JPS60106961A - Multiple coating method - Google Patents

Multiple coating method

Info

Publication number
JPS60106961A
JPS60106961A JP21402983A JP21402983A JPS60106961A JP S60106961 A JPS60106961 A JP S60106961A JP 21402983 A JP21402983 A JP 21402983A JP 21402983 A JP21402983 A JP 21402983A JP S60106961 A JPS60106961 A JP S60106961A
Authority
JP
Japan
Prior art keywords
coating
coated
cooling
thickness
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21402983A
Other languages
Japanese (ja)
Inventor
Toshihiko Odohira
尾土平 俊彦
Shigeo Itano
板野 重夫
Tetsuyoshi Wada
哲義 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP21402983A priority Critical patent/JPS60106961A/en
Publication of JPS60106961A publication Critical patent/JPS60106961A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated

Abstract

PURPOSE:To carry out satisfactory multiple coating by ion plating by heating a body to be coated to a prescribed temp., coating it to the stripping limit thickness, cooling the coated body once, coating it again after reheating, and repeating the cooling, reheating and coating stages. CONSTITUTION:When a body is coated with ceramics, cermet, a metal or the like by ion plating, the body is heated to a prescribed temp. and coated to the stripping limit thickness. The coated body is cooled once, reheated, and coated again. The cooling, reheating and coating stages are repeated until the resulting coating layers attain to a desired total thickness. The coating layers are not stripped, and since the coating is carried out in vacuum, the layers bond well to each other, forming a thick coating layer.

Description

【発明の詳細な説明】 本発明は被処理体面への多層コーティング法に関する。[Detailed description of the invention] The present invention relates to a method for multilayer coating on the surface of an object to be treated.

イオンブレーティング等の真空蒸着法によりセラミック
、サーメット、金属等の被膜を被処理体表面に生成させ
る場合、コーティング材料により、通常被覆される最大
膜厚には限界があることが知られている。即ち、セラミ
ックでは10μ程に、サーメットで60μ程度、金属で
50μ程度である。この理由としては、被覆材表面に生
成される被膜内部に蒸着中に発生する内部応力、母材と
被膜との熱膨張係数の差異等による応力により、被膜が
剥離したり、亀裂を生成するためである。
When a coating of ceramic, cermet, metal, or the like is formed on the surface of an object to be treated by a vacuum deposition method such as ion blating, it is known that there is a limit to the maximum thickness of the coating depending on the coating material. That is, the thickness is about 10μ for ceramics, about 60μ for cermets, and about 50μ for metals. The reason for this is that the coating may peel off or crack due to internal stress generated on the surface of the coating material during vapor deposition, stress due to differences in thermal expansion coefficients between the base material and the coating, etc. It is.

本発明は、これまでの被覆される最大膜厚の概念を打破
して最大被覆膜厚のアップを図るべくなされたもので、
イオンブレーティング等の真空蒸着法により、セラミッ
ク、サーメット。
The present invention was made to break down the conventional concept of maximum coating thickness and increase the maximum coating thickness.
Ceramics and cermets are produced using vacuum deposition methods such as ion blasting.

金属を被処理体表面に多層コーティングする方法におい
て、被処理体を所望の温度に加熱して、コーティング処
理を施行し、コーティング材料、コーティング条件によ
シ律速される剥離限界厚みまで被覆処理した後、被処理
体の温度を常温まで冷却させ、然る後、コーティング処
理された処理体を再度昇温させて、コーティング処理を
行い、剥離限界厚みまで被膜を生成させ、常温まで冷却
させ、かかるプロセスを繰り返しながら、被処理体表面
に被膜を生成させることを特徴とする多j−コーティン
グ法に関するものである。
In a method of multi-layer coating metal on the surface of an object to be treated, the object to be treated is heated to a desired temperature, the coating process is carried out, and the coating process is performed to the peeling limit thickness determined by the coating material and coating conditions. , the temperature of the object to be treated is cooled to room temperature, then the temperature of the coated object is raised again to perform the coating treatment, a film is formed to the peeling limit thickness, and the object is cooled to room temperature; The present invention relates to a multi-coating method characterized in that a film is formed on the surface of an object to be treated by repeating the above steps.

通常、イオンブレーティング等の真空蒸着法によりコー
ディング処理を行う場合、被(夏母材とコーティング被
膜の密層力を向上させるため、被覆母材奢所定の温度に
加熱した状態にてコーティング処理が行われるが、本発
ψJでは第1図に示す如く、コーティング過程に於て被
覆母材に加熱−冷却のサイクルを与え、加熱過程でコー
ティング処理を行い、順次所望の厚みまでコーティング
を繰り返す多層コーティング処理を行う。かかる処理に
より、これまでのコーティング法では達成し得ない膜厚
を得ることd!できる。本発明による処理では第2図に
示す如く、一層目のコーティング2は被覆母材1に対す
るコーティング処理となるが、二層目以降はコーテイン
グ材同志のコーティング処理で6!7、Lかも被処理面
は大気中に触れない為極めて清浄な表面に対するコーテ
ィング処理となり、秀れた密着力が得られる。なお、第
2図中、2′は二層目の、2″は三層目のコーティング
全示している。
Normally, when coating is performed using a vacuum deposition method such as ion blasting, the coating process is performed while the coating base material is heated to a predetermined temperature in order to improve the interlayer strength between the base material and the coating film. However, in the present ψJ, as shown in Figure 1, a heating-cooling cycle is applied to the coated base material during the coating process, the coating process is performed during the heating process, and the coating is repeated sequentially until the desired thickness is reached. With this treatment, it is possible to obtain a film thickness that cannot be achieved with conventional coating methods.In the treatment according to the present invention, as shown in FIG. It is a coating process, but from the second layer onwards, the coating material is coated with the same coating material, so the surface to be treated does not come into contact with the atmosphere, so the coating process is performed on an extremely clean surface, resulting in excellent adhesion. In Fig. 2, 2' indicates the second layer, and 2'' indicates the third layer.

本発明方法が適用できる母材として鉱、鉄鋼材料、 A
l、 A1合金、その他殆んど全ての金属、AhOs、
SiO□ sic 等のセラミック等がある。
The base material to which the method of the present invention can be applied is ore, steel material, A
l, A1 alloy, almost all other metals, AhOs,
There are ceramics such as SiO□ sic.

また、コーテイング材であるセラミックとして社、Ti
e、 TiN、 811N4 、 SiC,A110g
 等が使用でき、サーメットとしては、Ni−N1p。
In addition, as a ceramic coating material, Ti
e, TiN, 811N4, SiC, A110g
Ni-N1p can be used as the cermet.

We−Co、 Cu−CuO等が使用でき、金属として
は、Al、 Or、 Ni、 Ti、 Fe 等が使用
できる。
We-Co, Cu-CuO, etc. can be used, and as the metal, Al, Or, Ni, Ti, Fe, etc. can be used.

以下に、実施例をあげて本発明方法を具体的に述べる。The method of the present invention will be specifically described below with reference to Examples.

実施例1 工具鋼(SKH9)を温度500℃に加熱した状態でイ
オンブレーティング法によりTiNをコーティングした
ところ、最大限界膜厚は10μ程度であり、これ以上の
膜厚増加を狙ってコーティング処理を施行すると剥離を
生じた。一方、本発明方法を適用して、下記の要領によ
り上記工具鋼の温度を500℃→60℃の5回のサイク
ルを与え、500℃保持中にイオンブレーティング法で
TiNを10μ厚にコーティングする処理を3回線シ返
した結果、被処理面上に剥離を生ずることなく36μの
コーティングが達成できfc。
Example 1 When tool steel (SKH9) was heated to 500°C and coated with TiN using the ion blating method, the maximum film thickness was about 10μ, and the coating treatment was carried out with the aim of increasing the film thickness further. When applied, peeling occurred. On the other hand, by applying the method of the present invention, the temperature of the tool steel is cycled 5 times from 500°C to 60°C according to the following procedure, and while the temperature is maintained at 500°C, TiN is coated to a thickness of 10 μm using an ion blating method. As a result of repeating the treatment three times, a coating of 36 μm was achieved without peeling on the treated surface fc.

すなわち5 tm t X 30 wm X 50 m
の工具鋼(8KH9)を試験片とし、該試験片を大気中
で70ンによる超音波洗浄により脱脂した後、真空槽に
入れ、5 X 10−’Torrの圧力まで排気した後
、Arガスを導入し、I X 10−”Torrの圧力
で、電圧750V、電流1Aの条件でイオンボンバード
処理を10分間施した。次いで、4 X 10−’To
rrの圧力まで排気し、試験片を500℃に加熱した後
、中空熱陰極タイプの電子銃(HCDガン)により、電
圧45v、電流400Aで電子線を蒸発ルツボ内のT1
に照射し、Tiを加熱蒸発させると共に、真空槽内にN
tを導入して圧力f 8 X 10−’Torrに維持
した後、シャッターを開き、試験片上にTiN ′t−
10μmコーティングする。次にシャッターを閉じて、
コーティングを中止した後、ヒーターを切って試験片の
温度を50℃まで冷却し、再度500℃に加熱した後、
上記と同一条件でTiNをさらに10μ惰コーテイング
する。同様の方法で計6回のコーティングを集施し、膜
厚30μmのTiNコーティングを得た。
i.e. 5 tm t x 30 wm x 50 m
A tool steel (8KH9) was used as a test piece, and the test piece was degreased by ultrasonic cleaning at 70 tons in the atmosphere, placed in a vacuum chamber, and evacuated to a pressure of 5 x 10-' Torr, and then exposed to Ar gas. was introduced and subjected to ion bombardment for 10 minutes under the conditions of a voltage of 750 V and a current of 1 A at a pressure of I X 10-'Torr.
After evacuation to the pressure of
is irradiated to heat and evaporate the Ti, and at the same time, N is added to the vacuum chamber.
After introducing t and maintaining the pressure f 8 X 10-'Torr, the shutter was opened and TiN't-
Coat 10 μm. Then close the shutter and
After stopping the coating, the heater was turned off and the temperature of the specimen was cooled to 50 °C, and after heating to 500 °C again,
An additional 10μ coating of TiN is applied under the same conditions as above. A total of six coatings were applied in the same manner to obtain a TiN coating with a thickness of 30 μm.

実施例2 5mtX30mX30mmの工具鋼(SKH9)を実施
例1と同様の脱脂、イオンボンノく−ド処理を施した後
、4 X 10”’Torrの圧力まで排気し、試験片
を500℃に加熱し、HCDガンで47V、450人で
電子線を照射し、Niを蒸発させると共に空気を導入し
て圧力を6 X 10”Torr に維持した後、シャ
ッターを開き、Ni中にNiOが分散されたNi−Ni
0 被膜を10μmコ−ティングした。次いで、実施例
1と同様の方法によシ計3回のコーティングを行い30
μ餌のNi−Ni0コーテイングを剥離を生ずることな
く得た。
Example 2 A 5 mt x 30 m x 30 mm tool steel (SKH9) was subjected to the same degreasing and ion bombardment treatment as in Example 1, then evacuated to a pressure of 4 x 10'' Torr, and heated the test piece to 500 ° C. After irradiating the electron beam with an HCD gun at 47V and 450 people to evaporate the Ni and introduce air to maintain the pressure at 6 x 10”Torr, the shutter was opened and the Ni- in which NiO was dispersed in the Ni- Ni
0 The film was coated with a thickness of 10 μm. Next, coating was performed a total of three times in the same manner as in Example 1 to give a coating of 30
Ni-Ni0 coating of μ bait was obtained without peeling.

実施例3 炭素鋼板(3341)を温度400℃に加熱した状態に
てイオンブレーティング法によりA1をコーティングし
たところ、最大限界膜厚は50μ程度であり、仁れ以上
の膜厚増加を担ってコーティング処理を施行すると剥離
を生じた。
Example 3 When a carbon steel plate (3341) was heated to 400°C and coated with A1 by the ion blating method, the maximum limit film thickness was about 50μ, and the coating When the treatment was applied, peeling occurred.

一方、本発明を適用して下記の要領によシ上記炭素鋼板
の温度を400℃−50℃の2回のサイクルを与え、4
00℃保持中にイオンブレーティング法でA1を50μ
厚にコーティングする処理を2回縁シ返した結果、被処
理面上に剥離を生ずることなく100μのコーティング
が達成できた。
On the other hand, applying the present invention, the temperature of the carbon steel plate was given two cycles of 400°C to 50°C according to the following procedure.
A1 was heated to 50 μm using the ion blating method while being held at 00°C.
As a result of repeating the thick coating process twice, a coating of 100 μm was achieved without peeling on the treated surface.

すなわち、5 w t X 50 tm X 50 m
mの炭素鋼板(ss41 )を用い実施例1と同様の脱
脂、イオンボンバード処理を施した後、4X10−4T
orr の圧力まで排気し、試験片を400℃に加熱し
、HCDガンにより47V、450Aで電子線を照射し
、Alを蒸発させた後、シャッターを開いてAlを50
μ倶コーテイングし、30℃まで冷却し、再び400℃
に加熱した後A1を丈に50μ情コーテイングし、計1
00μ仇のA1コーティングを剥離を生ずることなく得
た。
That is, 5 w t X 50 tm X 50 m
After degreasing and ion bombarding a carbon steel plate (SS41) in the same manner as in Example 1, 4X10-4T
The test piece was evacuated to a pressure of
μ-coated, cooled to 30℃, and then heated to 400℃ again.
After heating the A1 to a length of 50μ coating, total of 1
An A1 coating of 0.00 μm was obtained without peeling.

実施例4 5 +a t X 50 tm X 50 mの炭素鋼
板(E3S41)を用い、実施例1と同様の脱脂、イオ
ンボンバード処理を施した後、静電屋電子銃によji)
8KV。
Example 4 Using a carbon steel plate (E3S41) of 5+at x 50 tm x 50 m, it was subjected to the same degreasing and ion bombardment treatment as in Example 1, and then exposed to an electrostatic gun using an electrostatic gun.
8KV.

700mAでOrを蒸発させて、60μ情の皮膜を得た
。次iで、実施例1と同様の方法で加熱−冷却を繰返し
、計5回の蒸着で100μmのCrコーティングを得た
Or was evaporated at 700 mA to obtain a film with a thickness of 60 μm. Next, heating and cooling were repeated in the same manner as in Example 1, and a 100 μm thick Cr coating was obtained by a total of 5 vapor depositions.

従来法では30μ餌以上で剥離を生じていたが、本実施
例では、100μ惧でも剥離を生じなかった。
In the conventional method, peeling occurred when the bait was 30 μm or more, but in this example, no peeling occurred even when the bait was 100 μm or more.

以上、述べた如く本発明はイオンブレーティング等の真
空蒸着法によりコーテイング材を剥離することなく多層
コーティング処理を行うことができるものであり、工業
的に価値あるものである。
As described above, the present invention is industrially valuable because it allows multilayer coating treatment to be performed without peeling off the coating material by a vacuum deposition method such as ion blasting.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法における被処理体の加熱サイクルを
示す図、第2図は本発明方法により得られるコーティン
グ処理面の断面を模式的に示す図である。 復代理人 内 1) 明 復代理人 萩 原 亮 − 第1図 ¥2図
FIG. 1 is a diagram showing a heating cycle of an object to be treated in the method of the present invention, and FIG. 2 is a diagram schematically showing a cross section of a coated surface obtained by the method of the present invention. Sub-agents 1) Meikoku Agent Ryo Hagiwara - Figure 1 ¥2

Claims (1)

【特許請求の範囲】[Claims] イオンブレーティング等の真空蒸着法によp、セラミッ
ク、サーメット、金属を被処理体表面に多層コーディン
グする方法において、被処理体を所亘の温度に加熱して
、コーティング処理を施行し、コーティング材料、コー
ティング条件により律速される剥離限界厚みまで被覆処
理した後、被処理体の温度を常温まで冷却させ、然る後
、コーティング処理された処理体を再度昇温させて、コ
ーティング処理を行い、剥離限界厚みまで被膜を生成さ
せ、常温まで冷却させ、かかるプロセスを繰り返しなが
ら、被処理体表面に被膜を生成させることを特徴とする
多層コーティング法。
In a method of multi-layer coating p, ceramic, cermet, or metal on the surface of a workpiece using a vacuum deposition method such as ion blasting, the workpiece is heated to a certain temperature, the coating process is performed, and the coating material is coated. After coating to the peeling limit thickness determined by the coating conditions, the temperature of the object to be treated is cooled to room temperature, and then the temperature of the coated object is raised again to perform the coating treatment and peel. A multilayer coating method that is characterized by forming a film to a limit thickness, cooling it to room temperature, and repeating this process to form a film on the surface of the object to be treated.
JP21402983A 1983-11-16 1983-11-16 Multiple coating method Pending JPS60106961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21402983A JPS60106961A (en) 1983-11-16 1983-11-16 Multiple coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21402983A JPS60106961A (en) 1983-11-16 1983-11-16 Multiple coating method

Publications (1)

Publication Number Publication Date
JPS60106961A true JPS60106961A (en) 1985-06-12

Family

ID=16649094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21402983A Pending JPS60106961A (en) 1983-11-16 1983-11-16 Multiple coating method

Country Status (1)

Country Link
JP (1) JPS60106961A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323892A (en) * 1991-04-23 1992-11-13 Matsushita Electric Works Ltd Method of forming conductive film on ceramic circuit board
JPH062903U (en) * 1992-06-01 1994-01-14 東北電力株式会社 Storage box for sealed wire fuse

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323892A (en) * 1991-04-23 1992-11-13 Matsushita Electric Works Ltd Method of forming conductive film on ceramic circuit board
JPH062903U (en) * 1992-06-01 1994-01-14 東北電力株式会社 Storage box for sealed wire fuse

Similar Documents

Publication Publication Date Title
US5656335A (en) Process for coating a substrate with a material giving a polished effect
KR101680864B1 (en) Ceramic coating methods of iron-based substrate introduced metal oxide layer for corrosion resistance
KR101353451B1 (en) Coated steel sheet and method for manufacturing the same
GB2226334A (en) Multilayer coatings
JPS60106961A (en) Multiple coating method
JPH068500B2 (en) Alumina-coated A-1 / A-1 alloy member manufacturing method
JPH01136962A (en) Coating method
JPS62103379A (en) Manufacture of vacuum chamber in cvd apparatus and dry etching apparatus
US9909207B1 (en) Ion vapor deposition of aluminum on non-metallic materials
EP4039845A1 (en) Corrosion-resistant member
JPH029104B2 (en)
JPS61288060A (en) Plasma arc thermal spraying method under reduced pressure
JPS59205468A (en) High temperature corrosion resistant material
JPH07208520A (en) Ceramic-coated machine element part and ceramic coating method
JPS6172634A (en) Mold for molding glass article
JPS5836671B2 (en) Surface treatment method
JPS591791B2 (en) Metal carbide film coating method
JPS6349750B2 (en)
JPS6379949A (en) Coating method for metallic material having passivating film
SU1475973A1 (en) Method of producing coatings
JPS60106959A (en) Surface treatment of metallic material
JPH0238558A (en) Manufacture of decorative steel sheet having extremely excellent corrosion resistance
JPS62283258A (en) Piston ring
Dini Techniques for Coating Molybdenum
JPH0551945U (en) Cooking pots