JPS6010495A - Sense amplifier - Google Patents

Sense amplifier

Info

Publication number
JPS6010495A
JPS6010495A JP58118618A JP11861883A JPS6010495A JP S6010495 A JPS6010495 A JP S6010495A JP 58118618 A JP58118618 A JP 58118618A JP 11861883 A JP11861883 A JP 11861883A JP S6010495 A JPS6010495 A JP S6010495A
Authority
JP
Japan
Prior art keywords
becomes
input
circuit
flop circuit
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58118618A
Other languages
Japanese (ja)
Inventor
Yasuo Suzuki
保雄 鈴木
Hiroshi Hirao
平尾 浩
Yasuaki Suzuki
鈴木 保明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58118618A priority Critical patent/JPS6010495A/en
Priority to EP84401375A priority patent/EP0130910B1/en
Priority to DE8484401375T priority patent/DE3483121D1/en
Priority to US06/626,795 priority patent/US4558241A/en
Publication of JPS6010495A publication Critical patent/JPS6010495A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5692Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency read-only digital stores using storage elements with more than two stable states
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
    • G11C7/065Differential amplifiers of latching type
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Static Random-Access Memory (AREA)
  • Read Only Memory (AREA)
  • Dram (AREA)

Abstract

PURPOSE:To furnish a circuit suitable for multi-value level memory that can perform accurate operation even when input power varies remarkably and accordingly reference voltage becomes low by making a power source to a flip flop circuit off until just before starting sense operation. CONSTITUTION:Clocks CLKn, CLKp applied to switching circuits Q5, Q6 and Q11, Q12 are so designed that CLKn rises first and then CLKp falls. At first CLKn is L level, and CLKp is H level and a flip flop circuit FF does not operate. When a memory cell is read out and the output D is applied to a transistor Q7, CLKn rises, and Q6 becomes on and Q5 becomes off. However, as Q12 is in and Q11 is off, the current of passage Vcc, Q3, P1, Q8, ground and Vcc, Q4, P2, Q12, ground does not flow. Then, CLKp falls, Q11 becomes on, Q12 becomes off, and the voltage of a power source Vcc is applied to the flip flop circuit FF. One of transistors Q1, Q2 becomes on, and another becomes off.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、多値レベル読取り用のセンスアンプ、特に多
値レベル読取専用メモリ用のCMOSセンスアンプに関
する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a sense amplifier for multi-level reading, and more particularly to a CMOS sense amplifier for multi-level read-only memory.

従来技術と問題点 半導体メモリはそのメモリセルに“1” IIQ”2値
データの一方1ビットを記憶するものが殆んどであるが
、メモリ大容量化の要求に応える手段として集積度を上
げてメモリセル数を増加する他に、メモリセルに多値デ
ータを記憶させることが考えられている。メモリセルに
記憶させるデータを2値でなく、4値、8値・・・・・
・にすればメモリ容量を2倍、4倍、・・・・・・にす
ることができる訳で、この点からは多値レベル数は多い
程好ましいが、レベル数が多いと識別が困難になるから
、メモリセル1ビツトを2値2ビツトとして使う4値型
が注目されている。2値2ビツトなら11,10゜01
.00の4通りの状態があり、これを第2図に示すよう
に異なる電圧値で記憶する。即ち電源電圧Vccが5■
とするとこれを最高電圧、最低電圧は2■程度としてこ
の間を4等分して状態■。
Prior Art and Problems Most semiconductor memories store one bit of binary data "1" (IIQ) in their memory cells, but as a means to meet the demand for larger memory capacities, the degree of integration has been increased. In addition to increasing the number of memory cells, it is being considered to store multi-level data in the memory cells.The data to be stored in the memory cells is not binary, but 4-level, 8-level, etc.
・The memory capacity can be doubled, quadrupled, etc. From this point of view, the higher the number of multivalued levels, the better, but the larger the number of levels, the more difficult it is to distinguish. Therefore, the four-value type, which uses one bit of a memory cell as two binary bits, is attracting attention. For binary 2 bits, it is 11,10°01
.. There are four states of 00, which are stored as different voltage values as shown in FIG. That is, the power supply voltage Vcc is 5■
If this is the highest voltage and the lowest voltage is about 2■, divide this period into four equal parts and get state ■.

■、■、■に割当てる。これらの状態は上記の11.1
0,01.00に対応するものである。これらの状態を
検出するには3種の基準レベルRef1.2.3を設け
、Ref 1より大なら状態■、ReflとRef 2
の間なら状態■、Ref3とRef2の間なら状態■、
Ref 3以下なら状態■とする。
Assign to ■, ■, ■. These conditions are described in 11.1 above.
It corresponds to 0.01.00. To detect these states, three types of reference levels Ref 1, 2, and 3 are provided, and if it is higher than Ref 1, the state
If between, state ■, if between Ref3 and Ref2, state ■,
If Ref 3 or less, the status is ■.

読取りには第3図に示すようにセンスアンプを5AI−
3A3の31固設け、これらのドライバトランジスタQ
l、Q2のどちらがオンかを知り、それをデコードして
読取り出力とする。例えば状態■ならセンスアンプSA
1では左側のトランジスタQ1がオン、右側のトランジ
スタQ2がオフであり、センスアンプSA2.SA3で
ば右側のトランジスタQ2がオン、左側のトランジスタ
Q1がオフであるから、上記センスアンプSAIの状態
を0、センスアンプSA2.SA3の状態を1とすれば
011なる状態が得られ、これをデコードして状態■を
得る。同様にして状態■は111、状態■は001、状
態■ば000となり、これより各状態■、■、■を知る
。さらに、それを論理合成して2値2ビットを得る。な
お第3図でMCはメモリ、Lはその負荷、Dはメモリセ
ルの出力、Dは基準入力を示し、各センスアンプSA1
〜SA3は基準入力が異なるだけで、構成は同じである
For reading, use a sense amplifier of 5AI- as shown in Figure 3.
31 fixed installation of 3A3, these driver transistors Q
It knows which one of I and Q2 is on, and decodes it as a read output. For example, if the state is ■, the sense amplifier SA
1, the left transistor Q1 is on, the right transistor Q2 is off, and the sense amplifier SA2. In SA3, the right transistor Q2 is on and the left transistor Q1 is off, so the state of the sense amplifier SAI is set to 0 and the sense amplifier SA2. If the state of SA3 is set to 1, a state of 011 will be obtained, and this will be decoded to obtain a state (2). Similarly, the state (2) becomes 111, the state (2) becomes 001, and the state (2) becomes 000. From this, the states (2), (2), and (2) are known. Furthermore, it is logically synthesized to obtain two binary values and two bits. In Figure 3, MC is a memory, L is its load, D is the output of the memory cell, D is the reference input, and each sense amplifier SA1
~SA3 have the same configuration except for the reference input.

カミる多値レヘルメモリは、デーl一部の寸法を変えて
トランジスタのgmを変える等の手段により書込み即ち
データ記憶がなされる。第3図もgm選択型メモリを示
しており、メモリセルMCは単一のトランジスタで構成
され、そのgmが記憶データ1i、io、oi、ooに
対応する値にされる。従ってこのメモリはマスクROM
として製作される。か\るトランジスタが負荷抵抗と直
列に接続され、電圧を加えられると、その直列接続点に
はトランジスタのgmに対応する電圧が生じ、これが読
取り出力りである。読取り出力りは負荷条件によっても
異なるが、例えば第2図に示したように5v〜2V内の
4レベルの1つをとる。
Writing, that is, storing data, in a multilevel memory is performed by changing the dimensions of a part of the data and changing the gm of the transistor. FIG. 3 also shows a gm selection type memory, where a memory cell MC is composed of a single transistor, and its gm is set to a value corresponding to stored data 1i, io, oi, oo. Therefore, this memory is a mask ROM
It is produced as. When such a transistor is connected in series with a load resistor and energized, there will be a voltage at the series connection point corresponding to the gm of the transistor, which is the read output. The readout output varies depending on the load conditions, but takes one of four levels from 5V to 2V, for example, as shown in FIG.

メモリセルに記憶させるデータが2値データ1ビツトで
あると基準レベルは1つでよく、読取り出力りが該基準
レベルより高ければ“1”、低ければ“0”等とするこ
とができる。そしてダイナミックRAMまたはスタティ
ックRAMの読取り出力は記憶データの“l”、“O”
に応じて電源VccとそれよりIV程度低い電圧の間で
変るに過ぎないが、多値メモリでは第2図に示したよう
に電源VccからグランドOVに近い値まで大きく(詳
しくはバイアス電圧力リ変り、センスアンプはこれに応
動しなければならない。高いバイアスを持つ入力電圧を
センスするのに通ずる回路または低いバイアスを持つ入
力電圧をセンスするのに適する回路は種々あるが、高い
バイアスレベルから低いバイアスレベルまで大幅に変る
入力電圧をセンスするのに適する回路は余り見当らない
If the data to be stored in the memory cell is 1-bit binary data, only one reference level is required, and if the read output is higher than the reference level, it can be "1", if it is lower, it can be "0", etc. The read output of dynamic RAM or static RAM is "l" or "o" of the stored data.
However, in multi-level memory, as shown in Figure 2, the bias voltage voltage varies greatly from the power supply Vcc to a value close to the ground OV (more specifically, the bias voltage voltage varies from the power supply Vcc to a value close to the ground OV), as shown in Figure 2. There are various circuits that are suitable for sensing input voltages with high bias or low bias, but the sense amplifier must react accordingly. There are few circuits that are suitable for sensing input voltages that vary significantly up to the bias level.

発明の目的 それ数本発明は入力レベルが大きく変る多値メモリ用セ
ンスアンプに好適な回路を提供しようとするものである
OBJECTS OF THE INVENTION It is an object of the present invention to provide a circuit suitable for a sense amplifier for a multi-level memory in which input levels vary widely.

発明の構成 本発明はメモリセルに2値複数ビットで表わされるデー
タを記憶させるメモリの多値レベル読取り用センスアン
プであって、インバータ対の入出力端を交叉接続してな
るフリップフロップ回路と、該入出力端の一方に接続さ
れ読取り電圧を受ける入力側バッファと、該入出力端の
他方に接続され基準電圧を受ける基準側バッファと、前
記フリップフロップ回路のアース側に接続されて第1の
クロックが入力するとき該アース側をグランドへ接続す
る第1のスイッチング回路と、前記フリップフロップ回
路の電源側へ接続され前記第1のクロックに続いて第2
のクロックが入力するとき該電源側を電源へ接続する第
2のスイッチング回路とを備えることを特徴とするが次
に図面を参照しながらこれを詳細に説明する。
Structure of the Invention The present invention is a sense amplifier for reading multilevel levels of a memory that stores data represented by a plurality of binary bits in a memory cell, which comprises a flip-flop circuit formed by cross-connecting input and output terminals of a pair of inverters; an input side buffer connected to one of the input/output terminals to receive a read voltage; a reference side buffer connected to the other input/output terminal to receive a reference voltage; and a first buffer connected to the ground side of the flip-flop circuit. a first switching circuit that connects the ground side to the ground when a clock is input; and a second switching circuit that is connected to the power supply side of the flip-flop circuit and follows the first clock;
The second switching circuit connects the power supply side to the power supply when the clock is inputted, and this will be described in detail below with reference to the drawings.

発明の実施例 第1図はCMO5回路からなる多値メモリ用センスアン
プ回路として本発明者等が当初検討した回路を示す。0
M03回路は周知のように、消費電力が少ないなどの利
点がある。第1図でQl、Q2はドライバトランジスタ
、Q3.Q4は負荷トランジスタであり、これらは図示
のように入出力端PI、P2が交叉接続されてフリップ
フロップ回路FFを構成する。矢印を付したトランジス
タはpチャネル、無矢印のトランジスタはnチャネルで
あり、従ってQlとQ3、Q2とQ4はCMOSインバ
ータを構成する。Q5.Q6もp、nチャネルトランジ
スタであってCMOSインバータを構成し、クロックC
LKがH(ハイ)レベルになるときトランジスタQ6が
オンになってフリップフロップ回路FFのアース側をグ
ランドへ接続し、該回路をアクティブにする。入力段の
トランジスタQ7とQ8.Q9とQIOはバッファで、
QlとQ9はドライバ、Q8とQIOは負荷であってソ
ースホロア回路を構成する。読取り出力りは入力端in
即ちトランジスタQ7のゲートに、そして基準電圧Re
fは入力端inB即ちトランジスタQ9のゲートに加え
る。この回路でRef>DならトランジスタQ1がオン
、Q2がオフ、Ref<])ならトランジスタQ2がオ
ン、Qlがオフとなり、センス動作を行なう。多値レベ
ルの場合はか\るセンスアンプが第3図に示したように
3組設けられ、メモリセル出力端に共通に接続されて読
取り出力りを受ける。1メモリセルが2値1ビット型の
従来のメモリのセンスアンプ回路ではフリップフロップ
回路FFの入出力端PL、P2を直接メモリセル出力端
へ接続し、バッファQ7.QBなどは設けないが、多値
レベルメモリでそのようにすると3個のセンスアンプの
1つが動作したことで該センスアンプがメモリセル出力
端を電源へプルアップ又はグランドへプルダウンしてし
まい、記憶データの読取りは不能となる。バッファQ7
とQ8を設けておけばこのようなことはない。基準レベ
ル側のバッファQ9とQIOは本質的には不要であるが
、データ入力側との対称性を保つ、基準電源への悪影響
を除くなどの目的で有効である。
Embodiment of the Invention FIG. 1 shows a circuit initially considered by the inventors as a sense amplifier circuit for a multi-level memory consisting of five CMO circuits. 0
As is well known, the M03 circuit has advantages such as low power consumption. In FIG. 1, Ql, Q2 are driver transistors, Q3. Q4 is a load transistor, and input/output terminals PI and P2 of these transistors are cross-connected as shown in the figure to form a flip-flop circuit FF. Transistors with arrows are p-channel, and transistors without arrows are n-channel. Therefore, Ql and Q3, and Q2 and Q4 constitute a CMOS inverter. Q5. Q6 is also a p-channel transistor and constitutes a CMOS inverter, and clock C
When LK becomes H (high) level, transistor Q6 turns on, connects the earth side of flip-flop circuit FF to the ground, and activates the circuit. Input stage transistors Q7 and Q8. Q9 and QIO are buffers,
Ql and Q9 are drivers, and Q8 and QIO are loads, forming a source follower circuit. The readout is at the input end.
That is, to the gate of transistor Q7 and to the reference voltage Re.
f is applied to the input terminal inB, ie, the gate of transistor Q9. In this circuit, if Ref>D, transistor Q1 is on and Q2 is off; if Ref<]), transistor Q2 is on and Ql is off, and a sensing operation is performed. In the case of multi-value levels, three sets of such sense amplifiers are provided as shown in FIG. 3, and are commonly connected to the memory cell output ends to receive read outputs. In a conventional memory sense amplifier circuit in which one memory cell is a binary 1-bit type, the input/output terminals PL and P2 of the flip-flop circuit FF are directly connected to the memory cell output terminal, and the buffers Q7. QB etc. are not provided, but if you do this with a multi-level memory, when one of the three sense amplifiers operates, that sense amplifier will pull up the memory cell output terminal to the power supply or pull it down to the ground, causing the memory cell to fail. Data cannot be read. Buffer Q7
If Q8 is provided, this will not happen. Buffers Q9 and QIO on the reference level side are essentially unnecessary, but are effective for maintaining symmetry with the data input side and eliminating adverse effects on the reference power supply.

しかし第1図の回路では次のような問題がある。However, the circuit shown in FIG. 1 has the following problems.

即ち、前述のように多値メモリでは読取り出力が電源電
圧からグランドレベル近くまで大幅に変わり、これに合
わせて基準電圧Refも高低に変る。
That is, as described above, in a multi-level memory, the read output changes significantly from the power supply voltage to near the ground level, and the reference voltage Ref changes accordingly.

そして入力電圧が余りに下るとフリップフロ・ノブ回路
FFではpチャネルトランジスタQ3.Q4がオンする
恐れがあり、これらのトランジスタがオンすると電圧V
cc、トランジスタQ3、入出力端P1.トランジスタ
Q8、グランドの経路、および電源Vcc、I〜ランジ
スタQ4、入出力端P2、トランジスタQIO、グラン
ドの経路で電流が流れ、フリップフロップ回路に加わる
入力電圧及び基準電圧が変るという問題がある。第4図
はこの点も改善した本発明実施例回路を示す。
When the input voltage drops too much, the flip-flow knob circuit FF uses p-channel transistor Q3. Q4 may turn on, and if these transistors turn on, the voltage V
cc, transistor Q3, input/output terminal P1. There is a problem in that current flows in a path from the transistor Q8 to the ground, and from the power supply Vcc, I to the transistor Q4, the input/output terminal P2, the transistor QIO, and the ground, changing the input voltage and reference voltage applied to the flip-flop circuit. FIG. 4 shows a circuit according to an embodiment of the present invention which is also improved in this respect.

第4図では第1図と同じ部分には同し符号が付してあり
、そして第1図と比べれば明らかなようにフリップフロ
ップ回路FFの電源側にもp、nヂャネルトランジスタ
Qll、Ql2からなる0MO3を設け、これをクロッ
クCLKpでスイ・ノチングする点が異なる。フリップ
フロップ回路FFのアース側のCMOSインパーク(ス
イッチング回路)Q5.Q6に加えるクロックをCLK
nとすると、これらのクロックは第5図に示すように先
ずクロックCLKnが立上り、その後クロックCLKp
が立下るように選択されている。
In FIG. 4, the same parts as in FIG. 1 are given the same reference numerals, and as is clear from the comparison with FIG. The difference is that 0MO3 consisting of 0MO3 is provided and this is switched by the clock CLKp. CMOS impark (switching circuit) on the ground side of flip-flop circuit FF Q5. CLK is the clock added to Q6.
As shown in FIG. 5, first the clock CLKn rises, and then the clock CLKp rises.
is selected so that it falls.

このようなスイッチング回路が付加されていると、最初
はクロックCLKnがLレベル、クロックCLKpはト
■レベルであるがらトランジスタQ5がオン、Q6はオ
フ、そしてトランジスタQ12がオン、Qllはオフで
あり、フリップフロップ回路FFは不動作である。メモ
リセルが読出され、その出力りがトランジスタQ7に加
わるときクロックCLKnが立上り、トランジスタQ6
がオン、Q5はオフになる。従ってトランジスタ。
When such a switching circuit is added, initially the clock CLKn is at L level and the clock CLKp is at T level, but transistor Q5 is on, Q6 is off, transistor Q12 is on, and Qll is off. Flip-flop circuit FF is inactive. When the memory cell is read and its output is applied to transistor Q7, clock CLKn rises and transistor Q6
is on and Q5 is off. Hence the transistor.

1、Q2.Q6からなる回路がアクティブになり、基準
電圧Refに対する読取り電圧りの高、低によりトラン
ジスタQ1またはQ2が他方より多くオン(低抵抗)に
なる。しかし電源側のスイッチング回路Qll、Q12
ではまだQl2がオン、Qllはオフであるから前述の
Vcc、Q3.P 1゜Q8、グランド及びVcc、 
Q4. P 2. Q 12、グランドの経路の電流は
流れない。やがてクロックCLKpが立下るとトランジ
スタQllがオン、Ql2はオフとなり、フリップフロ
ップ回路FFに電源VCCの電圧が印加される。フリッ
プフロップ回路FFでは上記のように読取り電圧D、基
準電圧RefによりトランジスタQl、Q2の導通状態
に差がついているから、電源電圧の印加で直ちにその差
を拡大する方向の動作が行なわれ、トランジスタQ1.
 Q2ば一方がオン、他方がオフとなる。こうして回路
では読取り電圧り及び基準電圧Refが低くてpチャネ
ルトランジスタQ3.Q4がオンする状態にあっても、
センス動作開始直前まで電源が断たれていて電流は流れ
ず、フリップフロップ回路へ加わる読取り電圧及び基準
電圧を該電流により変化させるようなことはない。
1.Q2. The circuit consisting of Q6 becomes active and transistors Q1 or Q2 are turned on (low resistance) more than the other depending on whether the read voltage is high or low relative to the reference voltage Ref. However, the switching circuits Qll and Q12 on the power supply side
Since Ql2 is still on and Qll is off, the above-mentioned Vcc, Q3 . P 1゜Q8, ground and Vcc,
Q4. P2. Q12: No current flows through the ground path. When the clock CLKp eventually falls, the transistor Qll is turned on and the transistor Ql2 is turned off, and the voltage of the power supply VCC is applied to the flip-flop circuit FF. In the flip-flop circuit FF, as mentioned above, there is a difference in the conduction states of the transistors Ql and Q2 depending on the read voltage D and the reference voltage Ref. Q1.
For Q2, one is on and the other is off. Thus, in the circuit, the read voltage and the reference voltage Ref are low and the p-channel transistor Q3. Even if Q4 is in the ON state,
The power is cut off until just before the start of the sensing operation, so no current flows, and the read voltage and reference voltage applied to the flip-flop circuit are not changed by the current.

発明の詳細 な説明したように本発明によれば入力端子が大幅に変る
、従って基準電圧も低くなることがあっても正確な動作
を行なうことができる、多値レベルメモリに好適なCM
OSセンスアンプ回路が得られる。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, as described in detail, the present invention provides a CM suitable for multi-level memory, which can perform accurate operation even if the input terminal changes significantly and therefore the reference voltage may become low.
An OS sense amplifier circuit is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCMOSセンスアンプの一例を示す回路図、第
2図は読取り電圧及び基準電圧の変化を示すグラフ、第
3図は多値メモリのセンス回路の要部を示すブロック図
、第4図は本発明の実施例を示す回路図、第5図はクロ
ックのタイミング関係を説明する図である。 図面でMCはメモリセル、Q3とQl、Q4とQ2はC
MOSインパーク、FFはフリップフロップ回路、Pl
、P2は入出力端、Q?、QBは入力端バッファ、Q9
.QIOは基準値バッファ、Q5.Q6は第1のスイッ
チング回路、Qll。 Q12は第2のスイッチング回路、CLKn、CL K
 pはクロックである。 出願人 富士通株式会社 代理人弁理士 青 柳 稔 第1図 第4図
Fig. 1 is a circuit diagram showing an example of a CMOS sense amplifier, Fig. 2 is a graph showing changes in read voltage and reference voltage, Fig. 3 is a block diagram showing main parts of a multi-level memory sense circuit, Fig. 4 5 is a circuit diagram showing an embodiment of the present invention, and FIG. 5 is a diagram explaining the timing relationship of clocks. In the drawing, MC is a memory cell, Q3 and Ql, Q4 and Q2 are C
MOS Impark, FF is a flip-flop circuit, Pl
, P2 is the input/output terminal, Q? , QB is the input end buffer, Q9
.. QIO is a reference value buffer, Q5. Q6 is a first switching circuit, Qll. Q12 is the second switching circuit, CLKn, CLK
p is a clock. Applicant Fujitsu Ltd. Representative Patent Attorney Minoru Aoyagi Figure 1 Figure 4

Claims (1)

【特許請求の範囲】[Claims] メモリセルに2値複数ビツトで表わされるデータを記憶
させるメモリの多値レベル読取り用のセンスアンプであ
って、インバータ、対の入出力端を交叉接続してなるフ
リップフロップ回路と、該入出力端の一方に接続され読
取り電圧を受ける入力側バッファと、該入出力端の他方
に接続され基準電圧を受ける基準側バッファと、前記フ
リップフロップ回路のアース側に接続されて第1のクロ
ックが入力するとき該アース側をグランドへ接続する第
1のスイッチング回路と、前記フリップフロップ回路の
電源側へ接続され前記第1のクロックに続いて第2のク
ロックが入力するとき該電源側を電源へ接続する第2の
スイッチング回路とを備えることを特徴とするセンスア
ンプ。
A sense amplifier for reading multiple levels of a memory that stores data represented by a plurality of binary bits in a memory cell, the sense amplifier comprising an inverter, a flip-flop circuit formed by cross-connecting a pair of input and output terminals, and the input and output terminals. an input side buffer connected to one of the input/output terminals to receive a read voltage; a reference side buffer connected to the other input/output terminal to receive a reference voltage; and a reference side buffer connected to the ground side of the flip-flop circuit to receive a first clock. a first switching circuit that connects the ground side to the ground; and a first switching circuit that is connected to the power supply side of the flip-flop circuit and connects the power supply side to the power supply when a second clock is input following the first clock; A sense amplifier comprising: a second switching circuit.
JP58118618A 1983-06-30 1983-06-30 Sense amplifier Pending JPS6010495A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58118618A JPS6010495A (en) 1983-06-30 1983-06-30 Sense amplifier
EP84401375A EP0130910B1 (en) 1983-06-30 1984-06-28 A sense amplifier
DE8484401375T DE3483121D1 (en) 1983-06-30 1984-06-28 READING AMPLIFIER.
US06/626,795 US4558241A (en) 1983-06-30 1984-07-02 Sense amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58118618A JPS6010495A (en) 1983-06-30 1983-06-30 Sense amplifier

Publications (1)

Publication Number Publication Date
JPS6010495A true JPS6010495A (en) 1985-01-19

Family

ID=14740999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58118618A Pending JPS6010495A (en) 1983-06-30 1983-06-30 Sense amplifier

Country Status (4)

Country Link
US (1) US4558241A (en)
EP (1) EP0130910B1 (en)
JP (1) JPS6010495A (en)
DE (1) DE3483121D1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374196A (en) * 1986-09-11 1988-04-04 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Cmos semiconductor memory circuit
JP2010200302A (en) * 2009-02-26 2010-09-09 Advantest Corp Comparator with latching function and testing device employing the same
JP2023530193A (en) * 2020-07-27 2023-07-13 クアルコム,インコーポレイテッド Fast sense amplifier with dynamically cross-coupled regeneration stage

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177198A (en) * 1984-09-21 1986-04-19 Toshiba Corp Semiconductor memory
JPS62102499A (en) * 1985-10-28 1987-05-12 Nec Corp Memory circuit
US4663546A (en) * 1986-02-20 1987-05-05 Motorola, Inc. Two state synchronizer
US4769564A (en) * 1987-05-15 1988-09-06 Analog Devices, Inc. Sense amplifier
KR920001325B1 (en) * 1989-06-10 1992-02-10 삼성전자 주식회사 Sense amp driver of memory device
KR920013458A (en) * 1990-12-12 1992-07-29 김광호 Differential Detection Amplifier
US6002614A (en) 1991-02-08 1999-12-14 Btg International Inc. Memory apparatus including programmable non-volatile multi-bit memory cell, and apparatus and method for demarcating memory states of the cell
US5218569A (en) 1991-02-08 1993-06-08 Banks Gerald J Electrically alterable non-volatile memory with n-bits per memory cell
JPH0750556A (en) * 1993-08-09 1995-02-21 Fujitsu Ltd Flip-flop type amplifier circuit
EP0658000A3 (en) * 1993-12-08 1996-04-03 At & T Corp A fast comparator circuit.
KR0140161B1 (en) * 1994-12-29 1998-07-15 김주용 Detector circuit of memory cell
US6353554B1 (en) 1995-02-27 2002-03-05 Btg International Inc. Memory apparatus including programmable non-volatile multi-bit memory cell, and apparatus and method for demarcating memory states of the cell
KR0164385B1 (en) * 1995-05-20 1999-02-18 김광호 Sense amplifier circuit
JP3625930B2 (en) * 1995-10-26 2005-03-02 株式会社日立製作所 Semiconductor integrated circuit device
US6857099B1 (en) * 1996-09-18 2005-02-15 Nippon Steel Corporation Multilevel semiconductor memory, write/read method thereto/therefrom and storage medium storing write/read program
US6031403A (en) * 1996-11-13 2000-02-29 International Business Machines Corporation Pull-up and pull-down circuits
US5828239A (en) * 1997-04-14 1998-10-27 International Business Machines Corporation Sense amplifier circuit with minimized clock skew effect
US6002626A (en) * 1997-08-01 1999-12-14 International Business Machines Corporation Method and apparatus for memory cell array boost amplifier
US5892725A (en) * 1998-05-13 1999-04-06 International Business Machines Corporation Memory in a data processing system having uneven cell grouping on bitlines and method therefor
US6819144B2 (en) * 2003-03-06 2004-11-16 Texas Instruments Incorporated Latched sense amplifier with full range differential input voltage
US20110187414A1 (en) * 2010-02-01 2011-08-04 Taiwan Semiconductor Manufacturing Company, Ltd. Pbti tolerant circuit design

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211733A (en) * 1975-07-10 1977-01-28 Burroughs Corp Differential detection amplifier
JPS56159898A (en) * 1980-05-12 1981-12-09 Seiko Epson Corp Read-only memory
JPS57138090A (en) * 1981-01-19 1982-08-26 Siemens Ag Monolithic integrated semiconductor memory

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3879621A (en) * 1973-04-18 1975-04-22 Ibm Sense amplifier
US4007381A (en) * 1975-04-18 1977-02-08 Bell Telephone Laboratories, Incorporated Balanced regenerative charge detection circuit for semiconductor charge transfer devices
US4169233A (en) * 1978-02-24 1979-09-25 Rockwell International Corporation High performance CMOS sense amplifier
US4223394A (en) * 1979-02-13 1980-09-16 Intel Corporation Sensing amplifier for floating gate memory devices
US4287570A (en) * 1979-06-01 1981-09-01 Intel Corporation Multiple bit read-only memory cell and its sense amplifier
JPS56290A (en) * 1979-06-11 1981-01-06 Sumitomo Alum Smelt Co Ltd Electrolytic furnace for production of aluminum
US4376987A (en) * 1980-08-18 1983-03-15 Mcdonnell Douglas Corporation Threshold referenced MNOS sense amplifier
US4461965A (en) * 1980-08-18 1984-07-24 National Semiconductor Corporation High speed CMOS sense amplifier
US4412143A (en) * 1981-03-26 1983-10-25 Ncr Corporation MOS Sense amplifier
US4485317A (en) * 1981-10-02 1984-11-27 Fairchild Camera & Instrument Corp. Dynamic TTL input comparator for CMOS devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211733A (en) * 1975-07-10 1977-01-28 Burroughs Corp Differential detection amplifier
JPS56159898A (en) * 1980-05-12 1981-12-09 Seiko Epson Corp Read-only memory
JPS57138090A (en) * 1981-01-19 1982-08-26 Siemens Ag Monolithic integrated semiconductor memory

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374196A (en) * 1986-09-11 1988-04-04 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Cmos semiconductor memory circuit
JP2010200302A (en) * 2009-02-26 2010-09-09 Advantest Corp Comparator with latching function and testing device employing the same
JP2023530193A (en) * 2020-07-27 2023-07-13 クアルコム,インコーポレイテッド Fast sense amplifier with dynamically cross-coupled regeneration stage

Also Published As

Publication number Publication date
US4558241A (en) 1985-12-10
EP0130910A2 (en) 1985-01-09
EP0130910B1 (en) 1990-09-05
DE3483121D1 (en) 1990-10-11
EP0130910A3 (en) 1987-10-28

Similar Documents

Publication Publication Date Title
JPS6010495A (en) Sense amplifier
US7170812B2 (en) Semiconductor memory device capable of reducing power consumption during reading and standby
EP0103093B1 (en) Multi-bit-per-cell read only memory circuit
US5239502A (en) Bit storage cell
US5040146A (en) Static memory cell
US4342101A (en) Nonvolatile semiconductor memory circuits
US20060013037A1 (en) Read/write circuit for accessing chalcogenide non-volatile memory cells
US20080137448A1 (en) Integrated Circuit with Separate Supply Voltage for Memory That is Different from Logic Circuit Supply Voltage
US3983412A (en) Differential sense amplifier
US5289415A (en) Sense amplifier and latching circuit for an SRAM
KR102310684B1 (en) Level shifter enable
US8964451B2 (en) Memory cell system and method
KR0154193B1 (en) Sense amplifier circuit
US7012848B2 (en) Semiconductor integrated circuit device
JPH08147968A (en) Dynamic memory
KR0137711B1 (en) Semiconductor integrated circuit device implemented by bipolar and field effect transistors and having stable sense amplifier
US4939691A (en) Static random access memory
US4958093A (en) Voltage clamping circuits with high current capability
US10395700B1 (en) Integrated level translator
CN113892232A (en) Electronic circuit and bistable circuit
JPH0697393A (en) Two-port ram cell
US6434071B1 (en) Circuit and method of selectively activating feedback devices for local bit lines in a memory
JPH0370320B2 (en)
US20020063581A1 (en) Input buffer of a semiconductor device that gives only a small scattering in delay time
US5650780A (en) Decoding for tri-state read-only memory