JPS60103656A - Solar battery module - Google Patents

Solar battery module

Info

Publication number
JPS60103656A
JPS60103656A JP58211537A JP21153783A JPS60103656A JP S60103656 A JPS60103656 A JP S60103656A JP 58211537 A JP58211537 A JP 58211537A JP 21153783 A JP21153783 A JP 21153783A JP S60103656 A JPS60103656 A JP S60103656A
Authority
JP
Japan
Prior art keywords
loops
solar cell
external magnetic
terminals
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58211537A
Other languages
Japanese (ja)
Other versions
JPS6361791B2 (en
Inventor
Keisuke Araki
荒木 計介
Tetsuo Yoshimi
吉見 哲夫
Kazusane Morita
森田 和實
Kiyoshi Fujii
清 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP58211537A priority Critical patent/JPS60103656A/en
Publication of JPS60103656A publication Critical patent/JPS60103656A/en
Publication of JPS6361791B2 publication Critical patent/JPS6361791B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enable the stable output even with large current and in the neighborhood of a ferromagnetic field with the difficulty of being influenced by electromagnetic induction by a method wherein the series circuit of the titled element forms a plurality of loops, which are then connected to each other so that the voltages induced in respective loops by an external magnetic field cancel each other out. CONSTITUTION:The series circuit connecting the elements forms two loops A and B having approximately the same areas. Besides, these loops A and B are connected to each other so that the voltage induced in each by external magnetic fields intersecting cancels. The point of intersection of wiring as illustrated is insulated so as not to be in contact with each other. This manner enables the obtaining of the output voltage not influenced by the external magnetic field between terminals 3 and 3 at both ends, i.e., the construction of the titled device of non induction type.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、多数の太陽電池素子を直列接続し、両端に
出力端子を設けてなる太陽電池モジュールに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a solar cell module in which a large number of solar cell elements are connected in series and output terminals are provided at both ends.

〔従来技術とその問題点〕[Prior art and its problems]

従来の太陽電池モジュールの代表的な配線例を簡略化し
て第1図、第2図に示す。これは直径4インチの太陽電
池素子2を素子取付パネル1上で30枚直列に接続し、
両端に端子3,3を設けた電力用モジュールの例である
。一枚の素子の表面と裏面との間に電圧が発生し、これ
を2本のリード線で隣接する素子と直列に接続するので
あるが、図をわかりやすくするため忙、ここでは接続の
向きのみを1本の線で示す。
Typical wiring examples of conventional solar cell modules are simplified and shown in FIGS. 1 and 2. This involves connecting 30 solar cell elements 2 with a diameter of 4 inches in series on the element mounting panel 1.
This is an example of a power module with terminals 3, 3 provided at both ends. A voltage is generated between the front and back sides of one element, and this is connected in series with the adjacent element using two lead wires. only one line is shown.

この図の様な配線は電磁誘導の影響を受けやすい。例え
ばこの図において、紙面と直交する鎖交磁束があれば、
ファラデーの法則によってリード線に誘起電流が流れて
しまう。従って、大電流の流れる電線又は強力な交番磁
界の近傍にこの太陽電池モジュールを設置すると、光に
よって発電される電流の他に誘起電流が流れることとな
る。また第1図のように出力端子3の相互間隔が離れて
いると、外部にリード線を接続した場合、このリー 電
線によってループができ、ここに誘起電流が流れる。こ
れ等の誘起電流は出力電圧に重畳され、測定器や通信器
等の電源として太陽電池モジ瓢−ルを用いると、誤動作
や破損の原因となりやすく、/QX またこの重畳された電流を除去することはむずかしい。
Wiring like this diagram is susceptible to electromagnetic induction. For example, in this figure, if there is a magnetic flux linkage perpendicular to the plane of the paper,
An induced current flows in the lead wire due to Faraday's law. Therefore, if this solar cell module is installed near an electric wire through which a large current flows or a strong alternating magnetic field, an induced current will flow in addition to the current generated by light. Furthermore, if the output terminals 3 are spaced apart from each other as shown in Figure 1, when a lead wire is connected to the outside, a loop is formed by the lead wire, and an induced current flows there. These induced currents are superimposed on the output voltage, and when a solar cell module is used as a power source for measuring instruments, communication devices, etc., it is likely to cause malfunction or damage. That's difficult.

〔発明の目的〕[Purpose of the invention]

この発明は、電磁誘導の影響を受けに(<、大電流9強
磁界近傍でも安定した出力を得ることができる太陽電池
モジエールを提供することを目的とする。
An object of the present invention is to provide a solar cell module that can obtain stable output even under the influence of electromagnetic induction (<, large current, near strong magnetic field).

〔発明の要点〕[Key points of the invention]

この発明は、上記目的を達成するため、太陽電池素子の
直列回路が複数のループを形成するようにし、しかもこ
れらループを、外部磁界により各ループ内に誘起される
電圧が相殺するように相互に接続することを特徴とする
。さらに、直列回路の両端に設けられる端子を近接させ
て、外部磁界の影響を一層低減することも可能である。
In order to achieve the above object, the present invention forms a plurality of series circuits of solar cell elements into a plurality of loops, and furthermore, these loops are interconnected so that the voltages induced in each loop by an external magnetic field cancel each other out. It is characterized by connecting. Furthermore, it is also possible to bring the terminals provided at both ends of the series circuit close to each other to further reduce the influence of external magnetic fields.

〔発明の実施例〕[Embodiments of the invention]

発明の実施例を第3〜6図に示す。前記と同様に、図を
わかりやすくするために、リード線を略し接続の向きの
みを1本の線で示す。第3〜5図では、素子間を結線す
る直列回路が、はぼ同一の面積を持つ2つのループAと
Bを形成している。
Examples of the invention are shown in FIGS. 3-6. Similarly to the above, in order to make the diagram easier to understand, the lead wires are omitted and only the direction of connection is shown with a single line. In FIGS. 3 to 5, the series circuits connecting the elements form two loops A and B having approximately the same area.

しかも、これらループA、Bは、交差する外部磁界によ
りそれぞれに誘−起する電圧が相殺するように相互に接
続されている。従って、両端の端子3゜3間に外部磁界
の影響を受けない出力電圧を得ること、即ち無誘導形太
陽電池モジュールを構成することができる。第3,4図
に示しである様な配線の交差部は互いに接触しない様に
絶縁するのは言うまでもない。
Moreover, these loops A and B are connected to each other so that the voltages induced in each of them by intersecting external magnetic fields cancel each other out. Therefore, it is possible to obtain an output voltage between the terminals 3.3 at both ends that is not affected by an external magnetic field, that is, to construct a non-inductive solar cell module. Needless to say, the intersections of the wirings as shown in FIGS. 3 and 4 should be insulated so that they do not come into contact with each other.

第6図、はさらに他の実施例を示し、この場合には、多
数の小面積のループを形成し、それらの誘起電圧が互に
打消し合うようにループ間を相互に接続している。各ル
ープの面積が小さいときは、本実施例のように、同一面
積の、偶数個のループを形成してこれらを誘起電圧が相
殺するように接続しなくとも、端子3,3間に生ずる誘
導電圧を充分に低く抑えて、所期の目的を達成すること
が可能である。第7図に示す実施例も、素子1の直列回
路で多数の、小面積のループを形成し、これらを逆直列
につないで、外部磁界による誘導な実質的に防止してい
る。
FIG. 6 shows yet another embodiment, in which a large number of small-area loops are formed and the loops are interconnected so that their induced voltages cancel each other out. When the area of each loop is small, even if an even number of loops with the same area are not formed and connected so that the induced voltages cancel each other out, as in this example, the induction generated between terminals 3 and 3 can be avoided. It is possible to keep the voltage low enough to achieve the intended purpose. In the embodiment shown in FIG. 7 as well, a large number of small-area loops are formed by the series circuit of the elements 1, and these are connected in anti-series to substantially prevent induction by external magnetic fields.

第3〜7図の実施例において、端子3,3は、パネル1
上に互いに近接して設けられている。このようにすると
、モジュールの側面図である第8図から明らかなように
、端子3,3に接続された外部リード82により形成さ
れるループCの面積が著しく小さくなり、モジュール8
10面方向の外部磁界による誘導を低減することができ
る。
In the embodiment of FIGS. 3-7, the terminals 3, 3 are connected to the panel 1
are located close to each other on the top. In this way, as is clear from FIG. 8, which is a side view of the module, the area of the loop C formed by the external leads 82 connected to the terminals 3, 3 is significantly reduced, and the module 8
Induction due to an external magnetic field in the 10-plane direction can be reduced.

本発明は、パネル上の素子を直並列に接続したモジュー
ルにも当然に適用可能である。この場合、並列素子の直
列回路が複数のループを形成するようにしても、各々複
数のループを形成する直列素子の回路を並列接続しても
差支えない。
The present invention is naturally applicable to a module in which elements on a panel are connected in series and parallel. In this case, the series circuits of parallel elements may form a plurality of loops, or the circuits of series elements each forming a plurality of loops may be connected in parallel.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、太陽電池素子の接続順序に配慮する
ことで、外部からの電磁誘導の影響を受けにくくするこ
とができ、大電流、強磁界の近傍においても安定した出
力が得られる。
According to this invention, by considering the connection order of the solar cell elements, it is possible to reduce the influence of external electromagnetic induction, and stable output can be obtained even in the vicinity of large currents and strong magnetic fields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来の太陽電池モジーー(5) ルの配線例を示す平面図、第3図ないし第7図はこの発
明を実施した太陽電池モジュールの配線例を示す平面図
、第8図は本発明による太陽電池モジ纂−ルの側面図で
ある。 1:素子取付パネル、2;太陽電池素子、3:端子、8
1:モジ二−ル、82:外部リード。 (6) 才11!] 才3 図 ?j閃 才乙 ロ オ7図 才80
1 and 2 are plan views showing examples of wiring of a conventional solar cell module (5), and FIGS. 3 to 7 are plan views showing examples of wiring of a solar cell module embodying the present invention. FIG. 8 is a side view of a solar cell module assembly according to the present invention. 1: Element mounting panel, 2: Solar cell element, 3: Terminal, 8
1: Module, 82: External lead. (6) Age 11! ] Age 3 figure? j Sensai Otsu Roo 7 figure 80

Claims (1)

【特許請求の範囲】 1)多数の太陽電池素子を直列接続し、その両端に端子
を設けてなるものにおいて、前記素子の直列回路が複数
のループを形成し、しかもこれらループが、外部磁界に
より各ループ内に誘起される電圧を相殺するようにして
相互して接続されていることを特徴とする太陽電池モジ
ュール。 2、特許請求の範囲第1項記載のモジュールにおいて、
上記端子が相互に近接して配置されたことを特徴とする
太陽電池モジュール。
[Scope of Claims] 1) In a device in which a large number of solar cell elements are connected in series and terminals are provided at both ends, the series circuit of the elements forms a plurality of loops, and these loops are not affected by an external magnetic field. A solar cell module characterized in that the solar cell modules are connected to each other in such a manner that voltages induced within each loop are canceled out. 2. In the module according to claim 1,
A solar cell module characterized in that the terminals are arranged close to each other.
JP58211537A 1983-11-10 1983-11-10 Solar battery module Granted JPS60103656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58211537A JPS60103656A (en) 1983-11-10 1983-11-10 Solar battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58211537A JPS60103656A (en) 1983-11-10 1983-11-10 Solar battery module

Publications (2)

Publication Number Publication Date
JPS60103656A true JPS60103656A (en) 1985-06-07
JPS6361791B2 JPS6361791B2 (en) 1988-11-30

Family

ID=16607494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58211537A Granted JPS60103656A (en) 1983-11-10 1983-11-10 Solar battery module

Country Status (1)

Country Link
JP (1) JPS60103656A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03237763A (en) * 1990-02-14 1991-10-23 Sharp Corp Solar cell array
JP2008124496A (en) * 2008-01-15 2008-05-29 Mitsubishi Heavy Ind Ltd Solar battery module, and method of manufacturing the same
JP2014192617A (en) * 2013-03-26 2014-10-06 Fujitsu Ltd Sunlight receiving device and sunlight receiving system
JP2018078684A (en) * 2016-11-07 2018-05-17 日本電信電話株式会社 Solar cell module, solar cell panel, and solar cell panel group

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03237763A (en) * 1990-02-14 1991-10-23 Sharp Corp Solar cell array
JP2008124496A (en) * 2008-01-15 2008-05-29 Mitsubishi Heavy Ind Ltd Solar battery module, and method of manufacturing the same
JP2014192617A (en) * 2013-03-26 2014-10-06 Fujitsu Ltd Sunlight receiving device and sunlight receiving system
JP2018078684A (en) * 2016-11-07 2018-05-17 日本電信電話株式会社 Solar cell module, solar cell panel, and solar cell panel group

Also Published As

Publication number Publication date
JPS6361791B2 (en) 1988-11-30

Similar Documents

Publication Publication Date Title
US6424018B1 (en) Semiconductor device having a hall-effect element
US5041780A (en) Integrable current sensors
AU603382B2 (en) Measuring transformers
US6769166B1 (en) Method of making an electrical current sensor
US8890509B2 (en) Current sensor
JP2002026419A (en) Magnetism-electricity conversion device
US6781358B2 (en) Hall-effect current detector
JP2005515667A (en) Integrated magnetic field strap for signal isolators
CA2389705C (en) Off-set reduced hall element
JP7225420B2 (en) Current transducer with magnetic field detector module
KR20230171977A (en) Method for manufacturing coercive field shunt, power meter and coercive field shunt
US20210003642A1 (en) Magnetic sensor
JPH06186254A (en) Chip-type resistor for current detection
JPS60103656A (en) Solar battery module
JPH02192781A (en) Hall element and magnetic sensor system
CN215731694U (en) Power semiconductor device
NO173903B (en) POWER CONVERTER DEVICE FOR A STATIC ELECTRICITY METER
JP2001148458A (en) Power semiconductor module
JPH10242537A (en) Superconducting quantum interference device
JPH05235258A (en) Transistor module
JP3344526B2 (en) Zero-phase current transformer
JP2570865Y2 (en) Current detection resistor
JPH0237730B2 (en)
JPS6113316B2 (en)
JP3006313B2 (en) Shunt resistance device