JPS60107878A - Gas flow type gas laser tube - Google Patents

Gas flow type gas laser tube

Info

Publication number
JPS60107878A
JPS60107878A JP21557783A JP21557783A JPS60107878A JP S60107878 A JPS60107878 A JP S60107878A JP 21557783 A JP21557783 A JP 21557783A JP 21557783 A JP21557783 A JP 21557783A JP S60107878 A JPS60107878 A JP S60107878A
Authority
JP
Japan
Prior art keywords
laser
discharge
gas
gas flow
laser tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21557783A
Other languages
Japanese (ja)
Inventor
Kazuaki Hotta
和明 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP21557783A priority Critical patent/JPS60107878A/en
Publication of JPS60107878A publication Critical patent/JPS60107878A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/032Constructional details of gas laser discharge tubes for confinement of the discharge, e.g. by special features of the discharge constricting tube

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To enable the titled laser tube to generate a larger output per unit gain length and to achieve a comparatively small oscillating mode, which is the optimum for processing, by a method wherein discharge plates are arranged in the laser tube at prescribed intervals in the direction of the laser optical axis and a discharge path and a gas flow path are formed. CONSTITUTION:Plural sheets of discharge plates 13 are superposed on each other at prescribed intervals in the direction of a laser optical axis 11 for forming a discharge path 12 and the discharge plates 13 are installed on the enclosing tube 19 of the laser tube. Each of the discharge plates 13 has a hole 21 for a discharge path and plural gas flow holes 22, and the holes 22 are provided at a gas flow hole part 23 only on one side of a straight line 24, which passes through the center of the hole 21. The discharge plates 13 are superposed upon each other in such a way that the holes 21 are superposed upon each other in a straight line with an axis 25 as the center and the hole parts 23 are not superposed on the axis 25. The axis 25 coincides with the optical axis 11. During the operating time of the gas flow type gas laser tube constituted in such a way, discharge is being made to generate between electrodes 15 and 16 through the holes 21 while gas laser is being made to continuously enter from an inlet 17 and to continuously exhaust from an outlet 18.

Description

【発明の詳細な説明】 本発明は高、いレーザ出力を得るためにレーザ光軸方向
にレーザガスを常時流すガスフロー形ガスレーザ管に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas flow type gas laser tube that constantly flows laser gas in the direction of the laser optical axis in order to obtain high laser output.

炭酸ガス(00,) レーザにおいては、放電によりC
O□が分解するのでレーザ出力が低下するため、5にC
o、を含むレーザガス(一般にHeとN2とCO2の混
合ガス)を放電空間中に流しCO□の分解物を放電空間
外へ除去してレーザ出力の低下を防いでいる。また一般
にC02レーザにおいては放電空間中のレーザガスの温
度が低い糧大きなレーザ出力が得られる。
Carbon dioxide gas (00,) In a laser, C
Since O□ decomposes and the laser output decreases, C is added to 5.
A laser gas containing CO (generally a mixed gas of He, N2, and CO2) is flowed into the discharge space to remove decomposed products of CO□ out of the discharge space, thereby preventing a decrease in laser output. Generally, in a C02 laser, a large laser output can be obtained because the temperature of the laser gas in the discharge space is low.

現在、最も多く実用されているCO□レーザは硝子製の
レーザ管を用いた低速フロー形COレーザである。この
形のCO2レーザにおいては、上述の通100.の分解
によるレーザ出力の低下を防ぐため常にレーザガスを低
速で流している。tfcこの形のCO2レーザにおいて
は、レーザガスの温度を下げるため硝子製のレーザ管の
外側に冷却流体(水や油など)のジャケットを設はレー
ザガスを冷却している。
Currently, the most commonly used CO□ laser is a low-speed flow type CO laser using a glass laser tube. In this type of CO2 laser, 100. The laser gas is always flowed at a low speed to prevent the laser output from decreasing due to decomposition. TFC In this type of CO2 laser, a jacket of cooling fluid (water, oil, etc.) is provided outside the glass laser tube to cool the laser gas in order to lower the temperature of the laser gas.

ところが、低速フロー形CO2レーザのレーザ出力は、
CO2の分解物の除去が充分でないこと、レーザガスの
冷却が充分でないことの理由で利得長1mあたり高々7
5”である。従ってt kwのレーザ出力が得たい場合
的1a4”の利得長を要し装置は非常に大形となる二低
速7°−形00.L/−4#“最も多く実用される理由
は、低速フロー形CO,レーザにおいては、レーザ加工
に最適な発振モードが得やすい事にある。
However, the laser output of a low-speed flow type CO2 laser is
7 per meter of gain length due to insufficient removal of CO2 decomposition products and insufficient cooling of the laser gas.
5". Therefore, if you want to obtain a laser output of t kW, you will need a gain length of 1a4" and the device will be very large. L/-4# "The reason why it is most often put into practical use is that it is easy to obtain the optimal oscillation mode for laser processing in low-speed flow type CO lasers.

本発明の目的は、レーザガスの温度も高くならず、また
、CO□の分解物のレーザガス中に占める割合が少ない
、単位利得長当たり大きなレーザ出力が得られ、なおか
つレーザ加工に最適なレーザ発振モードが得られる比較
的小形なガスフロー形CO□レーザ管を提供することに
ある。
The purpose of the present invention is to provide a laser oscillation mode that does not increase the temperature of the laser gas, has a small proportion of CO The object of the present invention is to provide a relatively small gas flow type CO□ laser tube that provides the following.

以下図面を用いて本発明の詳細な説明する。The present invention will be described in detail below using the drawings.

先ず、本発明との比較のため、従来の低速フロー形00
2レーザ管の概略図を第1図に示す。第1図の002レ
ーザにおいてはm 00.の分解によるレーザ出力の低
下を防ぐため光軸1の方向にガス人ロアからガス出口8
にレーザガスを低速で流しながら、放電電極5.6の間
の放電空間2で放電を起し、レーザの利得を得ている。
First, for comparison with the present invention, the conventional low-speed flow type 00
A schematic diagram of a two-laser tube is shown in FIG. In the 002 laser of FIG. 1, m 00. To prevent a decrease in laser output due to decomposition, the gas outlet 8 is connected from the gas lower part in the direction of the optical axis 1.
While flowing laser gas at a low speed, a discharge is generated in the discharge space 2 between the discharge electrodes 5 and 6 to obtain laser gain.

CO,レーザにおいては、一般にレーザガスの温度が低
い程大きなレーザ出力が得られるから、レーザガスを冷
却しなければなら々い。第1図の低速フロー形CO□レ
ーザにおいては放電空間2を包囲した冷却流体ジャケッ
ト4を設は放電管壁3を通してレーザガスを冷却してい
る。冷却流体ジャケット4には冷却流体を冷却流体人口
9から入れ、冷却流体出口lOから出し常に流している
。冷却流体は普通、水と油である。この場合前述の様に
レーザガスは、冷却流体ジャケット4を流れる冷却流体
により、放電管壁3を通してのみ冷却されるだけなので
レーザガスの温度は低くならず、まに、C02の分解物
の放電空間2外への除去が充分でなく高々75’/mの
レーザ出力しか期待できない。
In CO lasers, generally the lower the temperature of the laser gas, the greater the laser output can be obtained, so the laser gas must be cooled. In the slow flow type CO□ laser shown in FIG. 1, a cooling fluid jacket 4 surrounding the discharge space 2 is provided to cool the laser gas through the discharge tube wall 3. Cooling fluid is introduced into the cooling fluid jacket 4 from a cooling fluid port 9, and is constantly flowing out from a cooling fluid outlet lO. Cooling fluids are typically water and oil. In this case, as mentioned above, the laser gas is cooled only through the discharge tube wall 3 by the cooling fluid flowing through the cooling fluid jacket 4, so the temperature of the laser gas does not decrease, and the temperature of the laser gas does not decrease. Since the removal of the particles is not sufficient, a laser output of only 75'/m can be expected.

ただし、低速フロー形CO,レーザにおいてはレーザ発
振モードは放電管壁で制限されるので、レーザ加工に最
適なTEMooモードが容易に得られる。
However, in the case of a low-speed flow type CO laser, the laser oscillation mode is limited by the wall of the discharge tube, so the TEMoo mode, which is optimal for laser processing, can be easily obtained.

第2図は本発明の一実施例である。本発明の002レー
ザ管において社、放電路12を形成すべく放電板13を
所定の間隔で、レーザ光軸11の方向に複数個重ね、レ
ーザ管外囲管19に設置している。放電板13は第3図
に示す様に、放電路用穴21と複数個のガス70−穴2
2を持つ。ガスフロー穴22は、放電路用穴21の中心
を通る直II!24の片側のガス70−穴部23にのみ
設ける。放電板130重ね方は、第4図に示す如く、放
電路用穴21が軸25を中心として一直線に重なるよう
に、かつ、ガスフロー穴部23が重ならない様にする。
FIG. 2 shows an embodiment of the present invention. In the 002 laser tube of the present invention, a plurality of discharge plates 13 are stacked at predetermined intervals in the direction of the laser optical axis 11 to form a discharge path 12, and are installed in the laser tube outer tube 19. As shown in FIG. 3, the discharge plate 13 has a discharge path hole 21 and a plurality of gas holes 2.
Has 2. The gas flow hole 22 is straight through the center of the discharge path hole 21! Gas 70 on one side of 24 is provided only in the hole 23. As shown in FIG. 4, the discharge plates 130 are stacked so that the discharge path holes 21 overlap in a straight line around the shaft 25 and the gas flow holes 23 do not overlap.

これは放電空間の周囲を流れるガスが螺旋状に流れるよ
うにして放電空間内のガスとたえず入れ替るようにする
ためである。またガスフロー穴の大きさは、放電路用穴
よりもインピーダンスが大きくなり、放電が放電路用穴
の部分で起るように設定しである。なお、第4図の軸2
5は、第2図のレーザ光軸と一致する。
This is to cause the gas flowing around the discharge space to flow in a spiral pattern and to constantly replace the gas within the discharge space. Further, the size of the gas flow hole is set so that the impedance is larger than that of the discharge path hole, and discharge occurs in the discharge path hole. Note that axis 2 in Figure 4
5 coincides with the laser optical axis in FIG.

第2図の00.レーザにおいては、レーザガスを連続的
にガス人口17かも導入し、ガス出口18からガスを排
出しながら放電電極15と16の間で放電路用穴21を
通って放電を起しレーザの利得を得る。
00 in Figure 2. In the laser, laser gas is continuously introduced into the gas population 17, and while the gas is discharged from the gas outlet 18, a discharge is generated between the discharge electrodes 15 and 16 through the discharge path hole 21 to obtain laser gain. .

第1図の従来の00.レーザ管においてはレーザ管を流
れるレーザガスの粒子の全てが加熱され、また、CO2
の分解物は、レーザ管外へ除去されるまで放電空間に残
留する。ところが第2図の場合、レーザガスの流速を第
1図の場合と同じにすると、レーザ管を流れるガスのc
d/(Od+0+r) t、か放電(Od+Of )←
手放電路に存在しない。また、励起されているガスは周
囲のガスとたえず入れかわるため分解物はすみやかに放
電空間より取りのぞがれる。ζこでOdは放電路穴21
でのガスの流れのコンダクタンス、Cfは複数個のガス
フロ用穴22のコンダクタンスの和である。
The conventional 00. In the laser tube, all the particles of laser gas flowing through the laser tube are heated, and CO2
The decomposed products remain in the discharge space until they are removed outside the laser tube. However, in the case of Fig. 2, if the flow velocity of the laser gas is the same as in Fig. 1, the c of the gas flowing through the laser tube is
d/(Od+0+r) t, discharge (Od+Of)←
Not present in the hand discharge path. Further, since the excited gas is constantly replaced with surrounding gas, decomposed products are quickly removed from the discharge space. ζ Here, Od is the discharge path hole 21
The gas flow conductance, Cf, is the sum of the conductances of the plurality of gas flow holes 22.

従って第1図の場合と同様に、冷却流体ジャケット14
に冷却流体を流せば、第2図の場合の方が第1図の場合
に較ベレーザガスの温度が低く、また放電空間中の00
2の分解物の量が少ないので大きなレーザ出力が得られ
る。
Therefore, as in FIG.
If cooling fluid is flowed into the discharge space, the temperature of the laser gas will be lower in the case of Fig. 2 than in the case of Fig. 1.
Since the amount of the decomposition product No. 2 is small, a large laser output can be obtained.

なお放電板13には主として熱伝導率の高い材料、すな
わち、BN、Bed、A/、O8,カーボングラファイ
ト、などの絶縁物やOu、W、などの金属が用いられる
。第2図のレーザ管の発振モードは、放電路用穴21の
径によって制限されるので第1図と同様レーザ加工に最
適な発振モードTEMooモードが得られる。
Note that the discharge plate 13 is mainly made of a material with high thermal conductivity, that is, an insulator such as BN, Bed, A/, O8, carbon graphite, or a metal such as Ou or W. Since the oscillation mode of the laser tube shown in FIG. 2 is limited by the diameter of the discharge path hole 21, the oscillation mode TEMoo mode, which is optimal for laser processing, can be obtained as in FIG. 1.

ところで、第2図のレーザ管においては特徴的なレーザ
ガスの冷却方法が考えられる。第5図は放電路板を重ね
るとき組み立て棒26を用いる場合であるが、この棒2
6を管にして内部に冷却流体を流せば、レーザガスは第
2図の実施例よりも効率よく冷却され、より大きなレー
ザ出力が得られる。勿論m2図と第5図の冷却方法すな
わち、ジャケットを用いる方法と組み立て神を管にして
冷却流体を流す方法を併用しても良い。
By the way, in the laser tube shown in FIG. 2, a characteristic laser gas cooling method can be considered. Figure 5 shows the case where an assembly rod 26 is used when stacking discharge circuit boards.
If 6 is made into a tube and a cooling fluid is allowed to flow inside, the laser gas can be cooled more efficiently than in the embodiment shown in FIG. 2, and a larger laser output can be obtained. Of course, the cooling methods shown in FIG.

尚、上記実施例てはガスフロー開口部は穴であったが、
第6図に示すように切り欠きでもよい。
In addition, in the above embodiment, the gas flow opening was a hole, but
A notch may be used as shown in FIG.

又、第7図に示すように放電路用開口部とガスフロー開
口部とがつながっていてもよい。要は放電路用開口部で
放電が起ればよいのである。
Further, as shown in FIG. 7, the discharge path opening and the gas flow opening may be connected. The point is that the discharge only needs to occur at the opening for the discharge path.

以上詳述した様K、本発明を用いれば、放電路用開口部
と放電路用開口部よりも面積が小さい、複数個のガスフ
ロー開口部を複数個有する放電板を一定の間隔をあけて
、放電路用開口部がレーザ光軸を中心として一直線に重
なる様、また隣り合う放電板のガスフロー開口部の全部
は重ならない様、レーザ光軸方向に並べて放電路とガス
フロー路を形成することにより大きなレーザ出力がTE
Mooモードで得られるガスフロー形CO□レーザ管が
得られる。
As described in detail above, if the present invention is used, the discharge plate having a discharge path opening and a plurality of gas flow openings each having a smaller area than the discharge path opening can be arranged at regular intervals. , the discharge path and the gas flow path are formed by arranging them in the laser optical axis direction so that the discharge path openings overlap in a straight line centering on the laser optical axis, and so that the gas flow openings of adjacent discharge plates do not overlap. As a result, the large laser power is TE
A gas flow type CO□ laser tube obtained in Moo mode is obtained.

なお、以上の説明は00.レーザーに限定しているがO
O2レーザ、N02レーザなどにも本発明は適用できる
ことは明らかである。
The above explanation is based on 00. Although it is limited to lasers,
It is clear that the present invention can also be applied to O2 lasers, N02 lasers, and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の低速70−形CO2レーザ管の構成図、 l・・・レーザ光軸、2・・・放電空間、3・・・放電
管壁。 4・・冷却流体ジャケラ)、5.6・・・電極・7・・
・レーザガス入口、8・・・レーザガス出口。 9・・・冷却流体入口、10・・・冷却流体出口。 第2図は本発明の一実施例を示す図、第3図、第6図、
81¥7図は本発明に用いる放電板の実施例を示す図、
第4図、第5図は放電板の配置を示す図である。 11・・・レーザ光軸、12・・・放電路、13・・・
放電板、114・・・冷却流体ジャクツ)、15.16
・・・放電電極。 I7・・・レーザガス人口、18・・・レーザガス出口
。 19・・レーザ管壁、21・・・放電路用開口部。 22・・・カス70一用開1部、23・・・ガス70−
開]」部、24 ・放電路用開口部の中心を通る直線。 25・・・軸、26・・・組み立て棒。 第1 図 第2図 5 75図 6 3 第6図 オフ図
Fig. 1 is a configuration diagram of a conventional low-speed 70-type CO2 laser tube. 1... Laser optical axis, 2... Discharge space, 3... Discharge tube wall. 4...Cooling fluid jacket), 5.6...Electrode, 7...
・Laser gas inlet, 8...Laser gas outlet. 9... Cooling fluid inlet, 10... Cooling fluid outlet. Fig. 2 is a diagram showing an embodiment of the present invention, Fig. 3, Fig. 6,
81¥7 Figure is a diagram showing an example of the discharge plate used in the present invention,
FIGS. 4 and 5 are diagrams showing the arrangement of discharge plates. 11... Laser optical axis, 12... Discharge path, 13...
Discharge plate, 114...cooling fluid jack), 15.16
...discharge electrode. I7...Laser gas population, 18...Laser gas outlet. 19... Laser tube wall, 21... Opening for discharge path. 22...Gas 70-1 opening, 23...Gas 70-
24 - A straight line passing through the center of the opening for the discharge path. 25... shaft, 26... assembly rod. Figure 1 Figure 2 Figure 5 75 Figure 6 3 Figure 6 Off view

Claims (1)

【特許請求の範囲】[Claims] レーザガスをレーザ光軸方向に常時流すガスレーザ管に
おいて′、放電路用開口部とを有し、また前記放電路用
開口部よシも開口面積が小さい1又社複数のガスフロー
開口部とを崩する放電板を複数個前記放電板の放電路用
開口部がレーザ光軸を中心にし一直線になるように、な
おかつ隣りあう前記放電板のガスフロー開口部が全部は
重ならない様に、レーザ光軸方向に、所定の間隔でレー
ザ管内に並べて放電路とガスフロー路を形成することを
特徴とするガス70−形ガスレーザ管。
A gas laser tube in which laser gas is constantly flowed in the direction of the laser optical axis has an opening for a discharge path, and the opening for the discharge path also has a small opening area or a plurality of gas flow openings. A plurality of discharge plates are arranged so that the discharge path openings of the discharge plates are aligned in a straight line with the laser optical axis as the center, and the gas flow openings of adjacent discharge plates do not overlap. A gas 70-type gas laser tube characterized in that a discharge path and a gas flow path are arranged in the laser tube at predetermined intervals in the direction of the gas laser tube.
JP21557783A 1983-11-16 1983-11-16 Gas flow type gas laser tube Pending JPS60107878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21557783A JPS60107878A (en) 1983-11-16 1983-11-16 Gas flow type gas laser tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21557783A JPS60107878A (en) 1983-11-16 1983-11-16 Gas flow type gas laser tube

Publications (1)

Publication Number Publication Date
JPS60107878A true JPS60107878A (en) 1985-06-13

Family

ID=16674738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21557783A Pending JPS60107878A (en) 1983-11-16 1983-11-16 Gas flow type gas laser tube

Country Status (1)

Country Link
JP (1) JPS60107878A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004584A (en) * 2006-06-20 2008-01-10 Shibuya Kogyo Co Ltd Laser oscillator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004584A (en) * 2006-06-20 2008-01-10 Shibuya Kogyo Co Ltd Laser oscillator

Similar Documents

Publication Publication Date Title
JPS5673484A (en) Voiceless discharge gas laser device
CA1188782A (en) Axial flow laser apparatus
JPS60107878A (en) Gas flow type gas laser tube
JP6772273B2 (en) Thermoacoustic energy conversion system
JPS6230715B2 (en)
US4771436A (en) Gas laser oscillator having a gas flow smoothing device to smooth gas flow in the electrical discharge region
JPH07187609A (en) Ozonizer
JPS6029238B2 (en) CO↓2 gas laser device
JPS60115280A (en) Gas laser oscillator
JPS62298193A (en) Excimer laser characterized by highly repetitive discharge excitation
JPS62106681A (en) Gas laser oscillator
JP3065681B2 (en) Gas laser oscillation device
JPS59218785A (en) Gas laser oscillator
JPS6230716B2 (en)
JPH1084148A (en) Gas laser oscillation device
JPH0870150A (en) Sold laser oscillator
JP3427338B2 (en) Microwave-excited gas laser oscillator
JPS6384180A (en) Cas laser oscillator
JPH02271580A (en) Gas laser oscillator
JP2014110321A (en) Gas laser oscillator
JPS62200780A (en) High-speed axial-flow-type gas laser device
JPH04305986A (en) Gas laser oscillator
JPS5966179A (en) Gas laser device
JPH05299726A (en) Laser oscillator
JPH02201979A (en) Laser oscillator