JPS60105279A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60105279A
JPS60105279A JP58213504A JP21350483A JPS60105279A JP S60105279 A JPS60105279 A JP S60105279A JP 58213504 A JP58213504 A JP 58213504A JP 21350483 A JP21350483 A JP 21350483A JP S60105279 A JPS60105279 A JP S60105279A
Authority
JP
Japan
Prior art keywords
film
oxide film
electrode
floating
dirt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58213504A
Other languages
Japanese (ja)
Inventor
Toshiharu Watanabe
渡辺 寿治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58213504A priority Critical patent/JPS60105279A/en
Publication of JPS60105279A publication Critical patent/JPS60105279A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation
    • H01L29/7884Programmable transistors with only two possible levels of programmation charging by hot carrier injection
    • H01L29/7885Hot carrier injection from the channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To obtain an EPROM or an E<2>PROM capable of efficiently executing writing or erase by forming a floating gate electrode by a high melting-point metallic silicide abounding in silicon and forming a second gate insulating film by an oxide film consisting of the high melting-point metallic silicide. CONSTITUTION:A first gate oxide film 2 is formed on the surface of an element region in a p type silicon substrate 1, an MoSix film 3 is deposited in a composition, (x) therein is larger than 2, and one part of the film 3 is removed selectively through etching. A second gate oxide film 4 is formed on the surface of the MoSix film 3 through thermal oxidation. A polycrystalline silicon film 5 is deposited on the whole surface, the polycrystalline silicon film 5, the second gate oxide film 4, the MoSix film 3 and the first gate oxide film 2 are patterned in succession, and a floating gate electrode 3 consisting of the MoSix film and a control gate electrode 5, etc. composed of the polycrystalline silicon film are shaped. Arsenic ions are implanted, n<+> type source and drain regions 6, 7 are formed through heat treatment, a thermal oxide film 8 is formed on the surface, and an inter-layer insulating film, a wiring, etc. are shaped, thus manufacturing a PROM cell.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置に関し、特に浮遊ケ゛−ト型の読み
出し専用メモIJ (ROM)に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device, and particularly to a floating gate type read-only memory IJ (ROM).

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

いわゆるSAMO8(5tacked gate Av
alancheinjection MOS )構造の
PROM (Programmable ROM)セル
を第1図を参照して説明する。
The so-called SAMO8 (5 tacked gate Av
A PROM (Programmable ROM) cell having an franchise injection MOS (MOS) structure will be explained with reference to FIG.

図中1は例えばp型シリコン基板であり、この基板1上
には第1のダートi化膜2を介して浮遊ダート電極(第
1のダート電極)3が形成されている。この浮遊ゲート
電極3上には第2のダート酸化膜4を介して制御ケ゛−
ト電極(第2のダート電極)5が形成されている。また
、基板1表面には積層された浮遊ダート電極3及び制御
ダート電極5をマスクとして例えば砒素をイオン注入す
ることによ、9n+型ソース、ドレイン領域6,7が形
成されている。更に、浮遊ダート電極3及び制御ケ°−
ト電4fi、5の表面は熱酸化膜8によって佳われてい
る。
In the figure, reference numeral 1 denotes, for example, a p-type silicon substrate, on which a floating dart electrode (first dart electrode) 3 is formed with a first dirt i-oxide film 2 interposed therebetween. A control cable is placed on this floating gate electrode 3 via a second dirt oxide film 4.
A dirt electrode (second dirt electrode) 5 is formed. Furthermore, 9n+ type source and drain regions 6 and 7 are formed on the surface of the substrate 1 by ion-implanting, for example, arsenic using the laminated floating dart electrode 3 and control dart electrode 5 as masks. Furthermore, the floating dart electrode 3 and the control case
The surfaces of the electric currents 4fi and 5 are enhanced by a thermal oxide film 8.

上記FROMセルでは書き込みは制御ケゝ−ト電極5に
高い正電圧を印加するとともに、ソース。
In the above FROM cell, writing is performed by applying a high positive voltage to the control gate electrode 5, and also applying a high positive voltage to the control gate electrode 5.

ド〈イン領域6.ン間に高電圧を印カルて、逆バイアス
されたドレイン領域7側接合におけるアバランシェ現象
によって発生したホットエレクトロンを第1のダート酸
化膜2を通して浮遊ダート電極3に注入することによシ
行なわれる。
In area 6. This is done by applying a high voltage between the electrodes and injecting hot electrons generated by an avalanche phenomenon in the reverse biased drain region 7 side junction into the floating dirt electrode 3 through the first dirt oxide film 2.

また、動作時に制御ゲート電極5に正(例えば5V)の
電圧を印加すると、浮遊ダート電極3が負に帯電してい
るか否かによるしきい値電圧の違いから、浮遊ケ゛−ト
電極3が負に帯電していないトランジスタは導通するが
、浮遊ダート電極3が帯電していないトランジスタは導
通しないので、トランジスタがオンかオフかで情報の読
み出しを行なう。
Furthermore, when a positive voltage (for example, 5 V) is applied to the control gate electrode 5 during operation, the floating dart electrode 3 becomes negatively charged due to the difference in threshold voltage depending on whether the floating dart electrode 3 is negatively charged or not. A transistor whose floating dart electrode 3 is not charged is conductive, but a transistor whose floating dart electrode 3 is not charged is not conductive, so information is read depending on whether the transistor is on or off.

更に、消去はEPROM (Erasable PRO
M )では紫外線照射により電子に浮遊ダート電極3と
第2のr−)酸化膜4との界面の1障壁高さよシ高いエ
ネルギーを与えて浮遊ダート電極3から制御ダート電極
5へ電子を放電させることにより行なうofだ、E p
ROM (Electrically Erasabl
eFROM )では制御ダート電極5に基板1より非常
に高い電圧を印加し、浮遊ゲート電極から制御ダート電
極5へ電子を放電させることにより行なう。
Furthermore, erasing can be done using EPROM (Erasable PRO
In M), ultraviolet irradiation gives electrons energy higher than one barrier height at the interface between the floating dart electrode 3 and the second r-) oxide film 4, and discharges the electrons from the floating dart electrode 3 to the control dart electrode 5. By doing so, E p
ROM (Electrically Erasable
eFROM), this is done by applying a much higher voltage to the control dart electrode 5 than to the substrate 1 and discharging electrons from the floating gate electrode to the control dart electrode 5.

ところで、従来、一般的に浮遊ダート電極3はリン拡散
した多結晶シリコン膜で、また第2のダート電極4は多
結晶シリコンの酸化膜で形成されている。
Incidentally, conventionally, the floating dart electrode 3 is generally formed of a phosphorus-diffused polycrystalline silicon film, and the second dirt electrode 4 is formed of a polycrystalline silicon oxide film.

この場合、多結晶シリコン膜と酸化膜との界面における
電子の障壁高さは3.25 eVと高く、トンネル電流
によシミ子が容易にリークすることはない。このことが
不揮発性を高めているが、逆に消去が困難であるという
ことを意味する。
In this case, the electron barrier height at the interface between the polycrystalline silicon film and the oxide film is as high as 3.25 eV, and the smear does not easily leak due to tunnel current. Although this improves non-volatility, it also means that it is difficult to erase.

そこで、浮遊ダート電極3の表面に凹凸を設け、曲率を
持った等電位面の周囲で電界が増強される効果を利用し
て消去効率を高めることも行なわれているが、非常に高
度なプロセス技術を必要とする。
Therefore, an attempt has been made to increase the erasing efficiency by providing unevenness on the surface of the floating dart electrode 3 and utilizing the effect of increasing the electric field around the curved equipotential surface, but this method requires a very advanced process. Requires technology.

また、浮遊り°ゞ−ト電極3を通常の高融点金属ケイ化
物、例えばMo S i2を使用した場合、Mo S 
i2と酸化膜との界面における電子の障壁高さは約3.
5eVとなるので、浮遊ダート電極3を多結晶シリコン
膜で形成した場合よシも更に電子はリークしにくくなり
、消去は一層困難忙なると考えられる。
Furthermore, when the floating electrode 3 is made of an ordinary high melting point metal silicide, for example, MoSi2, MoS
The electron barrier height at the interface between i2 and the oxide film is approximately 3.
Since the voltage is 5 eV, it is considered that the leakage of electrons becomes even more difficult than when the floating dart electrode 3 is formed of a polycrystalline silicon film, and erasing becomes even more difficult and time-consuming.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたものであシ、書き込
み又は消去を効率よく行ない得るEPROM又はE P
ROM等の半導体装置を提供しようとするものである。
The present invention has been made in view of the above circumstances, and is an EPROM or EPROM that can efficiently perform writing or erasing.
The aim is to provide semiconductor devices such as ROM.

〔発明の概要〕[Summary of the invention]

本発明の半導体装置はいわゆるSAMO8構造において
、第1のデート電極(浮遊ダート電極)をMSix(但
し、Mは高融点金属、 X>2 )なる組成、すなわち
シリコンリッチな高融点金属シリサイドとし、第2のダ
ート絶縁膜をこの高融点金属シリサイドの酸化膜で形成
したことを特徴とするものである。
The semiconductor device of the present invention has a so-called SAMO8 structure, in which the first date electrode (floating dart electrode) has a composition of MSix (where M is a high melting point metal, X>2), that is, silicon-rich high melting point metal silicide; This structure is characterized in that the dirt insulating film No. 2 is formed of an oxide film of this high melting point metal silicide.

こうした半導体装置では、例えば高融点金属としてMo
を用いた場合について説明すると、Mo51xからなる
浮遊デート電極から基板へのIJ−り電流は非常に高く
、逆方向のリーク電流は低いので、この浮遊ダート電極
から基板への高いリーク電流を利用することによシ、消
去(浮遊ダート電極を負に帯電させる場合)又は書き込
み(浮遊ダート電極を正に帯電させる場合)を極めて容
易に行なうことができる。また、第2のダート絶縁膜と
なるMo S i Xの酸化膜は多結晶シリコンの酸化
膜よりリークも少なく絶縁破壊電界も高いので電荷の保
持特性が優れている。
In such semiconductor devices, for example, Mo is used as a high melting point metal.
To explain the case using , the IJ current from the floating date electrode made of Mo51x to the substrate is very high, and the leakage current in the reverse direction is low, so the high leakage current from this floating date electrode to the substrate is utilized. In particular, erasing (if the floating dart electrode is negatively charged) or writing (if the floating dart electrode is positively charged) can be carried out very easily. In addition, the MoS i

なお、こうした半導体装置は従来の製造方法に特別な工
程を付加することなく簡便な工程で製造することができ
る。この場合、第1のダート絶縁膜上にMoSix膜を
堆積するには同時蒸陪または同時ス・ぐツタ法が望まし
い。
Note that such a semiconductor device can be manufactured by a simple process without adding any special process to the conventional manufacturing method. In this case, simultaneous evaporation or simultaneous sputtering is preferably used to deposit the MoSix film on the first dirt insulating film.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を製造方法を併記して説明する。 Examples of the present invention will be described below along with manufacturing methods.

なお、製造方法の説明は既述した第1図を利用して行な
う。
Note that the manufacturing method will be explained using FIG. 1 mentioned above.

まず、p型シリコン基板1表面に図示しないフィールド
酸化膜を形成した後、フィールド酸化膜によって囲まれ
た素子領域表面に厚さ400又の第1のダート酸化膜2
を形成する。次に、厚さ4000XのMoSix膜をX
が2よシ犬なるような組成、例えばx = 2.6でD
Cマグネトロン同時スパッタ法によシ堆積する。つづい
て、MoSix膜の一部を選択的にエツチング除去する
O次いで、熱酸化を行ないMo5iz膜表面に厚さ50
0Xの第2のダート酸化膜4を形成する。
First, a field oxide film (not shown) is formed on the surface of a p-type silicon substrate 1, and then a first dirt oxide film 2 with a thickness of 400 mm is formed on the surface of the element region surrounded by the field oxide film.
form. Next, a MoSix film with a thickness of 4000X was
For example, when x = 2.6, D
It is deposited by C magnetron co-sputtering method. Next, a part of the MoSix film is selectively etched away with O etching, and then thermal oxidation is performed to form a 50% thick layer on the surface of the Mo5iz film.
A second dirt oxide film 4 of 0x is formed.

つづいて、全面に多結晶シリコン膜を堆積した後、多結
晶シリコン膜、第2のゲート酸化膜4゜Mo5iz膜及
び第1のダート酸化膜2を順次・ぐターニングする。こ
の結果、基板1上に第1のダート酸化膜2を介してMo
5iz膜からなる浮遊ゲート電極(第10ケ゛−計電極
)3が、更に浮遊ゲート電極3上に第2のゲート酸化膜
4を介して多結晶シリコン膜からなる制御ダート電極(
第2のダート電極)5が形成される。
Subsequently, after depositing a polycrystalline silicon film over the entire surface, the polycrystalline silicon film, the second gate oxide film 4°Mo5iz film, and the first dirt oxide film 2 are sequentially turned. As a result, Mo is formed on the substrate 1 through the first dirt oxide film 2.
A floating gate electrode (10th scale electrode) 3 made of a 5iz film is further connected to a control dirt electrode (10th scale electrode) made of a polycrystalline silicon film on the floating gate electrode 3 via a second gate oxide film 4.
A second dart electrode) 5 is formed.

次いで、積層された浮遊ダート電極3及び制御ダート電
極5等をマスクとして例えば砒素をイオン注入した後、
熱処理しくn+型ソース、ドレイン領域6,7を形成す
る。つづいて、熱6ソ化を行ない浮遊ダート電極3及び
制御ダート電極50表面に熱酸化膜8を形成する。
Next, after ion implantation of, for example, arsenic is performed using the stacked floating dart electrodes 3, control dart electrodes 5, etc. as masks,
N+ type source and drain regions 6 and 7 are formed by heat treatment. Subsequently, thermal oxidation is performed to form a thermal oxide film 8 on the surfaces of the floating dart electrode 3 and the control dart electrode 50.

以下、層間絶縁膜、配線等を形成しFROMセルを製造
する。
Thereafter, an interlayer insulating film, wiring, etc. are formed to manufacture a FROM cell.

上記FROMセルの第1のケ゛−ト酸化膜2を通過する
リーク電流のI−V%性を第2図及び第3図に示す。な
お、いずれも酸化膜厚は約400又、ダート面積は約0
.1燗2であシ、第2図は浮遊ゲート電極3から基板1
へのリーク電流、第3図は基板1から浮遊ダート電極3
へのリーク電流をそれぞれ示す。
FIGS. 2 and 3 show the IV percentage characteristics of the leakage current passing through the first gate oxide film 2 of the FROM cell. In both cases, the oxide film thickness is approximately 400 mm, and the dirt area is approximately 0.
.. Figure 2 shows floating gate electrode 3 to substrate 1.
The leakage current from the substrate 1 to the floating dart electrode 3 is shown in Figure 3.
The leakage current to each is shown.

第2図及び第3図から明らかなように浮遊ケ゛−ト電極
3から基板1へのリーク電流は極めて高いのに対し、基
板1から浮遊ダート電極3へのリーク電流は多結晶シリ
コンダートと同程度に低い。ただし、第2図かられかる
ようにダート電圧−10V以下ではリーク電流は極めて
小さいので、使用時のリーク電流は無視できる。
As is clear from FIGS. 2 and 3, the leakage current from the floating dirt electrode 3 to the substrate 1 is extremely high, whereas the leakage current from the substrate 1 to the floating dirt electrode 3 is the same as that of polycrystalline silicon dirt. Moderately low. However, as can be seen from FIG. 2, the leakage current is extremely small when the dart voltage is -10V or less, so the leakage current during use can be ignored.

一方、第4図にMoSixの酸化膜からなる第2のゲー
ト酸化膜のオーノエ分析結果の一例を、第5図(a)及
び(b)に多結晶シリコンの酸化膜とMo5izの酸化
膜の耐圧の比較をそれぞれ示す。
On the other hand, Fig. 4 shows an example of the Ohnoe analysis results of the second gate oxide film made of MoSix oxide film, and Fig. 5 (a) and (b) show the breakdown voltage of polycrystalline silicon oxide film and Mo5iz oxide film. A comparison of each is shown below.

第4図はダート酸化膜(図中右側)上にMo5iz膜(
図中中央部)を堆積し、900℃で700分間熱酸化を
行ない酸化膜(図中左側)を形成したものである。第4
図から明らかなようにMoSixを酸化した場合、その
酸化膜はほとんどMoを含まず、SiO2膜とみなして
よい。
Figure 4 shows a Mo5iz film (
The oxide film (center part in the figure) was deposited and thermally oxidized at 900° C. for 700 minutes to form an oxide film (left side in the figure). Fourth
As is clear from the figure, when MoSix is oxidized, the oxide film contains almost no Mo and may be regarded as a SiO2 film.

また、第5図(、)は多結晶シリコンの酸化膜(酸化温
度1000℃、膜厚1100X)、同図(b)はMoS
ixの酸化膜(酸化温度1000℃。
In addition, Fig. 5 (,) is a polycrystalline silicon oxide film (oxidation temperature 1000°C, film thickness 1100X), and Fig. 5 (b) is a MoS
ix oxide film (oxidation temperature 1000°C.

膜厚1090X)の耐圧(ブレークダウン電界強度と確
率との関係)を示すヒストグラムである。なお、図中1
.B、D、 (In1tial Breakdown)
は5 X 10 A/cm のリーク電流が流れる初期
破壊電界を、図中F、B、D、は(Final Bre
akdown )は絶縁破壊電界をそれぞれ示す。第5
図(a)及び(b)から明らかなように初期破壊電界、
絶縁破壊電界ともにMo S i Xの酸化膜の方が高
電界側に分布があり、耐圧が優れている。
This is a histogram showing the breakdown voltage (relationship between breakdown electric field strength and probability) of a film having a thickness of 1090×. In addition, 1 in the figure
.. B, D, (In1tial Breakdown)
is the initial breakdown electric field where a leakage current of 5 x 10 A/cm flows, and F, B, D in the figure are (Final Bre
akdown) respectively indicate the dielectric breakdown electric field. Fifth
As is clear from figures (a) and (b), the initial breakdown electric field,
Both the dielectric breakdown electric field and the MoSiX oxide film have a distribution on the higher electric field side and are superior in breakdown voltage.

上記FROMセルを従来のEP ROMやE2PROM
と同様に、浮遊ダート電極3を負に帯電させて使用する
場合について説明する。
The above FROM cell can be used as a conventional EP ROM or E2PROM.
Similarly, the case where the floating dart electrode 3 is negatively charged and used will be described.

まず、書き込みは従来の装置と同様にアバランシェ注入
によシミ子を浮遊ダート電極3に注入する。この場合、
MoSixからなる浮遊ダート電極3は負に帯電するが
、第2図に示しだように一10V未満の帯電であれば、
浮遊ダート電極3からの電子のリークは問題にならない
。1次に、読み出しは従来の装置と同様に制御ダート電
極5に正の電圧を印加し、トランジスタがオンかオフか
で情報が書き込まれているかどうかを判断する。更に、
消去は第2図に示したようにMoSixからなる浮遊ダ
ート電極3がら基板1へ電子がリークし易いことを利用
して、EPROMでは紫外線を照射することによシ、ま
たE2FROMでは制御ダート電極5に負の高電圧を印
加することにより、それぞれ基板1へ電子を放電させて
行なう。
First, for writing, a smear is injected into the floating dart electrode 3 by avalanche injection as in the conventional device. in this case,
The floating dart electrode 3 made of MoSix is negatively charged, but as shown in FIG. 2, if it is charged less than -10V,
Electron leakage from the floating dart electrode 3 is not a problem. First, for reading, a positive voltage is applied to the control dart electrode 5 as in the conventional device, and it is determined whether information has been written based on whether the transistor is on or off. Furthermore,
As shown in FIG. 2, erasing is carried out by irradiating ultraviolet rays in EPROM, taking advantage of the fact that electrons easily leak from the floating dart electrode 3 made of MoSix to the substrate 1, and in E2FROM, by irradiating the control dart electrode 5. Electrons are discharged to the substrate 1 by applying a negative high voltage to the substrate 1.

したがって、上記半導体装置によれば書き込み易さ、安
定した保持及び消去し易さのすべてを満足し、半導体不
揮発性メモリとして極めて良好な特性を有するものであ
る。また、その製造方法は従来の方法に特別な工程を付
方口する必要がなく極めて簡便である。
Therefore, the semiconductor device described above satisfies all of the requirements of ease of writing, stable retention, and ease of erasing, and has extremely good characteristics as a semiconductor nonvolatile memory. In addition, the manufacturing method is extremely simple as there is no need to add any special steps to conventional methods.

なお、上記実施例では浮遊ダート電極3を負に帯電させ
て使用する場合について説明したが、浮遊ダート電極3
を正に帯電させて使用することもできる。この場合、書
き込みは個々の制御ゲート電極5を書き込みのために選
択できるようにし、制御ダート電極5に負の高電圧を印
加してMo5iXからなる浮遊ダート電極3から基板1
へ電子を注入することにより行なう。浮遊ダート電極3
を正に帯電させると、現在主流となっているnチャネル
MO8技術においては、特に制御ダート電極5に正の電
圧を印加しなくともトランジスタを導通させることがで
き、情報の読み出しを容易に行なうことができる。ただ
し、消去についてはMo S I Xからなる浮遊ケ9
−ト電極3への電子のリークレベルは第3図に示すよう
に多結晶シリコンの場合と同程度であるので、特にメリ
ットはない。なお、消去は紫外線照射を利用したEPR
OM方式でもよいし、従来の装置の書き込みと同様にア
バランシェ注入によシミ子を注入し、浮遊ダート電荷の
正電荷を相殺してもよい。
In addition, in the above embodiment, the case where the floating dart electrode 3 is negatively charged and used is explained, but the floating dart electrode 3
It can also be used with a positive charge. In this case, writing is performed by making it possible to select individual control gate electrodes 5 for writing, applying a negative high voltage to the control gate electrodes 5, and moving the floating dart electrodes 3 made of Mo5iX from the substrate 1.
This is done by injecting electrons into the floating dart electrode 3
In the currently mainstream n-channel MO8 technology, by positively charging the transistor, the transistor can be made conductive without particularly applying a positive voltage to the control dart electrode 5, and information can be easily read. I can do it. However, for erasing, the floating case 9 made of MoSI
Since the leakage level of electrons to the negative electrode 3 is about the same as that of polycrystalline silicon as shown in FIG. 3, there is no particular advantage. Note that erasing is done using EPR using ultraviolet irradiation.
The OM method may be used, or a smear may be injected by avalanche injection to cancel out the positive charge of the floating dart charge, similar to writing in a conventional device.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば1:き込み又は消去
を効率よく行なうことができ、半導体不揮発性メモリと
して極めて良好な特性を有する半導体装置を提供できる
ものである。
As described in detail above, according to the present invention, 1: writing or erasing can be performed efficiently, and a semiconductor device can be provided which has extremely good characteristics as a semiconductor nonvolatile memory.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来及び本発明の実施例におけるFROMセル
の断面図、第2図は本発明の実施例におけるFROMセ
ルの浮遊ダート電極から基板へのリーク電流のI−V特
性図、第3図は同FROMセルの基板から浮遊ダート電
極へのリーク電流のI−V特性図、第4図はMo5iz
の酸化膜のオージェ分析結果を示す特性図、第5図(a
)及び(b)はそれぞれ多結晶シリコンの酸化膜及びN
o S i Xの酸化膜の耐圧のヒストグラムである。 1・・・p型シリコン基板、2・・・第1のダート酸化
膜、3・・・浮遊デート電極、4・・・第20ケ゛−ト
酸化膜、5・・・制御ダート電極、6,7・・・n+型
ソース、ドレイン領域、8・・・熱酸化膜。 出願人代理人 弁理士 鈴 江 武 彦第2区 第3図  m
FIG. 1 is a cross-sectional view of the FROM cell in the conventional and embodiment of the present invention, FIG. 2 is an IV characteristic diagram of leakage current from the floating dart electrode to the substrate of the FROM cell in the embodiment of the present invention, and FIG. 3 is the IV characteristic diagram of the leakage current from the substrate to the floating dart electrode of the same FROM cell, and Figure 4 is the Mo5iz
Figure 5 (a) is a characteristic diagram showing the results of Auger analysis of the oxide film of
) and (b) are polycrystalline silicon oxide film and N
It is a histogram of the breakdown voltage of the oxide film of o Si X. DESCRIPTION OF SYMBOLS 1... P-type silicon substrate, 2... First dirt oxide film, 3... Floating date electrode, 4... 20th gate oxide film, 5... Control dirt electrode, 6, 7...n+ type source and drain regions, 8...thermal oxide film. Applicant's agent Patent attorney Takehiko Suzue 2nd Ward Figure 3 m

Claims (2)

【特許請求の範囲】[Claims] (1)−導電型の半導体基板上に第1のダート絶縁膜を
介して形成されたN1のダート電極と、該第1のダート
電極上に第2のダート絶縁膜を介して形成された第2の
ダート電極と、積層された第1及び第2のダート電極の
両側方の基板表面に形成された基板と逆導電型の不純物
領域とを有する半導体装置において、前記第1のダート
電極をMSix(但し、Mは高融点金属、 X>2 )
なる組成とし、前記第2のダート絶縁膜をMSizの酸
化膜で形成したことを特徴とする半導体装置。
(1) - An N1 dirt electrode formed on a conductive type semiconductor substrate via a first dirt insulating film, and a second dirt electrode formed on the first dirt electrode via a second dirt insulating film. In the semiconductor device, the first dirt electrode has a conductivity type opposite to that of the substrate formed on the surface of the substrate on both sides of the laminated first and second dirt electrodes. (However, M is a high melting point metal, X>2)
1. A semiconductor device characterized in that the second dirt insulating film is formed of an MSiz oxide film.
(2)Mとしてモリブデンを使用したことを特徴とする
特許請求の範囲第1項記載の半導体装置0
(2) Semiconductor device 0 according to claim 1, characterized in that molybdenum is used as M.
JP58213504A 1983-11-14 1983-11-14 Semiconductor device Pending JPS60105279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58213504A JPS60105279A (en) 1983-11-14 1983-11-14 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58213504A JPS60105279A (en) 1983-11-14 1983-11-14 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS60105279A true JPS60105279A (en) 1985-06-10

Family

ID=16640289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58213504A Pending JPS60105279A (en) 1983-11-14 1983-11-14 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS60105279A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317544A (en) * 1986-07-10 1988-01-25 Seiko Instr & Electronics Ltd Semiconductor device
JP2007302049A (en) * 2006-05-09 2007-11-22 Yanmar Co Ltd Working vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317544A (en) * 1986-07-10 1988-01-25 Seiko Instr & Electronics Ltd Semiconductor device
JP2007302049A (en) * 2006-05-09 2007-11-22 Yanmar Co Ltd Working vehicle

Similar Documents

Publication Publication Date Title
US5656522A (en) Method of manufacturing a semiconductor integrated circuit device having single-element type non-volatile memory elements
TW503528B (en) Semiconductor device
JPH09148542A (en) Semiconductor storage device and its manufacture
GB2077492A (en) Electrically alterable nonvolatile floating gate memory cell
US5729496A (en) Nonvolatile semiconductor memory element and method for fabricating the same
JPH11135654A (en) Split-gate flash memory cell structure
WO2004084314A1 (en) Semiconductor device and its manufacturing method
JPH11274327A (en) Nonvolatile storage device and its manufacture
JP3549364B2 (en) Method of manufacturing flash memory cell having triple well
JPH07508859A (en) Triple gate flash EEPROM memory and its manufacturing method
JPS61294870A (en) Non-volatile semiconductor memory device
US5194924A (en) Semiconductor device of an LDD structure having a floating gate
KR0124629B1 (en) Eeprom semiconductor memory device
TW200303087A (en) Nonvolatile two-transistor semiconductor memory cell and associated fabrication methods
JPH07506226A (en) Method of fabricating dual-poly nonvolatile storage devices using a third polysilicon layer
TWI309828B (en) Flash memory cell erase scheme using both source and channel regions
JPS60105279A (en) Semiconductor device
JPS6255710B2 (en)
JPH0640587B2 (en) Semiconductor memory device
JPH0766305A (en) Nonvolatile semiconductor storage device
JPH0851164A (en) Non-volatile semiconductor storage device and manufacture thereof
TWI323024B (en) Uniform channel programmable erasable flash eeprom
JP2797466B2 (en) Nonvolatile semiconductor memory device
JPH10150113A (en) Low erasing voltage floating gate non-voltage memory cell and its manufacture
JPH0697456A (en) Nonvolatile semiconductor memory