最も特徴的なとζろは、蛇行配線9であ
シ、主な機能は第1図の外部出カパッ7ァへの電力供給
配線7と全く同じである。かかる蛇行配線9に流れる電
流Iの流路の概略的な実効方向を蛇行する二重線矢印で
示す。このような蛇行する電流工が時間変化する時に配
線8’に誘起する誘導電流i′の方向は、電流Iの蛇行
する方向に応じて部分部分で方向が異なシ、そのうち第
2図下方向に向くベクトル成分だけが誘導電流i′に寄
与し、第2図の左右方向のベクトル成分は配線8内の渦
電流損となって、消失してしまう。すなわち、第1図に
示す電流工と第2図に示す電流エタの時間変化量が同じ
である時、第1図の配線8に生ずる誘導電流iに比べて
、第2図の配線8′に生ずる誘導電流1′の方が小さく
、従って誘起される電圧が小さくなって論理誤動作が起
ル難くなる。
Now, the most characteristic feature of the present invention is the meandering wiring 9, whose main function is exactly the same as the power supply wiring 7 to the external output capacitor 7 shown in FIG. The approximate effective direction of the flow path of the current I flowing through the meandering wiring 9 is indicated by a meandering double line arrow. When such a meandering electric current changes over time, the direction of the induced current i' induced in the wiring 8' varies depending on the meandering direction of the current I. Only the vector component in the direction contributes to the induced current i', and the vector component in the left and right direction in FIG. 2 becomes an eddy current loss in the wiring 8 and disappears. That is, when the amount of change over time of the electric current shown in FIG. 1 and the current eta shown in FIG. 2 is the same, the induced current i generated in the wiring 8 in FIG. The generated induced current 1' is smaller, and therefore the induced voltage is smaller, making it difficult for logic malfunctions to occur.

以上述べた如く本発明によれば、外部出力バッフ1への
電力供給配線を蛇行させることによって。
As described above, according to the present invention, the power supply wiring to the external output buffer 1 is made to meander.

電力供給配線に長−距離に渡って近接する配線に誘起す
る誘導電流を減じることができるから、論理誤動作を抑
制できる等の効果が得られる。
Since it is possible to reduce the induced current induced in wiring that is close to the power supply wiring over a long distance, effects such as being able to suppress logic malfunctions can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の論理集積回路を示す平面図、第2図は本
発明の実施例の論理集積回路を示す平面図である。 同図において、1・・・・・・チップ、2・・・・・・
電力供給用パッド、3.4・・・・・・出力パッド、5
,6・・・・・・外部用カバ、7アブロツク、7,9・
・・・・・蒙外部出力バッフ1回路への電力供給配線、
8・・・・・・それに近接する別系列の配線。 / 蔀I 図 処2 図
FIG. 1 is a plan view showing a conventional logic integrated circuit, and FIG. 2 is a plan view showing a logic integrated circuit according to an embodiment of the present invention. In the same figure, 1...chip, 2...
Power supply pad, 3.4... Output pad, 5
, 6...external cover, 7 a block, 7, 9...
...Power supply wiring to Mongolian external output buffer 1 circuit,
8... Another series of wiring adjacent to it. / 蔀I Illustration 2

Claims (1)

【特許請求の範囲】[Claims] 内部論理回路及び外部出力7771回路への電力供給配
線が互いに分離されてなる論理集積回路において、前記
外部出力バッフ1回路への電力供給配線が蛇行形状であ
ることを特徴とする論理集積回路。
A logic integrated circuit in which power supply wiring to an internal logic circuit and an external output 7771 circuit are separated from each other, characterized in that the power supply wiring to the external output buffer 1 circuit has a meandering shape.
JP21902283A 1983-11-21 1983-11-21 Logic integrated circuit Pending JPS60110139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21902283A JPS60110139A (en) 1983-11-21 1983-11-21 Logic integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21902283A JPS60110139A (en) 1983-11-21 1983-11-21 Logic integrated circuit

Publications (1)

Publication Number Publication Date
JPS60110139A true JPS60110139A (en) 1985-06-15

Family

ID=16729023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21902283A Pending JPS60110139A (en) 1983-11-21 1983-11-21 Logic integrated circuit

Country Status (1)

Country Link
JP (1) JPS60110139A (en)

Similar Documents

Publication Publication Date Title
JPH05121548A (en) Clock supplying circuit and integrated circuit with the same circuit
JPS594050A (en) Semiconductor device
US20040021140A1 (en) Selective solder bump application
JPS60110139A (en) Logic integrated circuit
US5126822A (en) Supply pin rearrangement for an I.C.
EP1179848A2 (en) Supply pin rearrangement for an I.C.
JPS58124262A (en) Integrated circuit device
JPH0964087A (en) Ceramic case
JP2929784B2 (en) Semiconductor integrated circuit device
JP2533810B2 (en) Semiconductor device
JPH0419807Y2 (en)
JPH01111342A (en) Package for integrated circuit
JPH0529546A (en) Semiconductor integrated circuit
JPH06101521B2 (en) Semiconductor integrated circuit device
JPH05343525A (en) Semiconductor integrated circuit
JPS6020239Y2 (en) bubble memory chip
JPH0677445A (en) Master slice layout integrated circuit
JPH0691186B2 (en) Semiconductor integrated circuit device
JPH0726841Y2 (en) Semiconductor integrated circuit
JPH01143521A (en) Integrted circuit constitution
JPH0573272B2 (en)
JPH0691179B2 (en) Semiconductor integrated circuit device
JPH03148132A (en) Standard cell type semiconductor integrated circuit device
JPH104141A (en) Semiconductor integrated device
JPH05175414A (en) Integrated-circuit mounting method