JPS59205468A - High temperature corrosion resistant material - Google Patents

High temperature corrosion resistant material

Info

Publication number
JPS59205468A
JPS59205468A JP8006883A JP8006883A JPS59205468A JP S59205468 A JPS59205468 A JP S59205468A JP 8006883 A JP8006883 A JP 8006883A JP 8006883 A JP8006883 A JP 8006883A JP S59205468 A JPS59205468 A JP S59205468A
Authority
JP
Japan
Prior art keywords
high temperature
temperature corrosion
powder
heat
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8006883A
Other languages
Japanese (ja)
Inventor
Atsushi Takei
山崎道夫
Kazuyoshi Arai
新居和嘉
Michio Yamazaki
武井厚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP8006883A priority Critical patent/JPS59205468A/en
Publication of JPS59205468A publication Critical patent/JPS59205468A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/52Embedding in a powder mixture, i.e. pack cementation more than one element being diffused in one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Abstract

PURPOSE:To enhance the high temp. corrosion resistance of a material, which is obtained by providing a composite coating layer comprising Y-Al or Y-Cr to the surface of a heat resistant alloy, and to reduce the manufacturing cost thereof. CONSTITUTION:Y is vapor deposited on the surface of a heat resistant alloy, for example, Ni-base or Co-base heat resistant alloy by a vacuum vapor deposition method, a chemical vapor deposition method or, especially pref., an ion plating method. In the next step, diffuse permeation treatment of Al or Cr is applied to the treated alloy. This diffuse permeation treatment may be applied, for example, by a method wherein the heat resistance alloy material after Y-vapor deposition is embedded in a powdery mixture consisting of an Al-metal powder or a Cr-metal powder, an Al2O3 powder and an NH4Cl powder and subjected to heat treatment in a hydrogen stream.

Description

【発明の詳細な説明】 本発明は高温耐食性材料に関する。[Detailed description of the invention] The present invention relates to high temperature corrosion resistant materials.

高温腐食性雰囲気で用いられる耐熱合金には、高温強度
と共に耐食性が要求される。耐熱合金自身は高温強度の
向上を目的として合金設計がなされている。そのため耐
食性は表面処理によって付与しなければならない。航空
機や発電機などの各ffAガスタービンエンジンや化学
工業機器などで用いられる耐熱合金は高温腐食−よって
、その寿命が決定される場合が多い。
Heat-resistant alloys used in high-temperature corrosive atmospheres are required to have high-temperature strength and corrosion resistance. Heat-resistant alloys themselves are designed with the aim of improving high-temperature strength. Therefore, corrosion resistance must be imparted through surface treatment. Heat-resistant alloys used in various ffA gas turbine engines such as aircraft and generators, chemical industrial equipment, and the like are subject to high-temperature corrosion, which often determines their service life.

従来の耐熱合金に耐食性を付与する代表的な方法として
、耐熱合金の表面に、(1)CrまたはAlを拡散浸透
処理する方法、(2)Cr −Al 、 Si −Cr
ままは5i−Alの接合拡散浸透被覆層を設ける方法、
(3)PL+Alの複合被覆層を設ける方法が知られて
いる。しかしながら、前記(1)、および(2)は高温
耐食性が劣シ、また前記(3)は1000℃附近におけ
る耐食性が良好であるが、ptを使用するため製造コス
トが高くなる欠点がある。
Typical methods for imparting corrosion resistance to conventional heat-resistant alloys include (1) diffusion treatment of Cr or Al on the surface of the heat-resistant alloy, and (2) Cr-Al, Si-Cr.
A method of providing a bonded diffusion permeable coating layer of Mamaha 5i-Al,
(3) A method of providing a composite coating layer of PL+Al is known. However, the above (1) and (2) have poor high temperature corrosion resistance, and the above (3) has good corrosion resistance at around 1000°C, but has the disadvantage of high manufacturing cost because it uses PT.

本発明の目的は従来の欠点をなくし、高温耐食性が優れ
、且つ製造コストが安価な高温耐食性材料を提供するに
ある。
An object of the present invention is to eliminate the drawbacks of the prior art and to provide a high temperature corrosion resistant material that has excellent high temperature corrosion resistance and is inexpensive to manufacture.

本発明者らは前記目的を達成すべく研究の結果、耐熱性
合金の表面に、Y−AIまたはY−Crの複合被覆層を
設けると、密着性が優れて耐久性を有し且つ高温耐食性
の優れた材料が得られることを知見し、この知見に基い
て本発明を完成した。
As a result of research to achieve the above object, the present inventors found that when a composite coating layer of Y-AI or Y-Cr is provided on the surface of a heat-resistant alloy, it has excellent adhesion, durability, and high-temperature corrosion resistance. It was discovered that an excellent material can be obtained, and the present invention was completed based on this knowledge.

従来、前記したように、尤、Crは高温耐食性に対し、
保癌性を示す酸化物被膜を形成する元素であることは知
られているが、これらの酸化物被膜が一旦剥離すると加
速的に腐食が進行する。しかし、これをYと複合舷覆す
ると、すなわち、Y−AlまたはY−Crの複合被覆層
を形成させると、A、l、Crの酸化物層の密着性を改
善し得られる。
Conventionally, as mentioned above, Cr has a high temperature corrosion resistance.
It is known that it is an element that forms oxide films that exhibit cancer retention properties, but once these oxide films are peeled off, corrosion progresses at an accelerated pace. However, if this is combined with Y, that is, if a composite coating layer of Y-Al or Y-Cr is formed, the adhesion of the oxide layers of A, l, and Cr can be improved.

Y−AI、 Y−Crの複合’t ffl 層の形成方
法は次の方法によって行うことができろう 耐熱性合金、例えば、Ni基耐熱合金、CO基耐品合金
の表面に、Yを蒸Xrする一蒸着法としては真空蒋府法
、化学蒸着法のいずれの方法でもよいが、イオンブレー
ティング法によると、側熱合金にYが打ち込まシ1、密
〃、゛性のよい鼓膜が形成し代らね、る点で好ましい。
A method for forming a composite layer of Y-AI and Y-Cr can be carried out by the following method. As a vapor deposition method, either the vacuum Chiangfu method or the chemical vapor deposition method may be used, but according to the ion blating method, Y is implanted into the side-heated alloy, forming a dense and elastic eardrum. It is preferable in that it does not change.

Yの蒸着後、AI、またはCrの拡散浸透処理を行う。After the vapor deposition of Y, a diffusion infiltration treatment of AI or Cr is performed.

その拡散浸透処Uは、Al合金4粉末またはCr金属粉
末にAl2O3粉末とNWACI粉末を混合し、前記試
別を該混合粉末中に埋め込み、水素気流中で加熱処理す
ることにより行う。その処理温度は800℃未満では拡
iiケ浸透被ダ層の生成速度が著しく遅く、かつYの核
農層への拡散速度も遅くなる。1150℃を超えると、
拡散浸透被覆層が不均一になシ、かつYの基材合金への
拡散速度が大きくなり、良好な高温耐食性材料が得難い
ので、800〜1150℃の加熱であることが好ましい
。この場合、Y−AIのときは、雰囲気を水素気流に代
え、アルゴンガスを使用しても同様に拡散浸透を行うこ
とができる。Y−Crのときはアルゴン中では良好な高
温耐食性材料は得難い。
The diffusion infiltration treatment U is performed by mixing Al2O3 powder and NWACI powder with Al alloy 4 powder or Cr metal powder, embedding the sample into the mixed powder, and heat-treating in a hydrogen stream. If the treatment temperature is lower than 800° C., the rate of formation of the permeable layer will be extremely slow, and the rate of diffusion of Y into the layer will also be slow. When the temperature exceeds 1150℃,
Heating at 800 to 1150°C is preferable because the diffusion coating layer becomes non-uniform and the rate of diffusion of Y into the base alloy increases, making it difficult to obtain a material with good high temperature corrosion resistance. In this case, in the case of Y-AI, diffusion and infiltration can be similarly performed even if argon gas is used instead of the hydrogen gas atmosphere. When using Y-Cr, it is difficult to obtain a material with good high temperature corrosion resistance in argon.

実施例1 樅横14−厚さ2嗣の板状のNj基耐熱合金に、まず最
初にイオンブレーティング装置(でよシ蒸着した。その
方法は真空チャンバーの中で′電子ビーム溶解によって
Yを溶解し蒸発させ、そのすぐ上に設置されたグローブ
電極に約50Vの正の電圧をかけるとYの蒸気はイオン
化する。さらに基材試料に2kV程度の負の電圧をかけ
るとYイオンは基材に打ち込捷れ密着性の良いYの金属
被膜が形成された。その厚さは約31Lmであった。そ
の試料にCrの拡散浸透処理を行った。その方法はCr
金属粉末80襲、A1□03粉末17チそしてI”JH
4C1粉末3条を均一混合し、ステンレス容器に入れそ
の中に上記試料を埋め込み、水素気流中で1100℃7
時間の加熱処理を行った。これらの処理を行った結果、
表面処理層として少々、のYが均一に固溶した約30μ
mnのCrのむ、縮へ町が得られた。
Example 1 First, Y was deposited on a plate-shaped Nj-based heat-resistant alloy with a thickness of 14 mm and 2 mm thick using an ion-blating device. When the Y vapor is melted and evaporated and a positive voltage of about 50V is applied to the globe electrode placed directly above it, the Y vapor is ionized.Furthermore, when a negative voltage of about 2kV is applied to the base material sample, the Y ions are released from the base material. A metal film of Y with good adhesion was formed by hammering and wrinkling.The thickness was about 31 Lm.The sample was subjected to Cr diffusion infiltration treatment.
80 pieces of metal powder, 17 pieces of A1□03 powder, and I”JH
Three strips of 4C1 powder were uniformly mixed, placed in a stainless steel container, the above sample was embedded in it, and heated at 1100°C in a hydrogen stream.
Heat treatment was performed for an hour. As a result of these processes,
Approximately 30μ of Y is uniformly dissolved as a surface treatment layer.
A shrinkage of mn of Cr was obtained.

このY−Cr複合彼預試料の高温耐食性を他の従来技術
妬よってイ’Jられだ表面処理試料と比較した。
The high-temperature corrosion resistance of this Y--Cr composite sample was compared with that of other prior art surface-treated samples.

高温JrS食試鉄の方法は、ガラ・スタービンの燃焼ガ
スによる腐食を想定し、燃焼灰を模擬した溶融塩(75
9SNa2SO4,25% Na Cl )中シて試料
を全浸漬させ、1100 Cテ2 o n!j、nij
 f ツ51”J ノ繰り返L 7JD f、4−を行
うものである。この繰り返し高温腐食試験は連続して行
う−e<的な試駆に比較して非常に過酷な試験である1
、 本発明によるY−Cr複合被、浚試料の高温l1iII
′01tを、6幻ミ被彷試料−J=・よび従来技術での
Cr拡散浸透処5)八#:F、 Pt −Cr対合律:
頓試料と高温腐食試験ての>′Il上Ca化によって比
;ニジτした結果を図1に示す。
The high-temperature JrS test iron method assumes corrosion caused by combustion gas from a gala turbine, and uses molten salt (75
The sample was completely immersed in 9SNa2SO4, 25% NaCl) and heated at 1100 C on! j, nij
This repeated high temperature corrosion test is a much harsher test compared to the continuous trial driving.
, Y-Cr composite coating according to the present invention, high temperature l1iII of the dredged sample
'01t, 6 phantom wandering sample - J = and Cr diffusion infiltration treatment with conventional technology 5) 8#: F, Pt - Cr pair rule:
Figure 1 shows the results of the comparison between the untreated sample and the high-temperature corrosion test.

この結果で示されているように、Y−Cr複合被O試旧
(づ−イ1りのバト・Fに比較して重デ4;−変化が非
常に少く、耐食性が良好であることが示されている。光
学顕微鏡による腐食試料断面の観察からも、Y−Crお
よびPt −Cr複合被覆試料は、他の試料が激しく腐
食されているのに対して、被覆層が健全に試料表面を覆
って残されている。
As shown in this result, there is very little change in the Y-Cr composite O test (compared to the BAT-F), which indicates that the corrosion resistance is good. Observation of the cross section of the corroded sample using an optical microscope also shows that the Y-Cr and Pt-Cr composite coated samples have a healthy coating layer covering the sample surface, whereas other samples are severely corroded. It is left covered.

実施例2 実施例1と同様な試料に同じ方法でYを3μmイオンブ
レーティングしたNi基耐熱合金にAIの拡散浸透処理
を飾した。その方法はA1の金属粉末30%A1203
粉末67q6とNH4Cl3%を均一に混合し、ステン
レス容器に入れ、その中に被グ試料を埋め込み、水素気
流中で4時間の加熱処理を行うものである。これらの処
理を行った結果、表面処理層として少景のYが均一に固
溶した約60μmのん濃m層を得た。
Example 2 A Ni-based heat-resistant alloy, which had been ion-blated with Y to a thickness of 3 μm using the same method as in Example 1, was decorated with an AI diffusion infiltration treatment. The method is A1 metal powder 30% A1203
Powder 67q6 and 3% NH4Cl are uniformly mixed, placed in a stainless steel container, the sample to be tested is embedded in the container, and heat treatment is performed for 4 hours in a hydrogen stream. As a result of these treatments, a thick layer of about 60 μm in which a small amount of Y was uniformly dissolved was obtained as a surface treatment layer.

このY−AI複合被棲試料の高温耐食性を、実施例1と
同じ高温腐食試験法で、無被覆試料および従来技術での
AI拡散浸透処理試料、Pt −AI ’tM合被覆試
料と高温腐食試験での重量変化によって比較した結果を
図2に示す。この無被晋試料に対して、AI単独、Pt
−AlとY−Al複合被覆試料は重量変化が少なく耐食
性が良好に見られるが、光学顕微鏡観察例よるとAI単
独被覆試料は局部的に激しく腐食しており、Pt −A
I 、 Y−Al複合被覆試料は過酷な腐食試験の後で
も被グ層が試料表面に健全に保たれ、両者共に良好な耐
食性を示している。に単独被覆試料の重量変化が小さか
ったのは、スケールの生成による重量増加と剥離による
重量減少が相殺されたためである。
The high-temperature corrosion resistance of this Y-AI composite coated sample was tested using the same high-temperature corrosion test method as in Example 1 with an uncoated sample, an AI diffusion-infiltration treated sample using the conventional technology, and a Pt-AI 'tM composite coated sample. Figure 2 shows the results of a comparison based on weight changes. For this unexposed sample, AI alone, Pt
-Al and Y-Al composite coated samples show good corrosion resistance with little change in weight, but according to optical microscope observations, samples coated with AI alone are locally severely corroded, and Pt-A
In the I and Y-Al composite coated samples, the coated layer remained intact on the sample surface even after severe corrosion tests, and both exhibited good corrosion resistance. The reason why the weight change of the single coated sample was small was that the weight increase due to scale formation and the weight loss due to peeling were offset.

Pt−Alに対してY−AI複合被覆は、Yの価格がp
tの約犀0であるために、その製造コストは著るしく軽
減された。
Compared to Pt-Al, the Y-AI composite coating has a Y price of p
Since the manufacturing cost is approximately 0, the manufacturing cost is significantly reduced.

以上のように、本発明の高温耐食材料は従来のAIある
いはCrの拡散浸透被覆したものに比べて、高温耐食性
が顕著に優れ、Pt −Alに比適し、pt−AIに比
べて極めて安価に製造し得られる優れた効果を有する。
As described above, the high temperature corrosion resistant material of the present invention has significantly superior high temperature corrosion resistance compared to conventional AI or Cr diffusion coatings, is more suitable for Pt-Al, and is extremely inexpensive compared to pt-AI. It has excellent effects when manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

図1は、Y、 −Cr複合被覆試料と他の試料の高温腐
食試験における重量変化の比較、図2は、Y−AI複合
被櫃試料と他の試料の高温腐食試験釦おける重量変化の
比較を示す。 特許出願人 科学技術庁金属材料技術研究所長図 1 1プ 2
Figure 1 shows a comparison of the weight change in the high temperature corrosion test between the Y, -Cr composite coated sample and other samples. Figure 2 shows the comparison of the weight change in the high temperature corrosion test button between the Y-AI composite coated sample and other samples. shows. Patent applicant Director of the Institute of Metals and Materials Technology, Science and Technology Agency Figure 1 1 2

Claims (1)

【特許請求の範囲】[Claims] 1耐熱性合金の表面に、Y−AIまたはY−Crの複合
被覆層を設けたものからなる高温耐食性材料
1 High temperature corrosion resistant material consisting of a heat resistant alloy with a composite coating layer of Y-AI or Y-Cr provided on the surface
JP8006883A 1983-05-10 1983-05-10 High temperature corrosion resistant material Pending JPS59205468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8006883A JPS59205468A (en) 1983-05-10 1983-05-10 High temperature corrosion resistant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8006883A JPS59205468A (en) 1983-05-10 1983-05-10 High temperature corrosion resistant material

Publications (1)

Publication Number Publication Date
JPS59205468A true JPS59205468A (en) 1984-11-21

Family

ID=13707906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8006883A Pending JPS59205468A (en) 1983-05-10 1983-05-10 High temperature corrosion resistant material

Country Status (1)

Country Link
JP (1) JPS59205468A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003060187A1 (en) * 2002-01-08 2003-07-24 Applied Materials, Inc. Process chamber having component with yttrium-aluminum coating
US7371467B2 (en) 2002-01-08 2008-05-13 Applied Materials, Inc. Process chamber component having electroplated yttrium containing coating
CN102485934A (en) * 2010-12-01 2012-06-06 沈阳黎明航空发动机(集团)有限责任公司 Method for preparing hollow blade inner chamber diffusion layer with high temperature resistance, oxidation resistance and corrosion resistance
CN103060747A (en) * 2012-12-13 2013-04-24 北京航空航天大学 Method for preparing Y modified CoAlNi coating on Ni-based high temperature alloy by embedding infiltration process
CN106521405A (en) * 2016-10-25 2017-03-22 北方民族大学 Impregnation agent for surface modification of nickel base alloy and utilization method of impregnation agent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4982545A (en) * 1972-12-18 1974-08-08
JPS501932A (en) * 1973-04-23 1975-01-10
JPS5120449A (en) * 1974-08-12 1976-02-18 Fujita Corp Kozobutsuniokeru taishinkako
JPS5687661A (en) * 1979-12-19 1981-07-16 Hitachi Ltd Metal article coating method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4982545A (en) * 1972-12-18 1974-08-08
JPS501932A (en) * 1973-04-23 1975-01-10
JPS5120449A (en) * 1974-08-12 1976-02-18 Fujita Corp Kozobutsuniokeru taishinkako
JPS5687661A (en) * 1979-12-19 1981-07-16 Hitachi Ltd Metal article coating method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003060187A1 (en) * 2002-01-08 2003-07-24 Applied Materials, Inc. Process chamber having component with yttrium-aluminum coating
US6942929B2 (en) 2002-01-08 2005-09-13 Nianci Han Process chamber having component with yttrium-aluminum coating
US7371467B2 (en) 2002-01-08 2008-05-13 Applied Materials, Inc. Process chamber component having electroplated yttrium containing coating
US9012030B2 (en) 2002-01-08 2015-04-21 Applied Materials, Inc. Process chamber component having yttrium—aluminum coating
CN102485934A (en) * 2010-12-01 2012-06-06 沈阳黎明航空发动机(集团)有限责任公司 Method for preparing hollow blade inner chamber diffusion layer with high temperature resistance, oxidation resistance and corrosion resistance
CN103060747A (en) * 2012-12-13 2013-04-24 北京航空航天大学 Method for preparing Y modified CoAlNi coating on Ni-based high temperature alloy by embedding infiltration process
CN106521405A (en) * 2016-10-25 2017-03-22 北方民族大学 Impregnation agent for surface modification of nickel base alloy and utilization method of impregnation agent
CN106521405B (en) * 2016-10-25 2018-08-24 北方民族大学 A kind of penetration enhancer and its application method of the modification of nickel-base alloy surface

Similar Documents

Publication Publication Date Title
US3874901A (en) Coating system for superalloys
US4501776A (en) Methods of forming a protective diffusion layer on nickel, cobalt and iron base alloys
EP0455419B1 (en) Coating steel articles
GB2130249A (en) Diffusion coating of metals
JP2007169788A (en) PLATINUM MODIFIED NiCoCrAlY BONDCOAT FOR THERMAL BARRIER COATING
CA2205052C (en) Method of producing reactive element modified-aluminide diffusion coatings
WO2009139833A2 (en) Aluminide barrier layers and methods of making and using thereof
US5260099A (en) Method of making a gas turbine blade having a duplex coating
Kieschke et al. Sputter deposited barrier coatings on SiC monofilaments for use in reactive metallic matrices—I. Optimisation of barrier structure
JPS59205468A (en) High temperature corrosion resistant material
KR20130074647A (en) Coated steel sheet and method for manufacturing the same
JPS5934230B2 (en) Metal surface treatment method
JPH05179420A (en) Aluminum material excellent in wear resistance and its production
JPS6274063A (en) Surface treatment of steel
RU2089655C1 (en) Method of application of protective coating
JPH0211753A (en) Tial-type composite member and its production
SU1475973A1 (en) Method of producing coatings
RU94012512A (en) Method for applying protective coating onto alloys
JPS6379955A (en) Manufacture of stainless steel strip excellent in brazing characteristic
JPS6172634A (en) Mold for molding glass article
KR960010165B1 (en) Method for forming aluminide-yttrium composites coatings of nickel base superalloy
JPS5811778A (en) Boron-aluminum composite coating method
JPH06272017A (en) Production of aluminum alloy coated heat resistant material
JPS60106961A (en) Multiple coating method
JPH11323537A (en) Electron beam applying method of leaderless coating