JPS60107819A - Method of producing aluminum electrolytic condenser - Google Patents

Method of producing aluminum electrolytic condenser

Info

Publication number
JPS60107819A
JPS60107819A JP21520483A JP21520483A JPS60107819A JP S60107819 A JPS60107819 A JP S60107819A JP 21520483 A JP21520483 A JP 21520483A JP 21520483 A JP21520483 A JP 21520483A JP S60107819 A JPS60107819 A JP S60107819A
Authority
JP
Japan
Prior art keywords
aluminum
aluminum electrolytic
producing aluminum
electrolytic condenser
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21520483A
Other languages
Japanese (ja)
Inventor
清水 潤一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21520483A priority Critical patent/JPS60107819A/en
Publication of JPS60107819A publication Critical patent/JPS60107819A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (21) 発明の技術分野 本発明はアルミニウム固体電解コンデンサの製造方法、
特に漏れUi流を低減させる製造方法に関1−る。
[Detailed Description of the Invention] (21) Technical Field of the Invention The present invention relates to a method for manufacturing an aluminum solid electrolytic capacitor;
In particular, it relates to a manufacturing method for reducing leakage Ui flow.

(bl 技術の背七4 せこれを1葵碓として構成したアルミニウム固体「電解
コンデンサVこおいて、陽極酸化皮膜は陽極体の微細な
凹凸に追随形成きせることができる。そこで、陽極体の
表面をエツチングして人為的に表面積を拡大させる拡面
処理により、小さい陽極体て大きな静電容量を得ること
が可能であり、このような拡面処理は既に実施されてい
る。
(BL Technological Background 74) In an aluminum solid electrolytic capacitor V, an anodized film can be formed to follow the fine irregularities of the anode body. Therefore, the surface of the anode body It is possible to obtain a large capacitance with a small anode body by a surface enlarging process in which the surface area is artificially enlarged by etching, and such a surface enlarging process has already been carried out.

(C) 従来技術と問題点 第1図はアルミニウム固体電舞コンデンナの構成例を示
すためその一部分を破断した正面し1である。
(C) Prior Art and Problems Figure 1 is a partially cutaway front view showing an example of the structure of an aluminum solid electrolyte condenser.

第1図において、コンデンサ1はリード線8の一端が溶
接された陽極端子7を溶接した陽w体2の表面に、その
陽極酸化皮膜3と二酸化マンガン層4を順次積層形成し
、その表面に被着しlこ陰極l綬5に陰極リード線9の
一端をはんだ10で接和℃させたのち、樹脂外装置1が
被着されたものである。
In FIG. 1, a capacitor 1 is constructed by sequentially laminating an anodic oxide film 3 and a manganese dioxide layer 4 on the surface of an anode body 2 to which an anode terminal 7 to which one end of a lead wire 8 is welded is welded. After one end of the cathode lead wire 9 is bonded to the cathode ribbon 5 with solder 10, the resin-covered device 1 is attached.

このようなコンデンサ1において陽極体2は、拡面処理
に先立って熱処理ヲ施してその内部ひずみが除去されて
おり、陽極酸化皮Bm3の形成は、従来、拡面処理に引
続いて実施しており、拡面処理により発生する内部ひず
みを無視していた。
In such a capacitor 1, the anode body 2 is subjected to heat treatment to remove its internal strain prior to the surface expansion treatment, and the formation of the anodic oxide skin Bm3 has conventionally been performed following the surface expansion treatment. However, the internal strain caused by the surface expansion process was ignored.

(dl 発明の目的 本発明の目的は、アルミニウム固体電解コンデンサの高
性能化を図るため、従来の構成と製造方法を見直した結
果、拡面処理による内部ひずみがその漏れ屯泥に関って
いることが分ったため、該内部ひずみ全除去し漏れ゛r
区〆Qf低減せしめることである。
(dl Purpose of the Invention The purpose of the present invention is to improve the performance of aluminum solid electrolytic capacitors, and as a result of reviewing the conventional structure and manufacturing method, it has been found that internal strain caused by surface expansion treatment is related to leakage. Since it was found that the internal strain was completely removed, the leakage was prevented.
The goal is to reduce Qf.

tel 発明の構成 上記目的は、高純度アルミニウムからなる陽極体を拡面
処理したのち、280℃〜350℃で5分〜20分間の
熱処理を施し、次いで塩酸系エツチング液に浸演して前
記熱処理による酸化皮膜を溶去し、然るのち陽摩り辰化
皮膜を形成させたことを特徴とするアルミニウム固体電
解コンデンサの製造方法により達成される。、 tfl 発明の実施Vり 以下、本% ’!f4方法の主安工8を示す第2図を用
いて本旬明′T:説明する。
tel Structure of the Invention The above object is to subject an anode body made of high-purity aluminum to a surface-expanding treatment, then heat treat it at 280°C to 350°C for 5 to 20 minutes, and then immerse it in a hydrochloric acid-based etching solution to remove the heat treatment. This is achieved by a method for manufacturing an aluminum solid electrolytic capacitor, which is characterized in that the oxide film is dissolved away, and then a varnished film is formed by abrasion. , tfl Implementation of the Invention Hereinafter, this%'! This will be explained using Fig. 2 showing the main safety work 8 of the f4 method.

第2181において、二屯枠で囲んだ熱処理工程と、該
熱処理工程に続くエツチング工程とが、本発明により従
来の拡面処理工程と陽極酸化皮膜形成工程との間に挿入
された工程である。
In No. 2181, the heat treatment step surrounded by two boxes and the etching step following the heat treatment step are steps inserted between the conventional surface enlarging treatment step and the anodic oxide film forming step according to the present invention.

そして、熱処理工程は拡m1処理により発生した内部ひ
ずみを除去すること全目的とし、そのため陽極体(アル
ミニウム)の再結晶開始温度よりも高く結晶粒の生検が
顕著になる温度より低い温度領域、即ち280℃〜35
0℃で5分〜20分間だけ加熱する。ただし、アルミニ
ウムの得結晶開始温庶は約150℃であり、例えば20
0℃で熱処理しても前記内部ひずみの除去は可能でるる
か、処理温度が低下すると処理時間が延長して実用的で
なくなるため、本発明では下限処理温度を280℃にし
た。
The purpose of the heat treatment step is to remove the internal strain generated by the m1 expansion process, and therefore, the temperature range is higher than the recrystallization start temperature of the anode body (aluminum) and lower than the temperature at which crystal grain biopsy becomes noticeable. i.e. 280℃~35
Heat at 0°C for 5 to 20 minutes. However, the starting temperature for crystallization of aluminum is approximately 150°C, for example, 20°C.
Is it possible to remove the internal strain even if the heat treatment is performed at 0°C?If the treatment temperature is lowered, the treatment time becomes longer and becomes impractical, so in the present invention, the lower limit treatment temperature is set at 280°C.

一方、前記熱処理により形成された酸化皮膜を除去する
エツチング工程は、従来から1tlA極体の拡面処理に
@酸10〜20%、硫酸5〜10g/4塩化アルミニウ
ムエアルミニウム1〜5チ塩酸系エツチング液′lc使
用しており、その面性状が二酸化マンガン層の形成に適
していることにタルみ、拡閲処L84!用と同じ8ぶ酸
系エツチング液を使用した。ただし、かかるエツチング
液に前記熱処理の終了した陽極体音浸漬する時間は、拡
面率及び面性状にや学異なるが:(0秒〜40秒でるる
On the other hand, the etching process for removing the oxide film formed by the heat treatment has conventionally been carried out using @acid 10-20%, sulfuric acid 5-10g/4 aluminum chloride aluminum 1-5 dihydrochloric acid system for surface expansion treatment of the 1tlA pole body. The etching solution 'lc' was used, and I realized that its surface properties were suitable for forming a manganese dioxide layer, so I decided to check it out in the inspection process L84! The same 8-acid-based etching solution was used as in the case. However, the time for immersing the body of the anode after the heat treatment in the etching solution varies depending on the area expansion ratio and the surface texture (from 0 seconds to 40 seconds).

そこで、第1図に示す構成のコンデンサ※−・、従来方
法と第2図の工程になる本発明方法とで同種のく、のを
作成し、その両者を比較したところ従来方法になるコン
デンサのjA:Iれijl′5iLが約100 nAで
あるのに対し、本発明に係わるコンデンサは従来のコン
デンサよりも附梧酸化皮膜が均−化及び低欠陥化され、
その漏れ一1シ流は20〜30nAであった。
Therefore, we created similar types of capacitors with the configuration shown in Figure 1 using the conventional method and the process of the present invention, which is the process shown in Figure 2, and compared the two. jA:Ireijl'5iL is approximately 100 nA, whereas the capacitor according to the present invention has a more uniform oxide film and fewer defects than the conventional capacitor, and
Its leakage current was 20-30 nA.

(gl 発明の効果 以上ル1(、明したμII < z:発明によれば、ア
ルミニウムIITJ j4s 1:Σ月+rコンデンサ
の漏れ正流を低減させることによりそれ苓・高性能化し
た効果が45りその益するところは極めて太きい。
According to the invention, the effect of improving the performance by reducing the leakage current of the aluminum IITJ j4s 1: Σ + r capacitor is 45%. The benefits are extremely large.

4、し1面の17+i 8’なr、−明し11図はアル
ミニクム固体市田コンテンサの構成例を示すためその一
部分會破1臥した正面図、ゐ■21°りは本うれ明]月
去に係わる主沙工程を説明するための工程図である。
4. 17 + i 8' r, - Figure 11 is a front view of a partially disassembled aluminum solid Ichida capacitor to show an example of its structure. FIG.

図において、1はアルミニウム固体電5r4コンデンサ
、2は陽極体、3は陽極酸化皮膜を示す。
In the figure, 1 is an aluminum solid electrolytic 5R4 capacitor, 2 is an anode body, and 3 is an anodized film.

Claims (1)

【特許請求の範囲】[Claims] 高純度アルミニウムからなる陽極体を拡面処理したのち
、280℃〜350℃で5分〜20分間の熱処理を施し
、次いで塩酸系エツチング液に浸漬して酸化皮膜を溶去
し、然るのち陽極酸化皮)漢を形成させたことf特徴と
するアルミニウム固体電解コンデンサの製造方法。
After surface-expanding the anode body made of high-purity aluminum, it is heat-treated at 280°C to 350°C for 5 to 20 minutes, then immersed in a hydrochloric acid-based etching solution to dissolve away the oxide film, and then the anode A method for manufacturing an aluminum solid electrolytic capacitor, characterized by forming a cylindrical shape (oxidized skin).
JP21520483A 1983-11-16 1983-11-16 Method of producing aluminum electrolytic condenser Pending JPS60107819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21520483A JPS60107819A (en) 1983-11-16 1983-11-16 Method of producing aluminum electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21520483A JPS60107819A (en) 1983-11-16 1983-11-16 Method of producing aluminum electrolytic condenser

Publications (1)

Publication Number Publication Date
JPS60107819A true JPS60107819A (en) 1985-06-13

Family

ID=16668411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21520483A Pending JPS60107819A (en) 1983-11-16 1983-11-16 Method of producing aluminum electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS60107819A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0880310A1 (en) * 1997-05-20 1998-11-25 Sagem S.A. Process for manufacturing printed circuits on a metallic substrate
US6547721B1 (en) 1998-08-07 2003-04-15 Olympus Optical Co., Ltd. Endoscope capable of being autoclaved

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0880310A1 (en) * 1997-05-20 1998-11-25 Sagem S.A. Process for manufacturing printed circuits on a metallic substrate
FR2763780A1 (en) * 1997-05-20 1998-11-27 Sagem METHOD FOR MANUFACTURING PRINTED CIRCUITS ON A METAL SUBSTRATE
US6547721B1 (en) 1998-08-07 2003-04-15 Olympus Optical Co., Ltd. Endoscope capable of being autoclaved
USRE43281E1 (en) 1998-08-07 2012-03-27 Masakazu Higuma Endoscope capable of being autoclaved

Similar Documents

Publication Publication Date Title
JP2000348984A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JPS60107819A (en) Method of producing aluminum electrolytic condenser
JPH08264391A (en) Etching of aluminum foil for electrolytic capacitor
JPS5825218A (en) Method of producing low voltage electrolytic condenser electrode foil
JPH1032146A (en) Method of manufacturing electrode foil for aluminum electrolytic capacitor
JPH1081945A (en) Aluminum foil for electrolytic capacitor electrode and its production
JP3582451B2 (en) Manufacturing method of anode foil for aluminum electrolytic capacitor
JPH09246111A (en) Formation of electrode foil for aluminum electrolytic capacitor
JP3478039B2 (en) Method of forming electrode foil for aluminum electrolytic capacitor
JP3216477B2 (en) Method for producing electrode foil for aluminum electrolytic capacitor
JP3976534B2 (en) Anode foil for aluminum electrolytic capacitor and chemical conversion method thereof
JP3480164B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP3480311B2 (en) Method for producing electrode foil for aluminum electrolytic capacitor
JP3498349B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP3467827B2 (en) Manufacturing method of anode foil for aluminum electrolytic capacitor
JP2745575B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP2002246274A (en) Electrode foil for aluminum electrolytic capacitor and its producing method
JP3537127B2 (en) Aluminum foil for electrolytic capacitor electrodes
JPH10112423A (en) Formation method for anodic foil for aluminum electrolytic capacitor
JPH08293441A (en) Electrode foil for aluminum electrolytic capacitor
JP2808606B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP3496511B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP2001291646A (en) Aluminum electrode foil for electrolytic capacitor/ and its manufacturing method
JP3729031B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JPH07249549A (en) Method of manufacturing electrode foil for aluminum electrolytic capacitor